
CSSE 120 – Introduction to Software Development

As you arrive:
1. Start up your computer and plug it in.

2. Log into Angel and go to CSSE 120.

Do the Attendance Widget –

the PIN is on the board.

3. Go to the Course Schedule web page.

Open the Slides for today if you wish.

4. Checkout today’s project:

Session XX

Sequences and

Objects, applied to

Robots

Session09_FilesAndRobots

Robots

 Design using

 Procedural Decomposition

 Implement using

 Iterative Enhancement

Sequences

 Review

Objects

 Review

Session 9

Session 9

Checkout today’s project:
 Session09_FilesAndRobots

Are you in the Pydev perspective? If not:

 Window ~ Open Perspective ~ Other then Pydev

Messed up views? If so:
 Window ~ Reset Perspective

No SVN repositories view (tab)? If it is not there:

 Window ~ Show View ~ Other

 then SVN ~ SVN Repositories

1. In your SVN repositories view (tab), expand your repository
(the top-level item) if not already expanded.

• If no repository, perhaps you are in the wrong Workspace. Get help.

2. Right-click on today’s project, then select Checkout.

Press OK as needed. The project shows up in the

 Pydev Package Explorer
to the right. Expand and browse the modules under src as desired.

Troubles getting
today’s project? If so:

1. Sequence – what is it (in Python)?

 A sequence is a type of thing in Python that represents an

entire collection of things.

 More carefully, it represents a

• finite • ordered • collection of things

• indexed by whole numbers

 Examples:

A list ["red", "white", "blue"]

A tuple (800, 400)

A str (string) "Check out Joan Osborne, super musician"

There are also types
for UNordered
collections of things
– sets and Circles,
for example. More
on these in a

subsequent session.

2. Why are Sequences powerful?

 A sequence lets you refer to an entire collection using a

single name.

 You can still get to the items in the collection, by indexing:

 colors = ["red", "white", "blue"]

 colors[0] has value "red"

 colors[1] has value "white"

 colors[2] has value "blue"

 And you can loop through the items in the collection, like this:

 for color in colors:

 circle = zg.Circle(...)

 circle.setFill(color)

Indexing
starts at ZERO,
not at one.

3. Types of Sequences

 There are currently 6 built-in types

of Sequences, in two flavors:

Mutable: the collection can change
after it is created:
• Its items can change.
• Items can be deleted and added.

Immutable: once the collection is
created, it can no longer change.

The following slides explain that different
types of Sequences differ in their:
• mutability
• type of things they can contain
• notations / how you make them
• operations that you can do to them

These are just the built-in Sequence types, that is,
the ones that you can use without an import

statement. The array and collections
modules offer additional mutable Sequence types.

Mutable:
• list

• bytearray

Immutable:
• str (a string)

• tuple

• range

• bytes

4. How the types of Sequences differ

Type
What objects of

this type can
contain

Mutable
?

Notation

list anything Yes [a, b, c]

tuple anything No
(a, b, c) OR a, b, c

but: () (a,)

string Unicode characters No 'xyz...' OR "xyz..."

bytes
Bytes (integers

between 0 and 255)
No

Same as string, but with a b in

front of the string

bytearray
Bytes (integers

between 0 and 255)
Yes

bytearray(bytes object)
bytes(list of ASCII codes)

range
ranges generated by

range
No range(a, b, c)

Also, different types of Sequences support different operations – more on this in a forthcoming session

5. Looping through sequences
def count_big_items_in_sequence(sequence_of_numbers,

 big_number):

 """ Returns the number of numbers in the given sequence
 that are bigger than or equal to the given 'big' number. """

 count = 0

 for number in sequence_of_numbers:

 if number >= big_number:

 count = count + 1

 return count

def count_big_items_in_sequence_again(sequence_of_numbers,

 big_number):

 count = 0

 for k in range(len(sequence_of_numbers)):

 if sequence_of_numbers[k] >= big_number:

 count = count + 1

 return count

One way. Pretty.

Another way.
Especially useful
when you want to
refer to more than
one place in the
array in each
iteration of the loop.

6. Accumulating sequences
def accumulate_list_using_the_plus_operator(n):

 """ Returns a LIST containing n random numbers. """

 numbers = []

 for k in range(n): #@UnusedVariable

 numbers = numbers + [random.randrange(10)]

 return numbers

def accumulate_list_using_append(n):

 """ Returns a LIST containing n random numbers. """

 numbers = []

 for k in range(n): #@UnusedVariable

 numbers.append(random.randrange(10))

 return numbers

One way (above). Works for other types of sequences too –
just use the other sequences notation instead of list notation.

Another way (above). Runs faster than the first way – can you
guess why? A similar approach works for strings: accumulate
the string into a LIST of characters (or substrings), then do:
 string_result = ''.join(accumulated_list)

 How to detect bumps in PyCreate

 How a variable’s value can be a function, and how

you can use that variable to call that function

Technical notes to discuss at some point

1. Begin with the specification – what the robot will do

2. Design using procedural decomposition – what

functions should the implementation define and call?

3. Implement using iterative enhancement:

1. Make the robot do something

2. Test whether it does it right.

3. Repeat the previous two steps until the project is complete

Note that you do NOT have to implement the functions in the

order that you designed them or the order in which they

appear in the source code.

Rest of today will proceed as follows:

The next 3 slides lead you

through these 3 steps.

 Make a robot wander:

 Move forward a random time at

a random speed

 Spin …

 Forward and spin

(simultaneously) …

 Asks the user for the

parameters:

 Maximum time to move (in

seconds)

 Actual time is randomly chosen

between 0 and this maximum

 Maximum speed to move (in

cm/sec for forward, degrees/sec

for spin)

 Actual speed is randomly chosen

between 1 and this maximum

 After each action, if the robot

is bumping into something, go

backwards a bit

 Finally:

 Repeats the wander using the

SAME PARAMETERS for

randomness

 Repeats the wander using the

SAME PATH (as best it can)

Specification – what the robot will do

Questions about the specification?

 Work in small groups to design a solution to the

problem using procedural decomposition – what

functions should the implementation define and call?

 List the functions you think of.

 In a few minutes, we will share answers.

 Then, you can look at the project to see the functions that we

suggest you implement and call.

Procedural decomposition

 What is something that you can get the robot to do

right away, and then test whether it worked?

 Then, pick another part of the problem and

implement that part

 For example, you might want to get the BUMPING

implemented and tested early, since that is new to you

 Continue until the problem is done!

 Note that you do NOT have to proceed in the order in which

the functions were designed or placed into the source code

 The key is to implement a LITTLE BIT, and then TEST IT before

proceeding.

Iterative enhancement

Rest of today: Work on projects as directed by your instructor.

