
CSSE 120—Rose Hulman Institute of Technology

STRUCTS, TYPEDEF, #DEFINE,
AND USING C MODULES

Preamble: #define and typedef

� C allows us to define our own constants and type
names to help make code more readable

#define TERMS 3
#define FALL 0
#define WINTER 1
#define SPRING 2

typedef int coinValue;
coinValue quarter = 25, dime = 10;

How could we make our own bool type?

Q1-Q2

For more info, see Kochan,

p. 299-303 (#define),

p. 325-327 (typedef)

Structures

� No objects or dictionaries in C. Structures (structs)
are the closest thing that C has to offer.

� Two ways of grouping data in C:
� Array: group several data elements of the same type.

� Access individual elements by position : student[i]

� Structure: group of related data
� Data in struct may be of different types
� Conceptually like dictionaries, syntax like objects

� Access individual elements by name: endPoint.x
� Not endPoint[“X”]

Q3-Q5

struct syntax

� struct <optional_tag_name> {
<type_1> <fieldname_1> ;
<type_2> <fieldname_2> ;

. . .
<type_n> <fieldname_n> ;
};

� This says that each variable of this struct type has
all these fields, with the specified types

� But structs are best declared in conjunction with
typedef, as on on next slide…

� Declare the type:
typedef struct {

int year;

double gpa;

} Student;

� Make and print a student's info:

Student myStudent;

myStudent.gpa = 3.4;

myStudent.year = 2010;)

printf("[%s %d %4.2lf]\n“,s.year,s.gpa);

Example: Student struct type

Q6

Hands on working together

� Let’s define a Point struct type together
� Make a new C Project called “PointModule”

� (Hello World ANSI C Project)

� Rename file PointModule.c to main.c
� (it will help avoid confusion later)

�Within main.c create a typedef for a Point struct
� Two fields, named x and y
� Make both x and y have type int
� See code on next slide

Together let’s make a Point type

Type this in after the #includes but

before main

typedef struct {

int x;

int y;

} Point;

Together let’s make a Point

Type this in within main

int main(void) {

Point myPoint;

myPoint.x = 3;

myPoint.y = 4;

printf("myPoint.x = %d myPoint.y = %d\n“

,myPoint.x,myPoint.y);

return EXIT_SUCCESS;

}

That’s a struct

� That’s an easy introduction to using typedef with
struct

� Let’s make some fancier ways to initialize a struct

Initializing a struct

Student juan;

juan.year = 2008;

juan.gpa = 3.2;

Student makeStudent(int year, double gpa) {

Student stu;

stu.year = year;

stu.gpa = gpa;

return stu;

}

Shorter:

Student juan = {2008, 3.2};

(Only allowed when declaring and initializing
variable together in a single statement.)

typedef struct {

char *name;

int year;

double gpa;

} Student;

makePoint

�Write code for makePoint:
� Point makePoint(int xx, int yy)

� It receives two int parameters and returns a Point

� From within the main function:
�Call makePoint
� Store the result into a new Point called myPoint2
�print the values of x and y

[Hidden] Solution

typedef struct {

int x;

int y;

} Point;

Point makePoint(int xx, int yy) {

Point result;

result.x = xx;

result.y = yy;

return result;

}

int main(void) {

Point myPoint2 = makePoint(3,5);

printf("myPoint2.x = %d myPoint2.y = %d\n",myPoint2.x,myPoint2.y);

return EXIT_SUCCESS;

}

C Modules

� Grouping code into separate files for the purposes of
organization, reusability, and extensibility

� Header files
� .h file extension

� Other .c files will #include your header file

� For publically available functions, types, #defines, etc.

� Source files
� .c file extension

� The actually C code implementations of functions, etc.

� Needs to #include .h files to use functions that are not
written in this file

Making Modules

� The .c and .h file with the same name are called
collectively a module

� Our example:
� PointOperations.c

� PointOperations.h

� Let’s create this module together in Eclipse
� Right-click src folder � New � Header File

� Call the file PointOperations.h

� Right-click src folder � New � Source file
� Call the file PointOperations.c

Move your code

� Next we need to move our code

� Publicly available content goes into .h files

� Private content and code implementations go into .c
files

� Move into PointOperations.h

� The typedef struct code

� Move into PointOperations.c

� The makePoint function

Q7

Adding the wiring

� main.c and PointOperations.c need to know about
PointOperations.h

� Add #includes into both files, like this:
� #include “PointOperations.h”

Function prototypes in the .h

� Additionally main.c needs to know about the
makePoint function (currently only in private .c file)

� Add this function prototype to PointOperations.h

� Point makePoint(int xx, int yy);

� The compiler automatically knows that the
implementation of the function is within the .c file of
this module

� Any .c file that #includes “PointOperations.h” can
now call that function (it’s publically available)

PointOperations.h

#ifndef POINTOPERATIONS_H_

#define POINTOPERATIONS_H_

typedef struct {

int x;

int y;

} Point;

Point makePoint(int xx, int yy);

#endif /* POINTOPERATIONS_H_ */

PointOperations.c

#include "PointOperations.h"

