
CSSE 120 – Introduction to Software Development

As you arrive:
1. Start up your computer and plug it in.

2. Log into Angel and go to CSSE 120.

Do the Attendance Widget –

the PIN is on the board.

3. Go to the Course Schedule web page.

Open the Slides for today if you wish.

4. Checkout today’s project:

Session XX

Numbers, Objects

and Graphics

Session05_NumbersObjectsAndGraphics

Objects

 Why, what, using them:

• Constructing objects

• Applying member functions

• Accessing instance variable

• Graphics (zellegraphics)

Review

 Counted loops

• FOR loops with RANGE

expressions

 Accumulator loops

Session 5

Session 5

Checkout today’s project:
 Session05_NumbersObjectsAndGraphics

Are you in the Pydev perspective? If not:

 Window ~ Open Perspective ~ Other then Pydev

Messed up views? If so:
 Window ~ Reset Perspective

No SVN repositories view (tab)? If it is not there:

 Window ~ Show View ~ Other

 then SVN ~ SVN Repositories

1. In your SVN repositories view (tab), expand your repository
(the top-level item) if not already expanded.

• If no repository, perhaps you are in the wrong Workspace. Get help.

2. Right-click on today’s project, then select Checkout.

Press OK as needed. The project shows up in the

 Pydev Package Explorer
to the right. Expand and browse the modules under src as desired.

Troubles getting
today’s project? If so:

 Review

 Loops: Counted loops. Accumulator loops.

 Numbers

 Integers versus Floating Point

 Objects

 What, why

 Using objects:

 Constructing objects

 Applying methods to objects

 Referencing instance variables (aka fields) of objects

 UML object diagrams

 Graphics – Zellegraphics

Outline of today’s session
Checkout today’s project:

Session05_NumbersObjectsAndGraphics

 Integers

 Infinite precision

 Floating point

 Finite precision

 Thus subject to roundoff error

 With your instructor, examine and run

m1_numbers.py

Numbers

Q1-5

Some Numeric Operations

Operator Operation

+ Addition

- Subtraction

* Multiplication

/ Division

** Exponentiation

% Remainder

// Do integer division (even on floats)

Function Operation

abs(x) Absolute value of x

round(x, y) Round x to y decimal places

int(x) Convert x to the int data type

float(x) Convert x to the float data type
Q6

Review – Counted Loops

for k in range(10):

 a = 0

 b = 0

 print("{:1} {:3} {:3}".format(k, a, b))

A counted loop. The range statement makes k take on values 0, 1, 2, …. 9

Does formatted
printing. The three
items printed (k,a,b)
are printed in fields of
widths 1, 3 and 3,
respectively.
We’ll learn more about
formatted printing later.

Q7

What are objects?

 Traditional view, in languages like C

 Data types are passive

 They have values

 There are operations that act on the data types

 The data type itself cannot do anything

 Object-oriented view, in languages like Python
(and most other modern languages)

 Have objects, which are active data types. Objects:

 Know stuff – they contain data

 The data that an object holds are its instance variables (aka fields)

 Can do stuff – they can initiate operations

 The operations that an object can do are its methods

 Q8

Traditional, non-object-oriented, design

 Break the problem into subproblems. That is:

 To solve the problem I need to do: A, B, C, …

 To solve A, I need to do: A1, A2, A3, …

 To solve A1, I need to do A1a, A1b, A1c, …

 To solve A2, I need to do A2a, A2b, A2c, …

 etc

 To solve B, I need to do: B1, B2, B3, …

 etc, until the units are so small that you can just do them

 The units become functions

 This process is called procedural decomposition

 Q9

Modern, object-oriented, design

 Basic idea of object-oriented (OO) development

 View a complex system as interaction of simple objects

 In doing OO development, ask:

1. What things (objects) are involved

in the solution to my problem?

 The types of those things become our classes

2. For each type of thing (i.e., each class),

what responsibilities does it have?

 What can it do? E.g. A list can append stuff to itself.

 These responsibilities become the methods of that class: append

3. To carry out those responsibilities:

a. What other objects does it need help from? Relationships between classes

b. What objects does it have within? Become the instance variables of the class.

