
Page 1 of 6

CSSE 120 – Introduction to Software Development

Exam 1 – Format, Concepts,
What you should be able to do, and Sample Problems

Format: The exam will have two sections:

 Part 1: Paper-and-Pencil

o External resources allowed: An 8.5 by 11 sheet of paper (back and front) “cheat
sheet” with whatever you want on it (printed or handwritten).

 You would be wise to create your own cheat sheet (working with someone else is fine)
as that will maximize both your learning and your score on the exam.

o Points: Approximately 25 of 100

 Part 2: On-the-computer

o External resources allowed:

 Any printed or handwritten materials you choose to bring, including
notes, books, handouts, printouts, whatever

 Your own computer and any external drives attached to it

 Your own SVN repository

 Anything on the Internet, subject to: During the exam, you may not
communicate in any way with any human being other than your
instructor (or other exam proctor). No email, no chat, etc.

o Points: Approximately 75 of 100

In the following, we have tried to list everything that you might be expected to demonstrate
on the exam, plus sample problems for as much of that as practical. But please note:

 This is not a contract; it is only our best-effort to list everything you might be expected
to demonstrate on this exam.

 The sample problems that will follow are just that – samples. The problems on the
exam may look both similar to and somewhat different from the samples.

Page 2 of 6

Concepts of software development that you might be asked to explain include:

1. The difference between a specification and an implementation, and what a specification of a
function should include. What a pre-condition is and why they are important.

2. Documentation: how and why we put internal comments and documentation strings (doc-
comments) in our programs

3. Software development tools: what is provided by a typical, modern:

a. Integrated Development Environment (IDE)

b. Version control system

c.  Debugger

4. Software development processes:
a.  What are some important phases of software development?

b. What is procedural decomposition?

c. What is a compiler? An interpreter?
d. What is the difference between a compile-time error and a run-time error?

Syntax and semantics?
e. What is an algorithm?

5. Key ideas of functions, including:
a. Why are functions useful?

b. What is the difference between a function call and a function definition?

c. How does one send information to a function? Back from a function?
What is a parameter and how is it used?

d. What does it mean when we say that variables are local to a function? Why is the
locality of variables a useful characteristic?

e. Where does execution go when a function call is executed? When the function
completes its execution? When a return statement is encountered?

f. When a variable is used as an argument in a function call, does that send the name of
the variable or the value of the variable to the function? How about when a variable is
returned from a function?

6. Key ideas of object-oriented programming, including:

a. What makes objects different from traditional data types, namely: objects know stuff
(stored in instance variables) and can do stuff (via methods)

b.  Why object-oriented programming is valuable

c. The difference between a function and a method, and the different notations for
invoking them

d. The difference between an object and a class to which that objects belongs

e.  The difference between accessor and mutator methods

7.  What is the difference between the int and float data types? What are the
limitations of each? When should use one and when the other?

8. What is a sequence? Why are they important? What does it mean to index into a sequence?
What is the difference between the sequence types: list, tuple, string? For each, when should
one use it instead of another sequence type?

9.  The implications of the fact that variables in Python are names that point to values in
memory, that is, variables are references to their values. How to use box-and-pointer diagrams
to trace, understand and depict the behavior of variables that reference their values. Exactly
what an assignment statement does; what a function call does regarding actual arguments and
formal parameters. What is a mutator and why is it useful? dangerous?

This entire section
(on functions)

is critical

Critical

Items with a triple beta  next to them, like this one,
are important items that you will NOT see on Exam 1

Critical

Critical

Critical

Page 3 of 6

Concepts that you might see on code that you read and write include:

1. Variables and assignment, including 
simultaneous assignment (x, y = …, …)

and  operator assignment (sum += …)

2. Data types: int, float, sequences
(lists, strings, tuples, range expressions)

3. Arithmetic and character expressions, including
those involving:

 Operators: + - * / // % **

 Math functions:
abs cos sin pi sqrt

  Character functions: ord chr

4. The input function, including:

 Providing a prompt

 Converting an input string into a number
(integer or floating-point)
using int and float

  Stripping whitespace from the
beginning and end of an input string (using
strip)

  Splitting an input string into a list of
strings (using split) and then converting the
strings in the list into appropriate types

5. The print function, including:

 Printing on multiple lines
or on the same line

  Using a string’s format method and
associated format specifiers to do
formatted output, especially: columns
lined up on decimal points, centering

6. Sequences: Lists, strings, tuples and range
expressions. Including:

 Indexing and  slicing, including
negative indices. Accessing characters
inside strings inside lists, etc.

