
CSSE 120 – Introduction to Software Development

As you arrive:
1. Start up your computer and plug it in.

2. Log into Angel and go to CSSE 120.

Do the Attendance Widget –

the PIN is on the board.

3. Go to the Course Schedule web page.

Open the Slides for today if you wish.

4. Checkout today’s project:

Session XX

Session

Session10_ConditionalsAndFiles

Files
 Open, read, write

Exam 1 Preview

Conditionals
 Simple and multi-way decisions

 Relational operators

 Boolean operators

Session 10

Conditionals and

Files

10

Checkout today’s project:
 Session10_ConditionalsAndFiles

Are you in the Pydev perspective? If not:

 Window ~ Open Perspective ~ Other then Pydev

Messed up views? If so:
 Window ~ Reset Perspective

No SVN repositories view (tab)? If it is not there:
 Window ~ Show View ~ Other

 then SVN ~ SVN Repositories

1. In your SVN repositories view (tab), expand your repository
(the top-level item) if not already expanded.

• If no repository, perhaps you are in the wrong Workspace. Get help.

2. Right-click on today’s project, then select Checkout.

Press OK as needed. The project shows up in the

 Pydev Package Explorer
to the left. Expand and browse the modules under src as desired.

Troubles getting
today’s project? If so:

Exam 1 information

 Monday, January 10, 7 p.m. to 9 p.m.

 Olin 267 (Fisher) and Olin 269 (Mutchler)

 Format: 2 hours.

 Paper part. Resources:

 Zelle book

 1 double-sided sheet of notes that you prepare

 On-the-computer part. Resources:

 Zelle book

 Any written notes that you bring

 Your computer and the files on it

 Your own Subversion resources

 Any resources you can reach from the course web site by clicking only!

 Input/compute/output programs

 Variables, assignment

 Arithmetic and other expressions

 input / print, int / float

 Comments, testing

 Functions:

 Calling

 Defining

 With parameters

 Returning values

 Definite (for) loops:

 Through a range

 Through a sequence

 Accumulating

 Summing, Factorial

 Counting

 Appending to a sequence

 Max / Min

 Operations on sequences

 Lists, Strings, Tuples. Indexing.

Slicing.

 Objects

 Constructing

 Using methods

 Accessing instance variables

 Libraries, import

 math, zellegraphics, time, create

 Decision structures

 if … elif … else …

 Relational and Boolean operators

 Files

 open, read/write, close, parse input

Possible topics for Exam 1

Control structures, Decision structures

 Suppose that you have statements like this:

 Blah 1 …

 Blah 2 …

 Blah 3 …

 In what order do they normally execute?

 Sequentially, one after the other, of course!

 Sometimes we want to alter the

sequential flow of a program

 What examples have we seen of this?

 Loops: Repeat execution of a block of code. for and while statements.

 Function calls and returns: Jump to the function. Return to the jump-off point when

the function exits.

 Conditionals: if ...

 if ... else ...

 if ... elif ... elif ... else

Statements that alter
the flow are called
control structures

Decision structures are control
structures that allow programs
to “choose” between different
sequences of instructions

Next slides discuss these
conditional (if) statements

Simple decision structure – if statement

 The if statement

 Syntax: if <condition>:

 <body>

 Semantics: ―if the condition evaluates to true, execute the

body, otherwise skip it‖

 Example:

Decision structures are
control structures that
allow programs to
“choose” between
different sequences of
instructions

if x < 0:

 print('Illegal input')

 return -1

...

Note the
indentation

Note the colon

What can go between the if and the colon? Answer: any

expression! But the most typical are generated by:

 Comparison operators

 if x >= 75: if 'dog' in sentence:

 Functions/methods that return True or False

 if s.islower():

 Boolean operators

 if temperature < 32 or temperature > 212:

What is a ―condition‖?

Built-in constants.
Note the capitalization.

Next slides discuss each of these.

 Traditional

 Set membership

 x in y is true if x is a member of the sequence or set y

 x not in y is true if x is not a member of the sequence or set y

 Object equality

 x is y is true if x is the same object as y

Comparison operators

Math < ≤ = ≥ > ≠

Python < <= == >= > !=

Note! Why not a
single equal sign?

False

a = [1, 2, 3]

b = [1, 2, 3]

a is b

a == b True

== works like you would think
for most objects, but be
cautious in using it on floats

if s.islower():

 ...

if s.islower() == True:

 ...

Functions/methods that return True/False

Equivalent, but the first form makes
more sense when you get used to it

Boolean Constants and Operators

 Boolean constants: True False

 Boolean operators: and or not

Example – true or false?

 not((5 < 9) or not(2 != 7))

Truth tables

Do TODO’s 1 and 2
in m1_ifs

Having It Both Ways: if-else

if <Condition>:

 <statementsForTrue>

else:

 <statementForFalse>

If <condition> is True,
execute these

statements

If <condition> is False,
execute these

statements

Syntax:

Semantics:

A Mess of Nests

 Can we modify the grade function to return letter

grades—A, B, C, D, and F?