Point makePoint(int xx, int yy)

{

Point result;

result.x = xx;

result.y = yy;

return result;

}

main.c

#include <stdio.h>

#include <stdlib.h>

#include "PointOperations.h"

int main(void) {

Point myPoint = makePoint(3,5);

printf("myPoint.x = %d myPoint.y =

%d\n",myPoint.x,myPoint.y);

return EXIT_SUCCESS;

}

Try it out

� Save all 3 files, build and run
� Ctrl Shift S, Ctrl B, Ctrl F11

� Works exactly like it did before but using modules!
� Refactoring code always feels a little odd

� So much effort for no visible difference

� A modular approach is much more extensible
� In software engineering, extensibility is a system design
principle where the implementation takes into consideration
future growth.

Extended in class example

� Next we’re going to do an extented example using
structs, typedef, and modules

� If you get stuck during any part, RAISE YOUR HAND
and get a TA to help you stay caught up

� There will be a bunch of parts, so getting behind
early works out BADLY

� Make sure each works before moving on

� Raise your hand if you have trouble with weird
build errors (it happens!)

Geometry Operations

� To make sure everyone is together checkout the
project Session23GeometryOperations

� Look at the code and try running the program

� Good trick, if you get a ‘Binaries not found’ error
�Make a small change to main.c (like adding a space)

� Save main.c (Ctrl S) to mark it as needing to be rebuilt

� Build (Ctrl B) to build program

� Run (Ctrl F11) to run code
� Sometimes I need to do that cycle TWICE

� Seems to make things happy assuming I have no code errors

The Goal

� Sit back and we’ll talk about what this code WILL
do

� Look in the Tasks window for TODO instructions
� Close other projects so that their TODOs don’t show up

� For example, close the That’s Perfect project

Files

� Testing your modules code
� main.c

� Point Operations module
� PointOperations.h

� PointOperations.c

� Line Segment Operations module
� LineSegmentOperations.h

� LineSegmentOperations.c

Main

� Used to test your modules

� Things it already does
� Creates a point

�Gets a point from the console

� Prints the points

� Call a distance function

� Prints the distance

� Things you’ll add
� Test code for Line Segment Operations (after you write
those functions)

PointOperations Module

� Functions in this module:

Point makePoint(int xx, int yy);
void printPoint(Point currentPoint);
double calculateDistance(Point pt1, Point pt2);

LineSegmentOperations Module

� Functions in this module:

LineSegment makeLineSegment(Point pt1, Point pt2);

void printLineSegment(LineSegment currentLine);

double calculateLength(LineSegment currentLine);

Calculate distance function

� TODOs #1 & #2

� Notice that calculateDistance always returns 0.0
� d = √ (x2-x1)2 + (y2-y1)2

� Remember math.h?

� For practice try to use pow (even though less efficient)
� http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html

Continued expansion

� Implementing the LineSegmentOperations module
� LineSegmentOperations.h

� LineSegmentOperations.c

� TODO #3
� For a line segment, what should the fields be?

� Do the quiz question.

� Then create a new LineSegment variable type

Q8-9

Add more struct types

� TODOs #4 thru #7

� Add a makeLineSegment function
� Receives two Points returns the LineSegment
� From main call this function to make a LineSegment

� Add a printLineSegment function
�Code provided but uses MY field names
� From main call printLineSegment to print your line

Calculate the line segment length

� TODOs #8 thru #10

� Write a calculateLength function for a line segment.
� Hint: Can you call the distance function we already wrote to

avoid copy & paste?

Get started

� The rest of the time is your time to finish the 10
TODO’s

� Ask questions as you need help

� If you finish early, checkout and start reading
HW23 RectangleStructs

� Go ahead!

A C Program in Multiple Files

� Check out Session23RectangleStructs from SVN.

� A large program can be organized by separating it
into multiple files.

� Notice the three source files:
� rectangle.h contains the struct definitions and function
signatures used by the other files.

� rectangle.c contains the definitions of the functions that
comprise operations on point and Rectangle objects.

� Session23RectangleStructs.c contains a main function
to test the various functions of the rectangle module.

� Both of the .c files must include the .h file.

Add functions for homework

/* Makes a rectangle from the given coordinates. A

* rectangle is made up of two points. */

Rectangle makeRect(int x1, int y1, int x2, int y2);

/* Returns the x-coordinate of the left-most edge given

* of the rectangle. */

int getLeft(Rectangle r);

/* Returns the x-coordinate of the right-most edge of the

* given rectangle. */

int getRight(Rectangle r);

/* Returns the y-coordinate of the top-most edge given

* of the rectangle. */

int getTop(Rectangle r);

Add additional functions

/* Returns the y-coordinate of the bottom-most edge of the

* given rectangle. */

int getBottom(Rectangle r);

/* Returns TRUE if the given rectangles touch and FALSE if

* not they do touch. */

boolean areIntersecting(Rectangle q, Rectangle r);

/* Returns a new rectangle representing the overlapping

* area of the two given rectangles. */

Rectangle intersect(Rectangle q, Rectangle r);

