Optical Engineering - Course Descriptions

OE 171 Photography and Holography 2R-0L-2C F
Prerequisites: There are no prerequisites for this course.
Corequisites: There are no corequisites for this course. Introduce students to basic knowledge of optics, principles and operation of a camera, shutters, films, and film development, color photography. Basic understanding of interference of waves, concept of holography, properties of various holograms, application of holography, and each student makes an individual hologram that can be seen in sunlight.

OE 172 Lasers and Fiber Optics 2R-0L-2C S
Prerequisites: There are no prerequisites for this course.
Corequisites: There are no corequisites for this course. Light, optics, image formation, and optical instruments. Introduction to the properties, physics of operation, types, and applications of lasers. Characteristics of optical fibers and optical communication systems. Applications of lasers and fibers in industry, medicine, and consumer products. Laser safety.

OE 280 Geometrical Optics 3.5R-1.5L-4C W
Prerequisites: PH 113 S,F,W
Corequisites: There are no corequisites for this course. First-order optics including graphical ray tracing, Gaussian methods, y-nu ray tracing, cardinal points, apertures, stops, pupils, vignetting, and obscuration. Optical invariant, dispersion, chromatic aberrations, glass selection, exact ray tracing, third-order monochromatic aberrations, introduction to computer-aided design and analysis. Relevant laboratory experiments.

OE 290 Directed Research Arranged
Prerequisites: Consent of instructor
Corequisites: There are no corequisites for this course. Research for freshmen and sophomore students under the direction of a physics and optical engineering faculty member. May earn up to a maximum of 2 credits for meeting the graduation requirements. The student must make arrangements with the faculty member for the research project prior to registering for this course.

OE 295 Photonic Devices & Systems 3.5R-1.5L-4C S
Prerequisites: PH 113 S,F,W, and MA 211 F,W,S
Corequisites: There are no corequisites for this course. Optical radiation, radiometry, and photometry. Blackbody radiation and thermal sources. Introduction to optoelectronic devices. Light emitting diodes and other optical sources. Optical detectors (thermal, photoemissive, and semiconductor detectors). Sources/effects of noise and SNR. Flux transfer in optical systems. Relevant laboratory experiments.
OE 360 Optical Materials 4R-0L-4C W (every other year)
Prerequisites: PH 255 W, and PH 316 F
Corequisites: There are no corequisites for this course.

OE 392 Linear Optical Systems 4R-0L-4C F
Prerequisites: PH 292 F, and MA 212 F,W,S
Corequisites: There are no corequisites for this course.

OE 393 Fiber Optics & Applications 3.5R-1.5L-4C W (every other year)
Prerequisites: OE 295 S, and PH 316 F or ECE 341 F or consent of instructor
Corequisites: There are no corequisites for this course.
Basic dielectric waveguide equations; wave optics and ray optics; step-index and graded-index fibers; single mode and multi-mode fibers; mode cutoff conditions; numerical aperture; fabrication of optical fibers; fiber measurements; fiber cable designs; source coupling, splices and connectors; fiber optic sensors; fiber optic components and systems. Relevant laboratory experiments.

OE 395 Optomechanics & Optical Engineering Lab 2R-6L-4C F
Prerequisites: PH 292 F, and OE 280 W, and OE 295 S
Corequisites: There are no corequisites for this course.
Design, assembly, and alignment of bench top optical systems. Introduction to experimental techniques in optics. Data collection and analysis. Relevant lecture topics including principles of opto-mechanical design, fold mirrors and prisms, lens and mirror mounting, kinematic mounts, precision adjustments and control.

OE 415 Optical Engineering Design I 2R-6L-4C S
Prerequisites: OE 280 W or EP 280 W and Junior/Senior standing
Corequisites: RH 330 4R-OL-4C
Principles of design. Codes of ethics appropriate to engineers. Case studies related to optical engineering and engineering physics professional practice, teamwork, contemporary issues, patents and intellectual property. Team-oriented design project work on selected topics in optical engineering and engineering physics. Introduction to product development practices, product research, planning and project management. Preliminary design of a product and product specifications. Deliver a design document specific to customer needs and constraints. Cross-listed with EP 415.

OE 416 Optical Engineering Design II 2R-6L-4C F
Prerequisites: OE 415 S
Corequisites: There are no corequisites for this course.
Team-based capstone design project following structured design processes and utilizing knowledge gained from prior coursework. Project planning and budgeting,
development of product/process specifications, application of engineering standards, system design and prototyping subject to multiple realistic constraints (cost, schedule, and performance). Formal midterm design review. Deliver initial statement of work and interim technical report. Laboratory activities supporting the formal design process. Cross-listed with EP 416.

OE 417 Optical Engineering Design III 2R-6L-4C W

Prerequisites: OE 416 F
Corequisites: There are no corequisites for this course.

OE 434 Non-Imaging Optics 4R-0L-4C S (every other year)

Prerequisites: OE 295 S
Corequisites: There are no corequisites for this course.
Lighting, illumination, and solar concentration systems. Radiometry and photometry for illumination, etendue, and concentration. Color coordinates, color vision, and color measurements. Sources, light transfer components, and systems evaluation. Introduction to design methods (edge-ray, compound parabolic concentrator, tailored reflector). Design examples and case studies.

