Loops (Counted
and Accumulator)

Sessi1on04_NumbersAndLoops

m CSSE 120 - Introduction to Software Development

Checkout today’s project:
Sessi1on04 NumbersAndLoops

| Are you in the Pydev perspective? If not:

Window ~ Open Perspective ~ Other then Pydev
Messed up views? If so: Troubles getting
Window ~ Reset Perspective today’s project? If so:

No SVN repositories view (tab)? Ifitis not there:

Window ~ Show View ~ Other
then SVN ~ SVN Repositories

1. Inyour SVN repositories view (tab), expand your repository
(the top-level item) if not already expanded.

* If no repository, perhaps you are in the wrong Workspace. Get help.

2. Right-click on today’s project, then select Checkout.
Press OK as needed. The project shows up in the

Pydev Package Explorer
to the right. Expand and browse the modules under src as desired.

Outline of today’s session

Checkout today’s project:
Sessi1on04 NumbersAndLoops

Review

Organizing a program into functions. How to:
Define a function. Call a function. Start a program in main
The input-compute-output pattern

Functions with parameters that return values. An exercise for more practice.

Using a Debugger Practice, practice, practice!
Why, How * Functions

Loops e Writing with parameters
Counted loops e Calling with arguments
Accumulator loops e Returning values, using them

* Using objects: in zellegraphics
* The dot notation, revisited
* Loops

The code in these examples appears in fullinthe m1_defining_and_calling_functions.py module.

Review: Organizing a program

into functions

Define a function:

_ Just DEFINES what the
function does. Doesn’t “do”
anything of itself. Note:

e def keyword
Parentheses

def hello():
""" Prints a greeting.
print("Hello, World!")

Colon
Indented body
Documentation-comment

<;§§---“*-

Call (aka invoke) a function:

These are function CALLS:

e To the built-in print function
Note:
e Use of actual argument here
» All calls require parentheses,
even if nothing is in them

* To the above-defined

hello function

* To the above-defined Questions? |

main function

def main():
""" Prints a greeting. '
hello() -

iIf name_ == " main_ ":
main() &

So main runs when the module runs Q]_-Z

The code in these examples appears in full in the m2_1nput_compute_output.py module.

Review: The input-compute-output pattern

def celsius _to fahrenheit():

celsius = float(input("What i1s Cel. temperature? "))
fahrenheit = 9/5 * celsius + 32

print("Temperature i1s", fahrenheit, "degrees Fahr.")

Getting input from the user
Input("What i1s Cel. temperature? ©)

float(...) and int(...)
celsius = __.

Questions?

Computing a value using an assignment
fahrenheit = 9/5 * celsius + 32

Printing values to the console
print("Tem...", fahrenhert, "deg...")

Q3-5

The code in these examples appears in full in the m3_parameters_arguments_and_return.py module.

Review: formal parameters & actual arguments

) Note: This example omits documentation-comments and uses uninformative
The returr{ed Va.lue IS variable names (c and f) in order to make things fit on the slide. See the module in
captured in variable T today’s project for this same example done more completely.
_ I
def main(): he actual
for c in range(0, 101, 10): — eacuz -
- = argumen
> T = celsius_to_fahrenheit(c) g

print(c, "degrees Celsius 1s”,
T, "degrees Fahrenheit")

The formal

"parameter
_ _ _ celsius
def celsius _to fahrenhert(celsius):

fahrenheit = (9 /7 5) * celsius + 32

return fahrenheit Do you see how the
/ﬂ parameter makes the
. \ function powerful?
The computed value is ™ A local variable Questions?
RETURNED (not printed) here fahrenheit

The names celsius and Tahrenheit are local to their function.
They have NOTHING to do with any uses of those namesin main or elsewhere.

Q6-7

Exercise: Parameters, revisited
]

1 Here is an outline of what you will do in this exercise:

Step 1: Briefly revisit objects, including how to:
m Consfruct an object
m Apply a method to an object, using the dof notation

m Reference an instance variable (aka field) of an object, using the dot notation

Step 2: Introduce using a debugger
® Why it is helpful
® How to use our debugger to:
Set breakpoints in your code and then start a debugging session.
In the debugging session, step through lines of code and inspect variables.
Step 3: Practice functions with parameters
® Implement three distance functions.

m Call those functions with actual arguments.

Step 1: Briefly revisit objects

With your instructor:

See the next slide
for more examples

Open m4 distance between clicks.py and run it

Discuss the overall structure of the program briefly

Discuss show distances briefly, to revisit how to:

Construct an object

window = zg.GraphWin("Mouse-click distances®, 300, 500)

Apply a method to an object, using the dot notation

pointl = window.getMouse()

Reference an instance variable (aka field) of an object,

Q8

using the dof notation pointl.x

pointl.y

Step 1: Briefly revisit objects

window references
the GraphWin object Constructs a zg.GraphWin object. Capital-G says constructor.

window = zg.GraphWin("Mouse-click distances”, 300, 500)

The code for this function shows that it returnsa zg.Text object
y 4

4
text boxl = make text box centered at(50, window)

~Applies the getMouse method to
window. Uses pointl to
reference the zg.Point object

Who-dot-what-with-what notation that getMouse returns.

while True: V'd
pointl = window.getMouse()

text_box1.setText(pointl) «_

Applies the setText
method to the text box1l

point2 = window.getMouse() I
References the X and Y instance

K/ variables (aka fields) of point2.

point_as string = “(° + str(point2.x) + *, ° |
+ str(point2.y) + ")° Q9

Step 2: Introduce using a debugger

Debugging includes: Ways to debug
Discovering errors Insert print
Developing a hypothesis statements to show
about the cause(s) program flow and data
Testing your hypothesis Use a debugger:

