
CSSE 120 – Introduction to Software Development

As you arrive:
1. Start up your computer and plug it in.

2. Log into Angel and go to CSSE 120.

Do the Attendance Widget –

the PIN is on the board.

3. Go to the Course Schedule web page.

Open the Slides for today if you wish.

4. Checkout today’s project:

Session XX

Session

Session13_LoopPatternsForInput

Wait-until-event loop

pattern

Line Following!

Loop Patterns for Input

Min-Max loop pattern

Session 13

Loop patterns for

input, Max/min,

Structure Charts

13

Checkout today’s project:
 Session13_LoopPatternsForInput

Are you in the Pydev perspective? If not:

 Window ~ Open Perspective ~ Other then Pydev

Messed up views? If so:
 Window ~ Reset Perspective

No SVN repositories view (tab)? If it is not there:
 Window ~ Show View ~ Other

 then SVN ~ SVN Repositories

1. In your SVN repositories view (tab), expand your repository
(the top-level item) if not already expanded.

• If no repository, perhaps you are in the wrong Workspace. Get help.

2. Right-click on today’s project, then select Checkout.

Press OK as needed. The project shows up in the

 Pydev Package Explorer
to the left. Expand and browse the modules under src as desired.

Troubles getting
today’s project? If so:

Recap: Two main types of loops

 Definite Loop

 The program knows before the loop starts how many times

the loop body will execute

 Implemented in Python as a for loop. Typical patterns include:

 • Counting loop, perhaps in the Accumulator Loop pattern

 • Loop through a sequence directly

 • Loop through a sequence using indices

 Cannot be an infinite loop

 Indefinite loop

 The body executes as long as some condition is True

 Implemented in Python as a while statement

 Can be an infinite loop if the condition never becomes False

 Python's for line in file: construct

Indefinite loop that looks syntactically like a definite loop!

Recap:

Definite Loops

 Definite loop

The program knows

before the loop starts

how many times the loop

body will execute

 Counted loop

Special case of definite loop

where the sequence can be

generated by range()

 Implemented in Python as

a for loop

 Example to the right shows

3 typical patterns

Examples of definite loops :

• All three of these examples illustrate the
Accumulator Loop pattern

• The first example is a counted loop

• The second and third examples are equivalent
ways to loop through a sequence

 Second example is NOT a counted loop

 Third example IS a counted loop

sum = 0

for k in range(10):

 sum = sum + (k ** 3)

sum = 0

for number in listOfNumbers:

 sum = sum + number

sum = 0

for k in range(len(listOfNumbers)):

 sum = sum + listOfNumbers[k]

Recap: Indefinite Loops

 Number of iterations is not known when loop starts

 Is typically a conditional loop

 Keeps iterating as long as a certain condition remains True

 The conditions are Boolean expressions

 Typically implemented using a while statement

sum = 0

k = 0

while k < 10:

 sum = sum + (k ** 3)

 k = k + 1

sum = 0

for k in range(10):

 sum = sum + (k ** 3)

Indefinite loop that computes the same sum as the definite loop

Definite loop

The input-compute-in-a-loop pattern

 We have seen the input-compute-output pattern:

 A cousin of that pattern is the input-compute-in-a-loop

pattern:

Input from the user or
as a parameter

Or return the result

get data

compute using the data

print the result

We’ve seen a special case of this
pattern: the Accumulator Loop
pattern. Today we will examine
other special cases.

pre-loop computation

repeatedly:

 get data

 compute using the data

post-loop computation

 Suppose that you want to get a bunch of numbers (or other data)

from the user.

 Do you need a loop?

If so, what will you do each time through the loop?

 Answer: Yes. Get one number from the user each time through the loop.

 What are some different ways that you might use to let the

program know when the user is finished entering numbers?

 Ask the user how many numbers she wants to enter. Then loop that many times.

 Each time through the loop, ask the user “Are you done?”.

Exit the loop when she says “Yes.”

 The user enters a special sentinel value

(e.g. a negative number) to indicate that she is done.

 The user enters nothing (just an empty line) to indicate that she is done.

Getting inputs (more than one) from the user

We’ll now see
examples of each of
these approaches.

