
CSSE 120 – Introduction to Software Development

As you arrive:

1. Before you sit down,
get a sheet of paper with the right color:

2. Sit next to someone with the same color sheet.

3. Start up your computer and plug it in.

4. Log into Angel and go to CSSE 120.
Do the Attendance Widget – the PIN is on the board.

5. Go to the Course Schedule web page.
Open the Slides for today if you wish.

Session XX

The quiz lists its URL.

BOOKMARK it.

Green: I’ve never written a program … and I’m proud of it!

Yellow: I’ve written a program or two (less than 200 lines).

Pink: I’ve written programs (more than 200 lines).

Session 1

Today: Introduction to

Software Development,

Eclipse and Python

 Ask your partner:

What is something interesting
that you learned from a family member

(parent, grandparent, sibling, cousin, aunt, …)?

When did you learn it, and how?

 Why do Contact Before Work?
 Helps us know our teammates.

 We work better with people we know and like.

 Helps start the meeting on time:

Contact Before Work

 Introductions: instructor, assistants, and some students

 Resources:

 Course web site, CSSE lab (F-217) hours,

csse120-staff@rose-hulman.edu email

 Course background:

 What is computer science? Software development?

A programming language?

 Hands-on introduction to Eclipse and Python

 Eclipse – our Integrated Development Environment (IDE)

 Including Subversion – our version control system, for turning in work

 Python – our first programming language

 A whirl-wind tour, plus your first Python program

 Including a little zellegraphics

Outline of today’s session

Robots starting at
the next session

 Name (nickname)

 Hometown

 Where you live on (or off) campus

 Something about you that most people in the room

don't know

Roll Call & Introductions

This means you should be answering
Question #1 on the quiz.

Q1

 Course web site:

www.rose-hulman.edu/class/csse/csse120/201130

 Course schedule page – find it now (from course web site)

 Slides, Topics

 Activities

 Before-class (preparation)

 In-class

 After-class (homework)

 CSSE lab assistants in:

 Email to:

Resources

CSSE lab: Moench F-217

 7 to 9 p.m.

 Sundays thru Thursdays

 (other times too)

csse120-staff@rose-hulman.edu

Q2-4

 The work of computer scientists falls into three broad categories:

 designing and building software;

 developing effective ways to solve computing problems, such as:

 storing information in databases,

 sending data over networks or

 providing new approaches to security problems; and

 devising new and better ways of using computers and

addressing particular challenges in areas such as

 robotics,

 computer vision, or

 digital forensics.

What is Computer Science (CS)?

this course focuses on this

Q5-6
from the Association for Computing Machinery (ACM)

http://computingcareers.acm.org/?page_id=8

 Software development includes:

 Market research

 Gathering requirements for the proposed business solution

 Analyzing the problem

 Devising a plan or design

for the software-based solution

 Implementation (coding) of the software

 Bug fixing

 Testing the software

 Maintenance

What is software development?

This course
focuses on these,

teaching
good habits that

scale up.

from Wikipedia, Software Development
Q7

http://en.wikipedia.org/wiki/Software_development
http://en.wikipedia.org/wiki/Software_development

 Program

 Detailed set of instructions

 Step by step

 Meant to be executed

by a computer

 A programming language

specifies the:

 Syntax (form), and

 Semantics (meaning)

of legal statements

in the language

What is a program? A programming language?

There are thousands of computer
languages. We use Python because it:

• Is powerful: strong programming
primitives and a huge set of libraries.

• Has a gentle learning curve; you will
start using it today!

• Plays well with others (e.g. COM, .NET,
CORBA, Java, C) and runs everywhere.

• Is open source.

• See Wikipedia’s
 History of Programming Languages
for a timeline of programming languages.

• Python was introduced in 1991.

• Its predecessors include ABC, Algol 68,
Icon and Modula-3.

Q8-9 Don’t look ahead to the next slides, as that would spoil the fun!

http://en.wikipedia.org/wiki/History_of_programming_languages
http://en.wikipedia.org/wiki/History_of_programming_languages
http://en.wikipedia.org/wiki/History_of_programming_languages

 With your partner, go to the whiteboard and get a marker.

 Over the next 30 minutes, you will write a program (in English)

for a robot that follows a black line.

 Watch my demo of a robot that does so.

 What physical devices on the robot allow it to move?

 Answer: Two wheels that can move independently, each at its own speed.

 What physical devices on the robot allow it to decide when to veer?

How do those devices work?

 Answer: Several light (―cliff‖) sensors. This robot is using the two front sensors

that straddle the line that it is following. They shine line down and measure

how much light is reflected back up.

 Do you see why they are called ―cliff‖ sensors?

 What algorithm should the robot use to line-follow?

 One answer on the next slide, but many algorithms are reasonable!

Your first program

 Here (to the right) is

one line-following

algorithm

 There are many other

reasonable algorithms.