(and revising it as needed) A program that executes

Fixing the error another program and

displays its run-time
Using your hypothesis to

behavior, step by step
determine the fix

Part of every modern IDE

Testing the fix to be sure it (including Eclipse)

really fixes the error(s)

Learn how to, in the Debugger:
L

1. Set (and unset) breakpoints 4. Inspect the variables in the

. o . current scope at a
2. Start a debugging session in the P

Debug Perspective breakpoint

See thei t val di
Debug Run to the next breakpoint e€ Thelr current values and fypes

Switch back and forth between the See which have changed since the

last breakpoint
Debug and Pydev perspectives ast bredkpoin

Expand them to see their instance
3. Debug Run in the Debug variables (aka fields) and values

Perspective
Your instructor will show you how to

Resume, continuing to the next S) i
do this, live in Eclipse, in

breakpoint . _

. m4_distance between clicks.py
Single-Step to the next statement The next slides summarize what your
At a function call, Step-Over it instructor will show you.

Inside a function, Step-Return from it

To start/end a debugging session

]
- To start a debugging session ﬁ - 0 v
in the Debug Perspective:
// Debug Run Ordinary Run

Click the Debug button on the ToolBar
and (if asked) select Debug As ... Python Run " 3 Contim Prspecive wich S i
If asked to Confirm Perspective Switch to open the @ ggoggg
Debug perspective | ccommeiee |
e Check the Remember my decision box ‘
e Press Yes | L v D Mo |

- To switch between Debug and Pydev perspectives:

- ", 1
Click the Pydev and/or Debug buttons in the upper-right l = |@ﬁ|

corner of Eclipse, or select the Open Perspective button

Sample Debugging Session: Eclipse

&} Debug - 08-DebuggingObjectsAndGraphics/src/factonialTable.py - Eclipse o T S|

File Edit Source Refactoring Navigate Search Project Pydev Run Window Help
ce - A ® B0 ®™E P LR e o
%5 Debug £3 . 4ib Servers R &t S oe) BT [B]e eS| || ¥

| C9= Variables 32 9 Breakpoints|

4 &2 factorialTable.py
=2

52

a P

pydevd.reader - -1
pydevd.writer - -1

MainThread - pid3152_seql

= factorial [factorialTable.py:8]
main [factorialTable.py:23]

& 08-DebuggingObjectsAndGraphics factorialTable.py [Python Ru

| Name
@ Globals

Aview that
shows all the

<module> [factorialTable.py:
run [pydevd.py:784]
<module> [pydevd.py:953]
g factorialTable.py

R1IWIRITH

executing
functions

\ > i
*n
= product

|‘ [F] factorialTable.py £3

19#% This program could (just maybe) contain =

Use the debugger to find and fix them.

4=def factorial(n):
S nenCalculates the factorial of a number
1 product = 0

7 for i in range(l, n):

L2 product *= i

return product

0w m

def factTable (max, nWidch, facctWidch):

1 nnepyrints a table of bers and t
1 nWid of t 1

ract e

fact h: width of
for n in range (max+1l) :

formatNum = “{:"+ stx(nWidch)
1 print (formatNum.format (n), end="
1 formatString = "{:

S e I —— T i~

TR

gy
)
"+ str(factWidth)

Em e I e

b
1l &

& Console 52
factorialTable.py
pydev debugger:
pydev debugger:

Zj Tasl:sr f_"~ Problems | (2 Executablesr

warning:
starcting

psyco not available for

ome bugs.

A view that shows
all the variables

gy

SN WY

This view is an editor that
shows the line of code being
executed and lets you make
changes to the file

speedups (the debuggexr

will still work correctly,

[

but a bit slower)

s (5 ag) @ pyce

8)| KT % % T < 0O)
Value |
Global vanables
int: 3
int: 5
int: 0
This is the
Debug ‘
perspective
SE Qutline 55. + 132 = :n: = E
O factorial
O factTable
© main
A view that shows
the outline of the
module being
examined (Outline
,, View) _
ﬁ.

-~

Step 3: Practice functions with

arameters
-—

1 Do the TODOQO’s in the module

11 They will ask you to:
0 Implement three distance functions

01 Call those functions with actual arguments

Exercise: Counted Loops

Open M5 counted loops.py

With your instructor, run and study the existing code

A counted loop. The range statement makes K take onvaluesO,1,2,....9

|

for

n range(10):

]

=0

=0 /
int

k
a
b
pr C'{:1} {:3} {:3}".Fformat(k, a, b))

7

Do the TODQO’s,

L

Does formatted

printing. The three
items printed (k , a, b)
are printed in fields of
widths 1, 3 and 3,

respectively.
We’ll learn more about
formatted printing later.

using the quiz questions to guide your work.

Your instructor will get you started on this.

Q10-11

Exercise: Accumulator Loops

Open m6_accumulator loops.py

With your instructor, run and study the existing code, then do

the TODO'’s.

def accumulate _a sum(n):
""" Returns the sum 1 + 2 + 3 + ... + n for given n. """
sum = O

for k I1n range(l, n + 1):
sum = sum + k

return sum

The accumulator pattern:
1. Before the loop, initialize the accumulator variable: blah = _ _.

2. Inside a loop, accumulate with a statement like:

blah = blah ...

3. After the loop, the accumulator variable contains the accumulated value.

Rest of Session

Check your Quiz answers versus the solution

An assistant may check your Quiz to ensure you are using

the Quizzes appropriately

Work on today’s homework

Ask questions as needed!

Sources of help after class: | CSSE lab: Moench F-217

/ to 9 p.m.

Assistants in the CSSE lab | Sundays thru Thursdays

And other times as well (see link on the course home page)

Email

cssel?20-staff@rose-hulman.edu

You get faster response from the above than from just your instructor

