
CSSE 120 – Introduction to Software Development

As you arrive:
1. Start up your computer and plug it in.

2. Log into Angel and go to CSSE 120.

Do the Attendance Widget –

the PIN is on the board.

3. Go to the Course Schedule web page.
Open the Slides for today if you wish.

4. Checkout today’s project:

Session 2

Functions,

Objects and

Methods

Session02_FunctionsObjectsAndMethods

Objects

 Constructing

 Methods and instance variables

Robots (if time)

 The Create robot – hardware

Functions

 Review: the

input-compute-output pattern

 Defining vs. Calling

 Printing vs. Returning values

Today:

Sit next to someone DIFFERENT from yesterday.

 Introductions: students, assistants and instructor

 Review and practice:

 The chaos.py program and everything about it

 The input-compute-output pattern

 Defining a function versus calling a function

 Printing versus returning a value

 Objects, via zellegraphics

 Constructing an object

 Using objects: dot notation for methods and instance variables

 Robots – the iRobot Create (as time permits)

 Demo

 Introduction to its hardware

Outline of today’s session

 Ask your partner:

What foreign country have you visited
(or want to visit)?

What did you like about your visit

(or what makes you want to visit that country)?

 Why do Contact Before Work?
 Helps us know our teammates.

 We work better with people we know and like.

 Helps start the meeting on time:

Contact Before Work

 Name (nickname)

 Hometown

 Where you live on (or off) campus

 Something about you that most people in the room

don't know

Roll Call & Introductions

 Note unusual grading plan

 Will work to your benefit if you work hard!

 Questions?

Syllabus, grading

Checkout today’s project:
Session02_FunctionsObjectsAndMethods

Are you in the Pydev perspective? If not:

 Window ~ Open Perspective ~ Other then Pydev

Messed up views? If so:
 Window ~ Reset Perspective

No SVN repositories view (tab)? If it is not there:

 Window ~ Show View ~ Other

 then SVN ~ SVN Repositories

1. In your SVN repositories view (tab), expand your repository
(the top-level item) if not already expanded.

• If no repository, perhaps you are in the wrong Workspace. Get help.

2. Right-click on today’s project, then select Checkout.

Press OK as needed. The project shows up in the

 Pydev Package Explorer
to the right. Expand and browse the modules under src as desired.

Troubles getting
today’s project? If so:

Review (this and next set of slides):

Your first Python example: chaos!
def main():

 """ Calls a function (chaos) which shows a chaotic sequence. ""“

 chaos()

 print('Goodbye!')

def chaos():

 """

 Computes and prints a chaotic sequence of numbers,

 as a function of a number input from the user.

 """

 print('This function illustrates a chaotic function.')

 x = float(input('Enter a number between 0 and 1: '))

 for k in range(20): #@UnusedVariable

 x = 3.9 * x * (1 - x)

 print(x)

 print('Examine the sequence of numbers printed.')

 print('Does it appear chaotic?') Q2

Review: Doc-comments

Your first Python example: chaos!
def main():

 """ Calls a function (chaos) which shows a chaotic sequence. ""“

 chaos()

 print('Goodbye!')

def chaos():

 """

 Computes and prints a chaotic sequence of numbers,

 as a function of a number input from the user.

 """

 print('This function illustrates a chaotic function.')

 x = float(input('Enter a number between 0 and 1: '))

 for k in range(20): #@UnusedVariable

 x = 3.9 * x * (1 - x)

 print(x)

 print('Examine the sequence of numbers printed.')

 print('Does it appear chaotic?') Q2

Review: internal comments

Your first Python example: chaos!
def main():

 """ Calls a function (chaos) which shows a chaotic sequence. ""“

 chaos()

 print('Goodbye!')

def chaos():

 """

 Computes and prints a chaotic sequence of numbers,

 as a function of a number input from the user.

 """

 print('This function illustrates a chaotic function.')

 x = float(input('Enter a number between 0 and 1: '))

 for k in range(20): #@UnusedVariable

 x = 3.9 * x * (1 - x)

 print(x)

 print('Examine the sequence of numbers printed.')

 print('Does it appear chaotic?') Q2

Review: Execution is sequential except …

Your first Python example: chaos!
def main():

 """ Calls a function (chaos) which shows a chaotic sequence. ""“

 chaos()

 print('Goodbye!')

def chaos():

 """

 Computes and prints a chaotic sequence of numbers,

 as a function of a number input from the user.