OE 435 Biomedical Optics 4R-0L-4C W

Prerequisites: PH 113 S,F,W, and MA 212 F,W,S
Corequisites: There are no corequisites for this course.
Optical techniques for biomedical applications and health care; imaging modalities; laser fundamentals, laser interaction with biological cells, organelles and nanostructures; laser diagnostics and therapy, laser surgery; microscopes; optics-based clinical applications; imaging and spectroscopy; biophotonics. Cross-listed with BE 435.

OE 437 Introduction to Image Processing 3R-3L-4C W

Prerequisites: MA 212 F,W,S
Corequisites: There are no corequisites for this course.
Basic techniques of image processing. Discrete and continuous two dimensional transforms such as Fourier and Hotelling. Image enhancement through filtering and histogram modification. Image restoration through inverse filtering. Image segmentation including edge detection and thresholding. Introduction to image encoding. Relevant laboratory experiments.

OE 450 Laser Systems & Applications 3.5R-1.5L-4C S

Prerequisites: PH 292 F, and MA 212 F,W,S
Corequisites: There are no corequisites for this course.

OE 470 Special Topics in Optical Engineering 2-4C

Prerequisites: Consent of instructor
Corequisites: There are no corequisites for this course.
Lectures on special topics in optics.
OE 480 Optical System Design 4R-0L-4C F

Prerequisites: OE 280 W

Corequisites: There are no corequisites for this course. Review of geometrical optics and exact ray tracing. Chromatic and monochromatic aberrations. Image quality assessment, spot size, point spread function, Strehl ratio, and modulation transfer function. Classical lens design and design of various imaging, non-imaging, and diffractive optical systems. First-order layout, computer-based optimization, tolerancing, and manufacturing considerations.

OE 490 Directed Research Credit arranged

Prerequisites: Consent of instructor

Corequisites: There are no corequisites for this course. Research for junior and senior students under the direction of a physics and optical engineering faculty member. May earn a maximum of 8 credits between PH/OE 290 and PH/OE 490 for meeting graduation requirements. Maximum of 4 credits per term. The student must make arrangements with the faculty member for the research project prior to registering for this course.

OE 493 Fundamentals of Optical Fiber Communications 3.5R-1.5L-4C S (every other year)

Prerequisites: OE 393 W (every other year)

OE 495 Optical Metrology 3.5R-1.5L-4C W

Prerequisites: OE 280 W, and OE 392 F

Corequisites: There are no corequisites for this course. Geometrical test methods (refractometers, knife edge, Ronchi, Wire, Hartmann). Review of interference and coherence. Third-order aberrations, Zernike polynomials, and fringe analysis. Interferometers (Newton, Fizeau, Twyman-Green, and shearing), fringe localization, and phase shifting. Holographic, Moire, photoelastic and speckle interferometry. Applications of optical metrology. Relevant laboratory experiments.

OE 497 Senior Thesis 1-2C F,W,S

Prerequisites: Consent of PHOE faculty

Corequisites: There are no corequisites for this course. Literature search, research proposal preparation, and laboratory project work. This sequence is designed to result in a completed senior thesis or initiation of research to be completed in an MSOE degree at Rose-Hulman.

OE 498 Senior Thesis 1-2C F,W,S

Prerequisites: Consent of PHOE faculty

Corequisites: There are no corequisites for this course.
Literature search, research proposal preparation, and laboratory project work. This sequence is designed to result in a completed senior thesis or initiation of research to be completed in an MSOE degree at Rose-Hulman.

OE 499 Senior Thesis 1-2C F,W,S
Prerequisites: Consent of PHOE faculty
Corequisites: There are no corequisites for this course. Literature search, research proposal preparation, and laboratory project work. This sequence is designed to result in a completed senior thesis or initiation of research to be completed in an MSOE degree at Rose-Hulman.

OE 520 Principles of Optics 2R-0L-2C F
Prerequisites: Graduate standing
Corequisites: There are no corequisites for this course. Introduction to optics for incoming graduate students. Geometric optics; wave optics; sources and detectors. Students progressing towards or holding a bachelor’s degree in Optical Engineering may not receive credit for OE 520.

OE 535 Biomedical Optics 4R-0L-4C W
Prerequisites: PH 113 S,F,W, and MA 212 F,W,S and Senior or Graduate standing
Corequisites: There are no corequisites for this course. Optical techniques for biomedical applications and health care; imaging modalities; laser fundamentals, laser interaction with biological cells, organelles and nanostructures; laser diagnostics and therapy, laser surgery; microscopes; optics-based clinical applications; imaging and spectroscopy; biophotonics. Students must do additional project work on a topic selected by the instructor. Students may not receive credit for both OE 435 and OE 535. Cross-listed with BE 535.