 Examine gradeNesting in m1_ifs

Multi-way Decisions

 Syntax:

if <condition1>:

 <case 1 statements>

elif <condition2>:

 <case 2 statements>

elif <condition 3>:

 <case 3 statements>

…

else:

 <default statements>

reach here if

condition1 is false

reach here if

condition1 is false

AND condition2 is true

reach here if BOTH

condition1 AND

condition2 are false

Cleaning the Bird Cage

 Advantages of if-elif-else vs. nesting

 Number of cases is clear

 Each parallel case is at same level in code

 Less error-prone

 Change grade in m1_ifs to use if-elif-else

 Implement the gradeFixed function in m1_ifs using if-

elif-else statement instead of nesting

The counting pattern

 A special case of the accumulator pattern

 Example:

 def count_As(scores):

 ″″″Returns the number of As in the given list of scores″″″

 count = 0

 for score in scores:

 if score >= 90:

 count = count + 1

 return count

Initialize

Loop

Count
conditionally

 Files are durable memory – they persist after you shut down your

computer (unlike computer RAM).

 They can be on your hard drive, a USB key, or whatever.

 The operating system is in charge of the file system, but programs can ask

the operating system to do things with files.

 Key operations on files are:

 Open the file

 Read from and/or

write to the file

 Close the file

Files

Next slides discuss each
of these key operations.

Google to learn lots more you can do with files:

• Other operations, e.g. deleting a file, listing a

folder’s contents, or checking if a file exists

• Binary files (instead of text files)

• Random access (instead of sequential access)

• Error handling – e.g., what happens if you try to

open a non-existing file for reading

We will read/write only strings from files

with text, organized into lines, processed

sequentially, from beginning to end

 Opening a file makes it available to your program

Opening a file

Opening a file for reading
raises an Exception if the
file does not exist.

Opening a file for writing erases the
contents of the file if it already exists!

The name of the file to open –
relative to the current folder (as
in the example) or absolute, as in
'C:/Program Files/...'

Of course it can be a variable, too.

Either
 'r' for reading,
or
 'w' for writing
or
 'a' for appending
(Other options too.)

The open
function returns
a stream that is
used for all
subsequent
operations on
the file.

file = open('data.txt', 'r')

 Opening a file makes it available to your program

 Closing a stream:

 Flushes the buffer – anything the operating system has not yet written

 The devices on which files are stored are slow (compared to

main memory), so changes to the file are often kept in a buffer

in memory and written in clumps (for efficiency) until we close

the file or otherwise ―flush‖ the buffer.

 Tells the operating system that the program

is done with the file

 Causes final ―bookkeeping‖ to happen

Closing files

file = open('data.txt', 'r')

file.close()

The stream that is used for all subsequent operations on the file.

Form the habit of
closing your files, even
though you will often
(not always!) get away
with not doing so.

 One way to read from

a file is line by line:

 One way to write to a file

is by using the write method:

Reading from and writing to a file

file = open('data.txt', 'r')

for line in file:

 ...

 ...

file.close()

The line variable
here is a string whose
value is the first line of
the file, then the next
line of the file, and so
forth until the end of the
file is reached (and the
loop ends).

The line variable includes the character(s) that terminate the line.

There are other ways to read files, but
this is both efficient and simple.

file.write(blah)

Here blah must be a
string. Each call to write
appends to the file (i.e., the file
is written sequentially).

 Do TODO’s 1 through 4 in m2_files.py (don’t do

TODO 5 yet)

 Make sure that you understand how to:

 Open a file

 Read from a file

 Write to a file

 Close a file

Exercises on Files

 Our approach to file-reading gives us the data line by line, as

a string. But often we want to read numbers from a file.

 Extracting parts from a string is called parsing the string.

 What do we need to extract numbers from a line? Answer:

Some way to:

1. Split the string (line) into words

(i.e., strings without spaces)

2. Interpret a word as an int or float

 Likewise, our write method requires a string, so we need a

way to convert numbers to strings.

Parsing the lines that you read

The next slides show how to
do these string operations.

 Split the string(line) into words (i.e., strings without spaces)

 Interpret a word as an int or float

 Convert a number to a string

String operations for parsing a line

s = "This 34 is a test.only a &%@!#test!! "

words = s.split()

The above split method sets words to the list:
['This', '34', 'is', 'a', 'test.only', 'a', '&%@!#test!!']

int(r) float(r)

str(x)

The split method splits on white-space by default, but
you can also have it split on other things like commas

Do TODO 5 in m2_files.py

 Work on today’s homework

 Ask questions as needed!

 Sources of help after class:

Assistants in the CSSE lab

 And other times as well (see link on the course home page)

 Email

 You get faster response from the above than from just your instructor

Rest of Session

CSSE lab: Moench F-217

7 to 9 p.m.

Sundays thru Thursdays

csse120-staff@rose-hulman.edu