 The len function

 Concatenation (s1 + s2)

and  duplication (s * n)

  String methods like: capitalize count
find format index join lower replace
strip split title upper

  List methods like: append count
index insert remove reverse sort

7. Definite loops, including:

 Counted loops through a range expression

 Looping directly through a list or string

 Looping through a list or string using its
indices as generated by a range expression

8. Functions and methods, including:

 Function definitions, including parameters

 Function and method calls, including those
with actual arguments

 Returning a value from a function and
capturing/using returned values

  Mutators and mutable parameters

  Optional parameters – defining, using

 Functions that call functions

9. Objects, including statements that:

 Construct an object

 Apply a method to an object

 Reference an instance variable of an object

zellegraphics and create as examples of classes,
constructors, methods and objects

10. Conditionals, including:

 The three forms:
 if

 if-else

  if-elif-elif...-else

 Relational operators on numbers/strings:
< > <= >= == !=

 Boolean operators:
and or not

11. import statements, in two forms:
 import blah

 import blah as foo

Sample problems of each of these items appear later in this document. If you don’t
understand what an item here is asking, see if the example problem clarifies matters for you.

Items with a triple beta  next to them are important items that you will NOT see on Exam 1.

Page 4 of 6

For the Paper-and-Pencil portion of Exam 1, students should be able to:

1. Trace by hand short snippets of code (less than 15 lines or so)
and show:

 what gets printed, or the

 values of indicated expressions.

2. Explain important concepts of software development,
chosen exclusively from the list on page 2.

For the On-the-Computer portion of Exam 1, students should be able to:

1. Write short programs and/or functions that are examples of the input/compute/output pattern.
Be able to:

a. Use the input function to get input from the console, including:

 Provide a prompt

 Convert an input string into a number (integer or floating-point) using the int and
float functions

b. Use variables to store the input and perform numeric computations using:

 Operators: + - * / // % **

 Functions: abs cos sin pi sqrt round

c. Use print to display results on the console, all on one line or on separate lines

2. Define functions that have parameters and (possibly) return values. Be able to:

a. Write the def portion of a function definition, given (in ordinary English) the name of the
function and a description of its parameters.

b. Write the function body, using the parameters and other local variables as needed. Display an
understanding of:

 The fact that a parameter is a name for a value that comes into the function

 The relationship of parameters and other local variables to variables with the same name
outside the function

 When and why to introduce local variables

c. Return a value if called for by the problem

3. Call (invoke) functions, both ordinary functions and methods, and use the returned value (if any),
perhaps by capturing it in a variable. This includes calling functions that you write and functions
that you did not write (but use).

Sample problems appear later in this
document. If you don’t understand
what an item here is asking, see if the
example problem clarifies matters for
you.

Page 5 of 6

4. Use definite loops and sequences

a. Write a counted loop, that is, a loop that iterates a given number of times, by using a range
statement, in any of its three forms: range(n) range(m, n) range(m, n, d)

b. Use the loop variable as called for by the problem.

c. Iterate through sequence in either of two ways, as necessary:

d. Use the Accumulator loop pattern to accumulate things like a:

• sum • count • product • list • string

• coordinate or size of a graphics object •  max/min

e. Use the len function to obtain the length of a sequence. Index correctly (starting at 0).

f. Iterate through two equal-length sequences in parallel.

g. Iterate through a sequence in a problem that requires the index variable to be used in more
than one way at each iteration.

5. Use conditional statements, in any of their 3 forms:

if if-else  if-elif-elif...-else

 Use comparison operators: == != > < >= <=

 Use Boolean operators: and or not

6. Use the wait-until-event loop pattern, using a while statement and break expression.

7. Use objects:

a. Construct an object that is an instance of a class

b. Apply methods to the object

c. Reference instance variables of the object (but note: usually we use accessor methods instead
of directly accessing the object’s instance variables)

Also, display an understanding of:

d. How to determine what methods apply to an object

e. The distinction between an object and a class that it is an instance of

Looping directly through a sequence, e.g.

 for thing in list_of_things:

 ... thing ...

Looping through a sequence using its indices
as generated by a range expression, e.g.

 for k in range(len(list_of_things)):

 ... list_of_things[k] ...

Page 6 of 6

8. Apply the above to zellegraphics:

a. Construct (and hence display) a GraphWin. Wait for the user to click the mouse.

b. Construct and use a Point, Line, Circle, Rectangle, Polygon, Text, Entry

c. Apply methods to the above, including (not all of these apply to all of the above!):

• draw • undraw • move • getMouse • close

• getters like: • getX • getY • getCenter • getRadius
 • getWidth • getHeight

• setters like: • setFill • setOutline

d. Do an animation (using time.sleep)

9. Debug your code:

a. Use Eclipse to correct compile-time errors like this example:

b. Use the red error messages in the Console window to know the line at which the program
broke and the general nature (at least) of the error.
Use the blue link in the Console window to see the line at which the code broke.

c. Use either print statements or the debugger to track down harder-to-diagnose run-time errors

10. Test your code: Supply calls in main or elsewhere that call your functions with parameters that help
test your functions, printing returned values as appropriate.

11. Document your code, using appropriate documentation strings (doc-comments) and internal
comments (with # signs)

12. Submit your code, using SVN as usual.