 """

 print('This function illustrates a chaotic function.')

 x = float(input('Enter a number between 0 and 1: '))

 for k in range(20): #@UnusedVariable

 x = 3.9 * x * (1 - x)

 print(x)

 print('Examine the sequence of numbers printed.')

 print('Does it appear chaotic?') Q2

Review: Defining a function

Your first Python example: chaos!
def main():

 """ Calls a function (chaos) which shows a chaotic sequence. ""“

 chaos()

 print('Goodbye!')

def chaos():

 """

 Computes and prints a chaotic sequence of numbers,

 as a function of a number input from the user.

 """

 print('This function illustrates a chaotic function.')

 x = float(input('Enter a number between 0 and 1: '))

 for k in range(20): #@UnusedVariable

 x = 3.9 * x * (1 - x)

 print(x)

 print('Examine the sequence of numbers printed.')

 print('Does it appear chaotic?') Q2

Review: Calling a function

Your first Python example: chaos!
def main():

 """ Calls a function (chaos) which shows a chaotic sequence. ""“

 chaos()

 print('Goodbye!')

def chaos():

 """

 Computes and prints a chaotic sequence of numbers,

 as a function of a number input from the user.

 """

 print('This function illustrates a chaotic function.')

 x = float(input('Enter a number between 0 and 1: '))

 for k in range(20): #@UnusedVariable

 x = 3.9 * x * (1 - x)

 print(x)

 print('Examine the sequence of numbers printed.')

 print('Does it appear chaotic?') Q2

Review: Loop (part 1, basic idea)

Your first Python example: chaos!
def main():

 """ Calls a function (chaos) which shows a chaotic sequence. ""“

 chaos()

 print('Goodbye!')

def chaos():

 """

 Computes and prints a chaotic sequence of numbers,

 as a function of a number input from the user.

 """

 print('This function illustrates a chaotic function.')

 x = float(input('Enter a number between 0 and 1: '))

 for k in range(20): #@UnusedVariable

 x = 3.9 * x * (1 - x)

 print(x)

 print('Examine the sequence of numbers printed.')

 print('Does it appear chaotic?') Q2

Review: Body of a function/loop

Your first Python example: chaos!
def main():

 """ Calls a function (chaos) which shows a chaotic sequence. ""“

 chaos()

 print('Goodbye!')

def chaos():

 """

 Computes and prints a chaotic sequence of numbers,

 as a function of a number input from the user.

 """

 print('This function illustrates a chaotic function.')

 x = float(input('Enter a number between 0 and 1: '))

 for k in range(20): #@UnusedVariable

 x = 3.9 * x * (1 - x)

 print(x)

 print('Examine the sequence of numbers printed.')

 print('Does it appear chaotic?') Q2

Review: Printing (also print(xx, yy, …))

Your first Python example: chaos!
def main():

 """ Calls a function (chaos) which shows a chaotic sequence. ""“

 chaos()

 print('Goodbye!')

def chaos():

 """

 Computes and prints a chaotic sequence of numbers,

 as a function of a number input from the user.

 """

 print('This function illustrates a chaotic function.')

 x = float(input('Enter a number between 0 and 1: '))

 for k in range(20): #@UnusedVariable

 x = 3.9 * x * (1 - x)

 print(x)

 print('Examine the sequence of numbers printed.')

 print('Does it appear chaotic?') Q2

Review: input, variables & assignment

Your first Python example: chaos!
def main():

 """ Calls a function (chaos) which shows a chaotic sequence. ""“

 chaos()

 print('Goodbye!')

def chaos():

 """

 Computes and prints a chaotic sequence of numbers,

 as a function of a number input from the user.

 """

 print('This function illustrates a chaotic function.')

 x = float(input('Enter a number between 0 and 1: '))

 for k in range(20): #@UnusedVariable

 x = 3.9 * x * (1 - x)

 print(x)

 print('Examine the sequence of numbers printed.')

 print('Does it appear chaotic?') Q2

Review: Loops, part 2 (notation, range)

Your first Python example: chaos!
def main():

 """ Calls a function (chaos) which shows a chaotic sequence. ""“

 chaos()

 print('Goodbye!')

def chaos():

 """

 Computes and prints a chaotic sequence of numbers,

 as a function of a number input from the user.

