
CSSE 120 – Introduction to Software Development

As you arrive:
1. Start up your computer and plug it in.

2. Log into Angel and go to CSSE 120.

Do the Attendance Widget –

the PIN is on the board.

3. Go to the Course Schedule web page.

Open the Slides for today if you wish.

4. Checkout today’s project:

Session XX

Sequences,

especially Lists,

Tuples and Strings

Session08_Sequences

Sequences

 Looping through a sequence

 Accumulating a sequence

Sequences

 What are they, why use them?

 Types of sequences: Lists,

Tuples, Strings, and more

Session 8

Session 8

Checkout today’s project:
 Session08_Sequences

Are you in the Pydev perspective? If not:

 Window ~ Open Perspective ~ Other then Pydev

Messed up views? If so:
 Window ~ Reset Perspective

No SVN repositories view (tab)? If it is not there:

 Window ~ Show View ~ Other

 then SVN ~ SVN Repositories

1. In your SVN repositories view (tab), expand your repository
(the top-level item) if not already expanded.

• If no repository, perhaps you are in the wrong Workspace. Get help.

2. Right-click on today’s project, then select Checkout.

Press OK as needed. The project shows up in the

 Pydev Package Explorer
to the right. Expand and browse the modules under src as desired.

Troubles getting
today’s project? If so:

 Sequences

 What is a sequence?

 Why is it so powerful?

 How to reference its items with

the square-bracket notation

 Kinds of sequences

 Six kinds in Python: lists, tuples,

strings, bytes, byte arrays, ranges

 Loop through a sequence

 Directly

 With indices generated by a

range expression

 Variation: the loop references

other indices too

 Accumulate a sequence

 With the + operator

 With append (for lists) and join

(for strings)

 Mutating sequences

 Methods and functions for

sequences

Outline of today’s session

Next time

Checkout today’s project: Session08_Sequences

Data types

 Data

 Information stored and manipulated on a computer

 Ultimately stored as bits – 0s and 1s

 But the type of each data item determines:

 How to interpret the bits

 Data type

 A particular way of interpreting bits

 Determines the possible values an item can have

 Determines the operations supported on items

 Python types include: int, float, str, list, function, tuple

1. Sequence – what is it (in Python)?

 A sequence is a type of thing in Python that represents an

entire collection of things.

 More carefully, it represents a

• finite • ordered • collection of things

• indexed by whole numbers

 Examples:

A list ["red", "white", "blue"]

A tuple (800, 400)

A str (string) "Check out Joan Osborne, super musician"

There are also types
for UNordered
collections of things
– sets and Circles,
for example. More
on these in a

subsequent session.

2. Why are Sequences powerful?

 A sequence lets you refer to an entire collection using a

single name.

 You can still get to the items in the collection, by indexing:

 colors = ["red", "white", "blue"]

 colors[0] has value "red"

 colors[1] has value "white"

 colors[2] has value "blue"

 And you can loop through the items in the collection, like this:

 for color in colors:

 circle = zg.Circle(...)

 circle.setFill(color)

Indexing
starts at ZERO,
not at one.

3. Types of Sequences

 There are currently 6 built-in types

of Sequences, in two flavors:

Mutable: the collection can change
after it is created:
• Its items can change.
• Items can be deleted and added.

Immutable: once the collection is
created, it can no longer change.

The following slides explain that different
types of Sequences differ in their:
• mutability
• type of things they can contain
• notations / how you make them
• operations that you can do to them

These are just the built-in Sequence types, that is,
the ones that you can use without an import

statement. The array and collections
modules offer additional mutable Sequence types.

Mutable:
• list

• bytearray

Immutable:
• str (a string)

• tuple

• range

• bytes

 Lists are mutable:

 colors = ["red", "white", "blue"]

 colors[1] = "grey"

 colors.append("bob")

 Strings and tuples are NOT mutable:

 building = "Taj Mahal"

 building[2] = "g"

 pair = (48, 32)

 pair[0] = 22

 The following (which continue the example from the previous bullet) have nothing to do with

mutability and are perfectly OK:

 building = "Sistene Chapel" pair = (0, 0) colors = []

 building = building.replace("Mahal", "Begum")

colors becomes
 ["red", "grey", "blue"] then

 ["red", "grey", "blue". "bob"]

O

K

NOT OK.

Gives an error message when executed.

4a. Mutability

This and the following slides explain that
different types of Sequences differ in their:
• mutability
• type of things they can contain
• notations / how you make instances
• operations that you can do to them

4b. Things that

 Sequences can contain

This and the following slides explain that
different types of Sequences differ in their:
• mutability
• type of things they can contain
• notations / how you make instances
• operations that you can do to them

Type
What objects of this type

can contain

list anything

bytearray
bytes, that is,

integers between 0 and 255

str (a string)
 Unicode characters (each 16 or 32

bits, depending on an installation option)

 tuple anything

 range ranges generated by range

 bytes Bytes (integers

between 0 and 255)

A bit is a 0 or 1.

Each byte is 8 bits
and represents an
ASCII encoding of
one of the 128 pre-
Unicode characters.

Unicode allows for
far more than the
128 ASCII characters
and is the modern
standard. See pp.
132-133 or your text.

If you ever need a list-like thing that holds only

(say) int’s, check out the array module.

4c. Notation and how

you can make instances

This and the following slides explain that
different types of Sequences differ in their:
• mutability
• type of things they can contain
• notations / how you make instances
• operations that you can do to them

Type
Notation, and how you make an instance

(options, but not ALL of the options, are shown here)

list
[blah, blah, ...] list(sequence)

[expression for variable in sequence]

str
(a string)

"the charac'ters" 'the charac"ters'

'''characte\\rs in a \a string with \xF9

 stuff th\o274at br\'eaks across lines.'''

 tuple
(blah, blah, ...) blah, blah, ...

But special cases for 0 or 1 elements: () (blah,)

 range range(m) range(m, n) range(m, n, i)

4c. Notation and how

you can make instances (continued)

This and the following slides explain that
different types of Sequences differ in their:
• mutability
• type of things they can contain
• notations / how you make instances
• operations that you can do to them

Type
Notation, and how you make an instance

(options, but not ALL of the options, are shown here)

bytes

Same as for strings, but put a b in front, e.g.

b"the charac'ters"

b'the charac"ters'
bytes(list of ASCII codes)

For example, b'rat' is the same as

bytes([114, 97, 116])

 bytearray
bytearray(bytes object)

bytes(list of ASCII codes)

 We’ll discuss these in the NEXT session

4d. Operations that

you can do to Sequences

This and the following slides explain that
different types of Sequences differ in their:
• mutability
• type of things they can contain
• notations / how you make instances
• operations that you can do to them

 Do m1, m2, and m3. Then do m5.

 Save some of m5 for homework, perhaps.

 Do m4. Then do m6.

 Finish m6 for homework

Exercises