 What’s best depends

on the nature of the

line to follow and the

sensors available.

 Important note:

we can’t write this

program until we know

what algorithm we

intend to implement

Left light sensor sees white (light)
Right light sensor sees black (dark)
Action:
• Veer right

Both light sensors see white
(the robot is straddling the line)
Action:
• Go straight ahead

Left light sensor sees black (dark)
Right light sensor sees white (light)
Action:
• Veer left

Your first program

Imagine that the sensors are a bit farther apart than
shown here, as that is the case for our Create robot.

This is called bang-bang control. See why?

 Our programs

traditionally begin in

what’s called main.

 Write main (in English).

 Use fewer than 10

sentences.

 It’s perfectly OK if some

of your sentences refer

to functions (procedures)

that you have not yet

defined, but whose

name makes it obvious

what it should do.

Left light sensor sees white (light)
Right light sensor sees black (dark)
Action:
• Veer right

Both light sensors see white
(the robot is straddling the line)
Action:
• Go straight ahead

Left light sensor sees black (dark)
Right light sensor sees white (light)
Action:
• Veer left

Write main

Imagine that the sensors are a bit farther apart than
shown here, as that is the case for our Create robot.

This is called bang-bang control. See why?

Repeat the following forever:

 left_light = read_sensor(left_front)

 right_light = read_sensor(right_front)

 if left_light is ―light (similar to all-white)‖

 and

 right_light is ―dark (similar to all-black)‖:

 veer_right()

 if … go_straight()

 if … veer_left()

 ―sleep‖ the program briefly (but let the robot continue moving)

so that you don’t flood the robot with requests/commands

Let’s develop main together

Now write the code for the
veer_right function. Then the
go_straight and veer_left

functions.

Let’s develop veer_right together

def veer_right():

 on(left_motor, 100)

 on(right_motor, 50)

def go_straight():

 on(left_motor, 100)

 on(right_motor, 100)

def veer_left():

 on(left_motor, 50)

 on(right_motor, 100)

def move(left_speed, right_speed):

 on(left_motor, left_speed)

 on(right_motor, right_speed)

def veer_right():

 move(100, 50)

def go_straight():

 move(100, 100)

def veer_left():

 move(50, 100)

We abstract the two on commands
into a single move function.

A simple but powerful idea!

Approach 1

Approach 2

 You have now experienced many of the fundamental

concepts of procedural programming:

 Loops: “repeat forever”

 Function calls: on(left_motor, 100)

 veer_right()

 Function definitions:

 Parameters and arguments: shown above

 Returned values, variables, assignment:
 left_light = read_sensor(left_front)

 Conditional control flow: if ...

Post-Mortem

def move(left_speed, right_speed):

 on(left_motor, left_speed)

 on(right_motor, right_speed)

Parameters

Arguments

 What are they?

 Why use one?

 Our IDE  Eclipse

 Why we chose it

 Basic concepts in Eclipse

 Workspace, Workbench

 Files, folders, projects

 Views, editors, perspectives

Integrated Development Environments

(IDEs) – Outline

The next slides address
these points about IDEs.

IDEs  What are they?
An IDE is an application that makes
it easier to develop software.

They try to make it easy to:

See the outline of
the entire project See the outline of

a chunk of code

Get input and
display output

Type and change
code (editors)

Compile, run, debug, document, and more

Checkout projects,
see Tasks and Problems

An IDE is an application that makes
it easier to develop software.

They try to make it easy to:

See the outline of
the entire project See the outline of

a chunk of code

Get input and
display output

Type and change
code (editors)

Compile, run, debug, document, and more

Checkout projects,
see Tasks and Problems

IDEs  Why use one?

Why Eclipse?

We will use an IDE called Eclipse. It is:

• Powerful -- everything here and more

• Easy to use

• Free and open-source

• An IDE for any language, not just Python

• What our upper-class students told us to use!

 Your instructor will show you’re the highlights.

 They are summarized on the next several slides.

Open Eclipse

 Workspace  where your projects are stored on your
computer

 Project  a collection of files, organized in folders, that
includes:
 Source code (the code that you write)

 Compiled code (what your source code is translated into, for the
machine to run)

 Design documents

 Documentation

 Tests
 And more that you will learn about over time

 Workbench  what we saw on the previous slide, that is,
the tool in which you do your software development

Basic concepts in Eclipse

Views, editors, perspectives

This view is controlled by an

editor that lets you make

changes to the file

Tabbed views (Problems, Console)

A view that lets

you navigate

the entire

project

(Package

Explorer)

A view that shows

the outline of the

module being

examined (Outline

View)

Tabbed views of the source code of this project

A perspective displays a set of views and editors

that are appropriate for the task at hand.