 Open the

 m1_input_by_user_count.py

module and execute it together

 When does the loop terminate?

 Is this the best way to make the user enter input?

 Why?

 Why not?

For loop pattern
pre-loop computation

for [amount of data] :

 get data

 compute using the data

post-loop computation

This approach is a lousy way to get numbers
that the user supplies, because:

The user has to count in advance how many
numbers they will supply.

Interactive loop pattern

 One version: an

interactive loop

pre-loop computation

while [there is more data]:

 get data

 compute using the data

post-loop computation

set a flag indicating that there is data

other pre-loop computation

while [there is more data]:

 get data

 compute using the data

 ask the user if there is more data

post-loop computation

This approach is also a lousy way to get numbers that the user
supplies, because:

The user has to answer repeatedly the “more numbers?” question.

Examine and run the
m2_input_by_asking_if_more.py

module in the project you
checked out today.

Sentinel loop pattern

 Better version:

use a sentinel

pre-loop computation

while [there is more data]:

 get data

 compute using the data

post-loop computation

get data

other pre-loop computation

while [data does not signal end-of-data]:

 compute using the data

 get data

post-loop computation

Examine and run the
m3_input_using_sentinel.py

module in the project you
checked out today.

This approach (using negative numbers as the
sentinel) has a flaw. What is that flaw?

Answer: You cannot have negative numbers
included in the average!

User signals end of data by
a special “sentinel” value.

Note that the sentinel value
is not used in calculations.

Better sentinel loop

pattern

 Best (?) version:

use no-input as the sentinel

 Examine and run the
m4_input_using_better_sentinel.py
module in the project you checked

out today.

pre-loop computation

while [there is more data]:

 get data

 compute using the data

post-loop computation

get data as a string

other pre-loop computation

while [data is not the empty string]:

 data = float(data)

 compute using the data

 get data as a string

post-loop computation

User signals end of data by
pressing the Enter key in

response to a input.

The sentinel value is again
not used in calculations.

Above converts the data to a float, but other
problems might do other conversions.

Loop-and-a-half

pattern

 Use a break

 Examine and run the
m4_input_using_sentinel_in_loop_and_a_half

module in the project you checked out
today.

pre-loop computation

while True:

 get data as a string

 if data == "":

 break

 data = float(data)

 compute using the data

post-loop computation

This pattern is equivalent to the pattern on the
preceding slide. Some prefer one style; others prefer
the other. You may use whichever you choose.

pre-loop computation

while True:

 get data

 if data signals end-of-data:

 break

 compute using the data

post-loop computation

The break statement exits
the enclosing loop.

Here we continue to use
no-input as the sentinel.

Escaping from a loop

 break statement ends the loop immediately

 Does not execute any remaining statements in loop body

 continue statement skips the rest of this iteration of

the loop body

 Immediately begins the next iteration (if there is one)

 return statement ends loop and function call

 May be used with an expression

 within body of a function that returns a value

 Or without an expression

 within body of a function that just does something

Summary of input-compute-in-a-loop

patterns

 For loop, asking how many inputs

 Interactive loop, asking repeately “more inputs?”

 Sentinel loop using a special value as the sentinel

 Sentinel loop using no-input as the sentinel

 Loop-and-a-half

 Combined with use of no-input as the sentinel

Coming up – another loop pattern:
• Wait-for-event loop
Next session – More loop patterns:
• Nested loops

Your turn: do TODO #1 and #2 in
m6_input_loops_practice.py

TODO #3 is for homework.

 Here is an example for finding the smallest number is

a sequence of numbers.

The Min-Max loop pattern

def min_of_list(numbers):

 """Returns the smallest of the numbers in the given list."""

 smallest = numbers[0]

 for k in range(1, len(numbers)):

 if numbers[k] < smallest:

 smallest = numbers[k]

 return smallest

You can run this code in m7_min_max_example.py
and see how it uses an oracle to do unit-testing.

You’ll apply this concept for homework.

Sometimes you want to know
where in the list the smallest
number is. In that case you
would:
• Start minK at 0
• When smallest

changes, change minK
to k

 What are they? A visual representation of:

 Which functions use (call) which other functions

 What parameters are sent

to the called function

 What values are returned

by the called function

 Why use them?

