ROSE-HULMAN INSTITUTE OF TECHNOLOGY

Department of Mechanical Engineering

ME 422 FEFEA

Differential Equations

Differential equations are used to describe the behavior of physical systems. Unfortunately, the equations describing complex systems are *unsolvable*, hence the need for *approximate solutions* and the *finite element method*. Before we begin developing the finite element methodology, we must first "rediscover" our forgotten knowledge of differential equations. We begin with some definitions and characterizations:

Ordinary Differential Equations (ODE) - an equation differentiated with respect to only one independent variable

$$L(Q(t)) = A + BQ(t) + C \frac{dQ(t)}{dt} + D \frac{d^2Q(t)}{dt^2} = 0$$

Partial Differential Equation (PDE) - an equation differentiated with respect to more than one independent variable

$$L(Q(t,x)) = A + BQ(t,x) + C\frac{\partial Q(t,x)}{\partial t} + D\frac{\partial Q(t,x)}{\partial x} + E\frac{\partial^2 Q(t,x)}{\partial t^2} + F\frac{\partial^2 Q(t,x)}{\partial x^2} + G\frac{\partial^2 Q(t,x)}{\partial t \partial x} = 0$$

The L denotes "differential operator" and will be used henceforth to represent the differential equations.

Linear Differential Equation - a differential equation where terms are only added (subtracted)

$$L(Q(t,x)) = A + BQ(t,x) + C\frac{\partial Q(t,x)}{\partial t} + D\frac{\partial Q(t,x)}{\partial x} + E\frac{\partial^2 Q(t,x)}{\partial x^2} = 0$$

Non-linear Differential Equation - a differential equation where terms are multiplied (divided)

$$L(Q(t,x)) = A + BQ(t,x) + C \frac{\partial Q(t,x)}{\partial t} + Q(t,x) \frac{\partial Q(t,x)}{\partial x} + D \left(\frac{\partial^2 Q(t,x)}{\partial x^2} \right)^2 = 0$$

First Order Differential Equation - a differential equation whose highest degree of differentiation is one

$$L(Q(t,x)) = A + BQ(t,x) + C \frac{\partial Q(t,x)}{\partial t} + D \frac{\partial Q(t,x)}{\partial x} = 0$$

Second Order Differential Equation - a differential equation whose highest degree of differentiation is two

$$L(Q(t,x)) = A + BQ(t,x) + C\frac{\partial Q(t,x)}{\partial t} + D\frac{\partial Q(t,x)}{\partial x} + E\frac{\partial^2 Q(t,x)}{\partial t^2} + F\frac{\partial^2 Q(t,x)}{\partial x^2} + G\frac{\partial^2 Q(t,x)}{\partial t \partial x} = 0$$

Higher Order Differential Equation - a differential equations whose highest degree of differentiation is greater than two

For this course, we will be looking at equations taking the general form of

$$L(Q(t,x)) = \frac{\partial Q(t,x)}{\partial t} + AQ(t,x)\frac{\partial Q(t,x)}{\partial x} + B\frac{\partial^2 Q(t,x)}{\partial x^2} + C = 0$$
(1)

We will employ various simplifications as we develop the methodology to handle this *second order*, *non-linear* partial differential equation.

Differential Equations Page 1 of 3

ROSE-HULMAN INSTITUTE OF TECHNOLOGY

Department of Mechanical Engineering

ME 422 **FEFEA**

Boundary and Initial Conditions

To solve differential equations, we need some type of boundary and initial conditions. Boundary conditions fall into three categories:

Dirichlet - a fixed value of one of the state variables

$$Q(x_L) = Q_L$$

Neumann - a fixed value of the derivative of one of the state variables

$$\frac{dQ}{d\hat{n}}(x_L) = -q(x_L)$$

Robin - a combination of Dirichlet and Neumann conditions

$$\frac{dQ}{d\hat{n}}(x_L) = -h(Q - Q_r)$$

Recall we need as many boundary conditions as the order of our equation and the number of state variables.

Let us now generate a closed form solution to a simplified version of (1) - the steady-state heat equation.

We wish to determine the temperature distribution due to conduction of heat through a thick slab as shown above. The slab is thermally loaded by a prescribed heat flux q, applied at the surface x = a, while the other surface at x = b is held at the constant temperature of $T = T_b$. Further assume that defines the distribution of thermal conductivity k(x) and the internal heat source s(x) to be constant.

The governing differential equation is

$$L(T) = -\frac{d}{dx} \left(k \frac{dT}{dx} \right) - s = 0 \qquad a < x < b$$
 (2a)

with associated boundary conditions

$$I(T) = k \frac{dT}{dn} - q_{in} = 0 \qquad x = a$$

$$T = T_b \qquad x = b$$
(2b)

$$T = T_b x = b (2c)$$

Note that the heat flux definition has been rewritten as a differential equation. The lowercase script I distinguishes the boundary condition ODE from the governing ODE.

Differential Equations Page 2 of 3

ROSE-HULMAN INSTITUTE OF TECHNOLOGY

Department of Mechanical Engineering

ME 422 FEFEA

To solve, we need only to integrate twice and apply the boundary conditions. Integrating once:

$$-k\frac{dT}{dx} - sx + C = 0 (3a)$$

Applying boundary condition (2b) taking care with the sign of the outward pointing normal

$$-k\frac{dT}{dx} = q_{in} \qquad \text{at} \quad x = a$$

$$\therefore q_{in} - sa + C = 0 \quad \Rightarrow \quad C = -q_{in} + sa$$
 (3b)

Substituting (3b) into (3a)

$$-k\frac{dT}{dx} - sx + (sa - q) = 0 \tag{4}$$

Integrating again:

$$-kT - s\frac{x^2}{2} + (sa - q)x + C = 0$$
 (5a)

Applying boundary condition (2c)

$$T = T_b$$
 at $x = b$

$$-kT_b - s\frac{b^2}{2} + (sa - q)b + C = 0 \implies C = kT_b + s\frac{b^2}{2} - (sa - q)b$$
 (5b)

Substituting (5b) into (5a) and solving for T(x)

$$T(x) = \frac{sb^2}{2k} \left[1 - \left(\frac{x}{b}\right)^2 \right] + \frac{sab}{k} \left[1 - \left(\frac{x}{b}\right) \right] + \frac{qb}{k} \left[1 - \left(\frac{x}{b}\right) \right] + T_b$$
 (6)

Note that the solution is *independent of an x-axis shift*, hence if we redefine

$$L = b - a$$
 and $a = 0$

the solution becomes

$$T(x) = \frac{sL^2}{2k} \left[1 - \left(\frac{x}{L}\right)^2 \right] + \frac{qL}{k} \left[1 - \left(\frac{x}{L}\right) \right] + T_b$$
 (7)

Homework:

For the x-axis shifted boundary conditions, re-solve (2a) and obtain (7). Then substitute the redefined boundaries into (6) and verify that the solution is indeed shift independent. DO NOT USE MAPLE!!!

Differential Equations Page 3 of 3