 """

 print('This function illustrates a chaotic function.')

 x = float(input('Enter a number between 0 and 1: '))

 for k in range(20): #@UnusedVariable

 x = 3.9 * x * (1 - x)

 print(x)

 print('Examine the sequence of numbers printed.')

 print('Does it appear chaotic?') Q2

Review: Accumulation pattern: x = … x …

Your first Python example: chaos!
def main():

 """ Calls a function (chaos) which shows a chaotic sequence. ""“

 chaos()

 print('Goodbye!')

def chaos():

 """

 Computes and prints a chaotic sequence of numbers,

 as a function of a number input from the user.

 """

 print('This function illustrates a chaotic function.')

 x = float(input('Enter a number between 0 and 1: '))

 for k in range(20): #@UnusedVariable

 x = 3.9 * x * (1 - x)

 print(x)

 print('Examine the sequence of numbers printed.')

 print('Does it appear chaotic?') Q2

 Getting input from the user

 input('What is Cel. temperature? ')

 float(...)

 celsius = ...

 Computing a value using an assignment

 fahrenheit = 9/5 * celsius + 32

 Printing values to the console

 print('Tem...', fahrenheit, 'deg...')

Summary: the input-compute-output pattern

def celsius_to_fahrenheit():

 celsius = float(input('What is Cel. temperature? '))

 fahrenheit = 9/5 * celsius + 32

 print('Temperature is', fahrenheit, 'degrees Fahr.')

 In today’s project, examine m1_temperature.py

 Do TODO: 1... And TODO: 2...

 Questions on:

 The doc-comment at the top of the file?

As the first statement inside the body of a function?

 The #comments inside the file?

 Defining a function?

 Calling a function?

 The boiler-plate at the bottom of the file that calls main?

 Anything else?

Practice: the input-compute-output pattern

 In today’s project, examine the module (file):

 m2_distance_from_origin.py

 The statement

 import math

 makes the math module (library) available to this module.

 For example, you can then write:

 math.sqrt(5.8)

 Do the TODO’s (#1, #2).

 Ask questions as needed!

Practice: the input-compute-output pattern

 In today’s project, examine the module (file):

 m3_print_vs_return.py

 The print function prints to the console.

The return expression returns a value to the caller.

Study the difference by discussing with your instructor:

 main

 print_versus_return

 print_sum_of_square_roots

 return_pi_approximation

 Do the TODO’s (#1, #2, #3, …)

 Ask questions as needed! Finish as homework.

PRINTING versus RETURNING values

 Check that Zellegraphics is on your computer by:

 Try to run m4_face.py module in

ZellegraphicsAndObjects in today’s project

 If a window pops us, & if clicking in the window closes it, you’re set!

 If not: Look at your

 C:\Program Files\Python31\Lib\site-packages

folder. If it lacks any of the following:

zellegraphics.py sitecustomize.py create.py serial

Then unzip this and put the relevant files/folder into the above.

Also, if the above folder lacks a win32 folder,

then download and run this.

Zellegraphics

http://www.rose-hulman.edu/class/csse/csse120/201120robotics/Resources/Tools/Python/PutContentsInSitePackages.zip
http://www.rose-hulman.edu/class/csse/csse120/201120robotics/Resources/Tools/Python/pywin32-214.win32-py3.1.exe

 In today’s project, examine the

 m4_face.py module

 Do the TODO’s (#1, #2, #3, …) with your instructor

 Concepts:

 Importing a module

 Objects:

 Know stuff (stored in instance variables)

 Can do stuff (via methods)

 Constructing an object

 Asking the object to do/return something by calling a

method that the object has

 Similar to a function call, but applied to an object

Objects and Zellegraphics

 Today:

 Demo

 Hardware

 Next session:

 Writing programs that make them do things!

The iRobot Create

Getting to know the iRobot Create

Turn on your

robot (on your

table or the floor),

pick a program

with the Advance

Button, and Play

the program

Turn OFF your robot as we

continue to the next slides

Look at your iRobot Create as we go!

Getting our hands on iRobot Create

 iRobot Create hardware overview

Actuators

Sensors

 Making a COM port connection over Bluetooth

 iRobot Create’s Open Interface Protocol

Sending serial commands via RealTerm

Sending serial commands via Python

 Using the create.py module!