These things often come from nouns

in the problem description, e.g.

 single concepts visual elements

 abstractions of real-life entities

 actors utilities

These responsibilities

often come from verbs in

the problem description

Q10-12

Why is the object-oriented view useful?

 Procedural decomposition is useful and forms an

important part of OO design

 But for complex systems, we often find it easier to

think about the complex system as the interaction of

simple objects than to just ―break it down into its

parts‖

 In practice, most complex software systems today are

designed using OO design

How do you use objects?

 To construct an object:

 win = zg.GraphWin()

 point1 = zg.Point(500, 450)

 line = zg.Line(point1, zg.Point(30, 40))

 circle = zg.Circle(point1, 100)

 To ask an object to do something,

i.e. to apply its methods to it:
 point1.draw(window)

 line.move(45, -60)

 x = point1.getX()

 center = circle.getCenter()

 To reference what the object knows

(its instance variables, aka fields):

 point1.x circle.p1 circle.p2

Recall that objects:
• Know stuff (instance

variables, aka fields)
• Can do stuff (methods)

Constructor:
• Call it like a function, using

the name of the class
• Style: Class names begin

with an uppercase letter
• The constructor allocates

space for the object and
does whatever initialization
the class specifies

Method call:
• Use the dot notation:

Who.Does_What(With_What)

Just like a function call, except that the method has
access to the object invoking the method.
So the object is an implicit argument to the method call

Instance variable (aka field) reference:
• Use the dot notation but without

parentheses Who.Has_What

How do objects interact?

 Objects interact by sending each other messages

 Message: request for object to perform one of its operations

 Example: the brain can ask the feet to walk

 In Python, messages happen via method calls.

 window = zg.GraphWin() # constructor

 p = zg.Point(50, 60) # constructor

 p.getX() # accessor method

 p.getY() # accessor method

 p.draw(window) # method

Q13-14

How do objects interact? Point

p = Point(50, 60)

UML object diagram for a point
object.

UML  Unified Modeling
Language

Q15-16

Simple graphics programming

 Graphics is fun and provides a great vehicle for

learning about objects

 Computer Graphics: study of graphics programming

 Graphical User Interface (GUI)

Q17

Import

 Must import graphics library before accessing it

 import zellegraphics as zg

 window = zg.GraphWin(...)

Review: Class and object terminology

 Different types of objects

 Point, Line, Rectangle, Oval, Text

 These are examples of classes

 Different objects

 head, leftEye, rightEye, mouth, message

 Each is an instance of a class

 Created using a constructor

 Objects have instance variables (called fields in some

languages)

 Objects use methods to operate on instance variables

 Accessor methods return data from the object

Q18-19

Object interaction to draw a circle

import zellegraphics as zg

Point = zg.Point(100, 100)

circle = zg.Circle(point, 30)

window = zg.GraphWin()

circle.draw(window)

UML diagram for creating and
drawing a circle object.

UML  Unified Modeling
Language

Q20

Interactive graphics

 GUI—Graphical User Interface

 Accepts input

 Keyboard, mouse clicks, menu, text box

 Displays output

 In graphical format

 On-the-fly

 Developed using Event-Driven Programming

 Program draws interface elements (widgets) and waits

 Program responds when user does something

getMouse

 win.getMouse()

 Causes the program to pause, waiting for the user to click

with the mouse somewhere in the window

 To find out where it was clicked, assign it to a variable:

 p = win.getMouse()

Q21

Mouse Event Exercise

 Review m2_objects_and_graphics_example.py with

your instructor

 Do m3_click_me.py with your instructor

 Check your Quiz answers versus the solution

 An assistant may check your Quiz to ensure you are using

the Quizzes appropriately

 Work on today’s homework

 Ask questions as needed!

 Sources of help after class:

Assistants in the CSSE lab

 And other times as well (see link on the course home page)

 Email

 You get faster response from the above than from just your instructor

Rest of Session

CSSE lab: Moench F-217

 7 to 9 p.m.

Sundays thru Thursdays

csse120-staff@rose-hulman.edu