Perspectives include: PyDev, Java and lots more

This is the

PyDev

perspective

but just a

button click

brings us to

another

Eclipse in a Nutshell

 Workspace  where your projects are stored on your

computer

 Project  a collection of files, organized in folders,

that includes:

 Source code and Compiled code and more

 Workbench  the tool in which to work

 It has perspectives which organize the views and editors that

you use

 View  a "window within the window"

 displays code, output, project contents, debugging info, etc.

Software Engineering Tools

 The computer is a powerful tool

 We can use it to make software development easier

and less error prone!

 Some software engineering tools:

 IDEs, like Eclipse and IDLE

 Version Control Systems, like Subversion

 Testing frameworks, like JUnit

 Diagramming applications, like UMLet, Violet and Visio

 Modeling languages, like Alloy, Z, and JML

 Task management trackers like TRAC

Version Control Systems

 Store ―snapshots‖ of all the changes to a project over time

 Benefits:

 Multiple users

 Multiple users can share work on a project

 Record who made what changes to a project

 Provide help in resolving conflicts between what the multiple users do

 Maintain multiple different versions of a project simultaneously

 Logging and Backups

 Act as a ―global undo‖ to whatever version you want to go back to

 Maintain a log of the changes made

 Can simplify debugging

 Drop boxes are history!

 Turn in programming projects

 Get it back with comments from the grader embedded in the code

Our Version Control System

 Subversion, sometimes called SVN

 A free, open-source application

 Lots of tool support available

 Works on all major computing platforms

 TortoiseSVN for version control in Windows Explorer

 Subclipse for version control inside Eclipse

Version Control Terms

Subversion Server

Alice's

Computer

Bob's

Computer

Instructor's

Computer

Alice's

Repository

Bob's

Repository …

Repository: the

copy of your

data on the

server, includes

all past versions
Working copy:

the current

version of your

data on your

computer

Working

Copy

Working

Copy

Working

Copy

Working

Copy …

Q10a-b

Version Control Steps—Checkout

Subversion Server

Alice's

Computer

Bob's

Computer

Instructor's

Computer

Alice's

Repository

Bob's

Repository …

…
Working

Copy

Working

Copy

Working

Copy

Working

Copy

Checkout:

grab a new

working copy

from the

repository

Q10c

Version Control Steps—Edit

Subversion Server

Alice's

Computer

Bob's

Computer

Instructor's

Computer

Alice's

Repository

Bob's

Repository …

Working

Copy

Working

Copy

Working

Copy

Working

Copy …

Edit: make

independent

changes to a

working copy

Version Control Steps—Commit

Subversion Server

Alice's

Computer

Bob's

Computer

Instructor's

Computer

Alice's

Repository

Bob's

Repository …

Working

Copy

Working

Copy

Working

Copy

Working

Copy …

Commit: send

a snapshot of

changes to

the repository

Q10d

Version Control Steps—Update

Subversion Server

Alice's

Computer

Bob's

Computer

Instructor's

Computer

Alice's

Repository

Bob's

Repository …

Working

Copy

Working

Copy

Working

Copy

Working

Copy …

Update: make

working copy

reflect

changes from

repository

Q10e

Checkout today’s project:
 Session01_IntroductionToPython

Are you in the Pydev perspective? If not:

 Window ~ Open Perspective ~ Other then Pydev

Messed up views? If so:
 Window ~ Reset Perspective

No SVN repositories view (tab)? If it is not there:
 Window ~ Show View ~ Other

 then SVN ~ SVN Repositories

1. In your SVN repositories view (tab), expand your repository
(the top-level item) if not already expanded.

• If no repository, perhaps you are in the wrong Workspace. Get help.

2. Right-click on today’s project, then select Checkout.

Press OK as needed. The project shows up in the

 Pydev Package Explorer
to the right. Expand and browse the modules under src as desired.

Troubles getting
today’s project? If so:

Your first Python example: chaos!

def main():

 """ Calls a function (chaos) which shows a chaotic sequence. """

 chaos()

def chaos():

 """

 Computes and prints a chaotic sequence of numbers,

 as a function of a number input from the user.

 """

 print('This function illustrates a chaotic function.')

 x = float(input('Enter a number between 0 and 1: '))

 for k in range(20): #@UnusedVariable

 x = 3.9 * x * (1 - x)

 print(x)

 print('Examine the sequence of numbers printed.')

 print('Does it appear chaotic?')

Q11

 Check your Quiz answers versus the solution

 An assistant may check your Quiz to ensure you are using

the Quizzes appropriately

 Work on today’s homework

 Ask questions as needed!

 Sources of help after class:

Assistants in the CSSE lab

 And other times as well (see link on the course home page)

 Email

 You get faster response from the above than from just your instructor

Rest of Session

CSSE lab: Moench F-217

7 to 9 p.m.

Sundays thru Thursdays

csse120-staff@rose-hulman.edu

Q12