To help you design the

structure of your program.

Structure charts

 Your boss wants a line-following program that works like this:

 It starts the robot, putting it in FULL mode.

 Then it enters a loop in which the user can press any of the following:

 Play Button – the robot begins following the line (and stops when it bumps into anything).

 Advance Button – the program shuts down the robot and exits.

 Left Bumper – the program reads the two front cliff sensor values and saves them. The

program expects that the user will have placed the robot on a WHITE surface just before

pressing this bumper.

 Right Bumper – the program again reads the two front cliff sensor values and saves them. But

now the program expects that the user will have placed the robot on a BLACK surface just

before pressing this bumper.

When the robot does its line following, it uses the 2 pairs of cliff sensor readings for calibration.

 Together, let’s design a structure chart for this program.

 What functions should main call?

 What functions should those functions call?

 What parameters are sent and what values are returned by the calls?

A structure chart for a line-following

program

Develop a structure chart for a line-following program

main

get_bumper_states

get_button_states

perform_line_following

get_front_cliff_values

update_wheel_speeds

quit

perform_white_calibration

perform_dark_calibration


 2

 state
s


 2

 state
s


 r

o
b

o
t

start_robot

Line-following

algorithms

Left light sensor sees white (light)
Right light sensor sees black (dark)
Action:
• Speed up the left wheel
• Slow down the right wheel
• So the robot veers right

Both light sensors see white
(the robot is straddling the line)
Action:
• Set wheel speeds equal
• So the robot goes straight ahead

Left light sensor sees black (dark)
Right light sensor sees white (light)
Action:
• Speed up the right wheel
• Slow down the left wheel
• So the robot veers left

 There are many algorithms

for following lines,

depending on how many

and where your sensors are,

along with other factors.

Let’s figure out a simple

2-sensor approach.

 First, what is the effect of

different wheel speeds?

 Left faster  veer right

Right faster  veer left

 Now look at the situations

to the right, starting at the

bottom. What should the

robot do in each situation?

Line-following

algorithms

Left light sensor sees white (light)
Right light sensor sees black (dark)
Action:
• Speed up the left wheel
• Slow down the right wheel
• So the robot veers right

Both light sensors see white
(the robot is straddling the line)
Action:
• Set wheel speeds equal
• So the robot goes straight ahead

Left light sensor sees black (dark)
Right light sensor sees white (light)
Action:
• Speed up the right wheel
• Slow down the left wheel
• So the robot veers left

 If you speed up to a fixed,

large amount, and slow down

to a fixed, small amount, and

ignore the middle case, that is

called bang-bang control.

 You could speed up the wheels

proportional to how far from

dark the sensor readings are:

 So completely white by a

sensor would speed up its

wheel to 100% and

completely black would slow it

to 0% of its normal speed

 Let W, D = completely white

and dark. Let L be the current

reading for the left sensor.

What should the left motor

speed be?

Line-following

algorithms

Left light sensor sees white (light)
Right light sensor sees black (dark)
Action:
• Speed up the left wheel
• Slow down the right wheel
• So the robot veers right

Both light sensors see white
(the robot is straddling the line)
Action:
• Set wheel speeds equal
• So the robot goes straight ahead

Left light sensor sees black (dark)
Right light sensor sees white (light)
Action:
• Speed up the right wheel
• Slow down the left wheel
• So the robot veers left

 Proportional control:

 Let W, D = completely

white and dark. Let L be

the current reading for the

left sensor. What should

the left motor speed be?

 Answer:

p = (L – D) / (W – D)

speed = p * some_constant

But add to speed to give it

a minimum speed, and clip

it at a maximum speed.

 Similarly for the right wheel

White numbers are large
and black are small (near 0).

 With your instructor, discuss how to do line following.

 Work on m9_line_follower.py

 Ask questions as needed!

 Sources of help after class:

Assistants in the CSSE lab

 And other times as well (see link on the course home page)

 Email

 You get faster response from the above than from just your instructor

Rest of Session

CSSE lab: Moench F-217

7 to 9 p.m.

Sundays thru Thursdays

csse120-staff@rose-hulman.edu