Way Easier! Way Better!

iRobot Actuators – Robot Outputs

 Left Wheel Motor

 Right Wheel Motor

Max speed sets the

wheels to 500 mm/s

forwards or backwards

That’s just over

1 mph so don’t

get too excited

about 500 mm/s

iRobot Actuators – Robot Outputs

 Left Wheel Motor

 Right Wheel Motor

 Speaker

iRobot Actuators – Robot Outputs

 Left Wheel Motor

 Right Wheel Motor

 Speaker

 Bi-color Power LED

 Play LED

 Advance LED

iRobot Actuators – Robot Outputs

 Left Wheel Motor

 Right Wheel Motor

 Speaker

 Bi-color Power LED

 Play LED

 Advance LED

 Low-side Drivers on the BAM (LD0-LD2)

 Digital Outputs on the BAM (DO0-DO2)

iRobot Sensors – Robot Inputs

 Omnidirectional IR Sensor

 Play and Advance Buttons

 Left and Right Bumpers

 Three Wheel Drop Sensors

 Four Cliff Sensors

 Wall Sensor

 Encoders

 Four Digital Inputs on the BAM (DI0-DI3)

 Analog Input on the BAM (Ain)

Omnidirectional IR Receiver

IR receive shown here = 0b00110011

 = 0x33

 = 51

IR Visible

No IR Light

IR transmitters will flash out certain

patterns to send 8-bit numbers

Values 0 to 254 (255 is for no signal)

Play and Advance Buttons

 Digital inputs that you

could really use for any

function

 They just have symbols

on them. Nothing

special about that

symbol

Bump Sensors

 Two digital signals

 Left Bumper

 Right Bumper

Wheel Drop Sensors

 Three digital inputs

 Front Wheel Drop

 Left Wheel Drop

 Right Wheel Drop

Cliff Sensors

 Four analog inputs

 Cliff Left Signal

 Cliff Front Left Signal

 Cliff Front Right Signal

 Cliff Right Signal

Cliff Sensor Analog Readings

White

Surface

Gray

Surface

Black

Surface
No Surface

High value
Max = 4095

Medium value Low value
Min = 0

Low value
Min = 0

1800 1000 0 0
Common real values:

Wall Sensor

 One Analog Sensor

 Value relates to the

distance between wall

and Create

 0 = No wall seen

Wheel Encoders

 More complex

 Distance since last

request

 Angle since last request

 Used internally to

control wheel speed

Inputs on the BAM

 Four Digital Inputs on the BAM (DI0-DI3)

 Analog Input on the BAM (Ain)

iRobot Create Top View

iRobot Create Bottom View

Getting our hands on iRobot Create

 iRobot Create hardware overview

Actuators

Sensors

 Sensor signals go to the iRobot microcontroller

 But? The signals need to get to the computer?

How do we get this information to a PC?

UART Communication

Universal Asynchronous

Receiver / Transmitter

http://www.societyofrobots.com/microcontroller_uart.shtml
http://www.societyofrobots.com/microcontroller_uart.shtml

Example UART Basics

A quick detailed look at UART

Message at predetermined bit rate (baud rate) iRobot uses 57600 bits/second

How does UART work?

 Usually (or maybe we should say previously) UART is/was

connected via an RS232 port, also known as a DB9 Serial Port,

or just called, more simply, a “Serial Port”

From Society of Robots website – “Let me say this bluntly - no cute girl would ever

date you if you have a robot with a long wire dragging behind it. Just that simple.”

Tx Rx Ground

Laptop Serial Port Serial Cable iRobot 25 pin Serial Port

Tx Rx

Ground

http://www.societyofrobots.com/electronics_bluetooth_robot.shtml

Wireless Bluetooth using the BAM!

Bluetooth Hardware

Inside Laptop Using

Bluetooth Driver

Bluetooth

“Virtual” Wires

BAM = Bluetooth Access Module

How to connect – next time!

 Check your Quiz answers versus the solution

 An assistant may check your Quiz to ensure you are using

the Quizzes appropriately

 Work on today’s homework

 Ask questions as needed!

 Sources of help after class:

Assistants in the CSSE lab

 And other times as well (see link on the course home page)

 Email

 You get faster response from the above than from just your instructor

Rest of Session

CSSE lab: Moench F-217

7 to 9 p.m.

Sundays thru Thursdays

csse120-staff@rose-hulman.edu