OE 537 Advanced Image Processing 3R-3L-4C S
Prerequisites: CSSE 120 F,W,S or ME 123 F,W,S and Senior or Graduate standing
Corequisites: There are no corequisites for this course. Introduction to image segmentation and recognition. Use of neural networks, fuzzy logic and morphological methods for feature extraction. Advanced segmentation, detection, recognition and interpretation. Relevant laboratory experiments and required project. Cross-listed with ECE 582.

OE 570 Special Topics in Optics 2 or 4C F,W,S
Prerequisites: Consent of instructor and Senior or Graduate standing
Corequisites: There are no corequisites for this course. Lectures on contemporary topics in optical science, optical engineering, and photonics.

OE 580 Optical System Design 4R-0L-4C F
Prerequisites: OE 280 W and Senior or Graduate standing
Corequisites: There are no corequisites for this course. Review of geometrical optics and exact ray tracing. Chromatic and monochromatic aberrations. Image quality assessment, spot size, point spread function, Strehl ratio, and modulation transfer function. Classical lens design and design of various imaging, non-imaging, and diffractive optical systems. First-order layout, computer-based optimization, tolerancing, and manufacturing considerations. Students must do additional project work on a topic selected by the instructor. Students may not receive credit for both OE 480 and OE 580.
OE 585 Electro-Optics and Applications 3R-3L-4C W
Prerequisites: PH 292 F, and PH 316 F and Senior or Graduate standing
Corequisites: There are no corequisites for this course.
Optical wave propagation in anisotropic media. Normal surface and the index ellipsoid.
Electrooptic modulators. Acousto-optic effect. Modulators and scanners. Introduction
to nonlinear optics. Second-harmonic generation and frequency doubling. Relevant
laboratory experiments.

OE 592 Fourier Optics & Applications 3.5R-1.5L-4C W
Prerequisites: OE 392 F and Senior or Graduate standing
Corequisites: There are no corequisites for this course.
Two-dimensional linear systems. Scalar diffraction theory, Fresnel & Fraunhofer
diffraction. Coherent optical systems analysis. Frequency analysis of optical imaging
systems. Spatial filtering and analog optical information processing. Wavefront
reconstruction and holography. Relevant laboratory experiments.

OE 593 Fundamentals of Optical Fiber Communications 3.5R-1.5L-4C S (every
other year)
Prerequisites: OE 393 W (every other year) and Senior or Graduate standing
Corequisites: There are no corequisites for this course.
Analysis and design of common fiber optic communication systems and optical
networks. Transmission penalties, dispersion, attenuation. Optical transmitters and
receivers: fundamental operation and noise. Intensity and phase modulation. Optical
amplification: types of amplifiers, noise and system integration. Point-to-point links:
power budget and rise-time analysis. Performance analysis: BER and eye diagrams.
WDM concepts and components: multiplexers, filters, common network topologies.
Non-linear effects in fibers. Relevant laboratory experiments. Students must do
additional project work on a topic selected by the instructor. Students may not receive
credit for both OE 493 and OE 593.

OE 594 Integrated Optics 4R-0L-4C F
Prerequisites: OE 393 W (every other year) and Senior or Graduate standing
Corequisites: There are no corequisites for this course.
Theory of dielectric optical waveguides. Waveguide modes. Coupled-mode formalism
and periodic structures. Input and output coupling of optical beams to planar structures.
Waveguide losses. Phase, frequency and polarization modulators. Waveguide gratings,
electro-optic modulators, and switching. Applications of integrated optics.

OE 595 Optical Metrology 3.5R-1.5L-4C W
Prerequisites: OE 280 W, and OE 392 F or Senior/Graduate standing or consent of
instructor
Corequisites: OE 480 4R-0L-4C F
Geometrical test methods (refractometers, knife edge, Ronchi, Wire, Hartmann).
Review of interference and coherence. Third-order aberrations, Zernike polynomials,
and fringe analysis. Interferometers (Newton, Fizeau, Twyman-Green, and shearing),
fringe localization, and phase shifting. Holographic, Moire, photoelastic and speckle
interferometry. Applications of optical metrology. Relevant laboratory experiments.
Students must do additional project work on a topic selected by the instructor. Students
may not receive credit for both OE 495 and OE 595.
OE 599 Thesis Research As arranged

Prerequisites: There are no prerequisites for this course.

Corequisites: There are no corequisites for this course.

Graduate students only. Credits as arranged; however not more than 12 credits will be applied toward the requirements for the MS (OE) degree.

OE CPT Curricular Practical Training 1R-0L-1C

Prerequisites: Consent of department head

Corequisites: There are no corequisites for this course.

Any international student with an F-1 Visa employed by any company in the form of an internship, co-op, or practicum must enroll in a CPT course. The CPT experience is to be complimentary training to the student’s curriculum and should contribute substantially to his/her learning experience. Students must have an offer of employment from a company prior to registering for this course. The CPT must be approved by the Department Head, Director of International Student Services, and the student's advisor. Students are required to submit a report at the conclusion of the employment to his/her instructor to receive a grade for the CPT experience.

Last updated: 06/14/2018

Rose-Hulman

Institute of Technology

5500 Wabash Avenue

Terre Haute, IN 47803

812-877-1511