Quiz 5 Cast Iron, Stainless Steel, Nonferrous Alloys

You Should Be Able to:

Ferrous

Steel

- identify carbon content from the last two digits of the 4 digit AISI/SAE numbers
- state the difference between low, medium, and high carbon steels with respect to carbon content, properties, and applications

Stainless steel

- name the element and concentration of that element that is required to be alloyed with steel to make it "stainless"
- name the four major classes of stainless steels (ferritic, austeinitic, martensitic, precipitation hardening) especially compare the properties, microstructure, and significant applications of each

Cast Iron

 name the four major classes of cast iron (gray, white, malleable, ductile) and compare the properties, microstructure, and significant applications of each

Non-Ferrous

 name two significant attributes and applications of Copper/ Aluminum/ Magnesium/ Titanium/ Superalloys/ Refactories/ Noble metals

Vocabulary

Chap 12

Alloy steel

Brass

Bronze

Cast iron

Ductile iron

Ferrous

Gray cast iron

HSLA steel

Malleable iron

Nonferrous

Stainless steel

Temper designation

White cast iron

Ferrous

Plain Carbon Steel (carbon is only alloy)

Low Carbon 0 < C < 0.25 structural forms, sheet, plate Med Carbon 0.25 < C < 0.6 machine parts (shafts, gears) High Carbon 0.6 < C < 1.3 springs, bearings, cutting tools

Stainless Steel (>11%Cr)

http://www.matter.org.uk/steelmatter/manufacturing/coating/inherent.html shows why 11%

Class	Microstructure	Properties	Applications
Ferritic	Ferrite and Pearlite Cr is primary alloy	Mid range strength and ductility, lower cost	Auto exhaust systems, 410,430
Austenitic	Austenite (stable at room temp and below) >8%Ni stabilizes FCC	Best ductility High strain hardening Non-magnetic Cryogenic apps	Piping and pumps for chemical/pharmaceutical industries. 304, 316
Martensitic	Tempered Martensite	Very hard	Cutlery, surgical tools, firearms, 420, 440
Precipitation Hardening	coherent second phase	Very hard	dies, fixtures (can be machined after quench, age w/o distortion. 17-4

http://www.nidi.org//index.cfm/ci_id/11021.htm if you want to know more from the Nickel Development Institute

Engineer online also has some good info

http://engineeronline.ws/elmes/StainlessSelection.htm

Cast Iron >2%C for more info

http://www.castingsource.com/tech_art_understanding.asp

Class	Processing	Microstructure	Properties	Applications
White CI	faster cool	No graphite	V. Hard	Rolls, wear
	<~4in thick	All C is in Fe ₃ C	500-600BHN	plates, pump
		>2%C	brittle <1% elong	linings
Malleable Iron	"tempered"	Carbide converts to	significant ductility	differential
	white CI	carbon clumps or	(1-20%) reasonable	cases, U-joint
		nodules when heated	strength (20-80 ksi)	yokes
			soft grades	
			machinable	
Ductile Iron	Add Mg to	3-4%C Carbon in	60-120 ksi	Pipelines,
	ladle at pour	nodules (spheres).	%elong to 20%	suspension
		Dates to 1948		parts
Gray CI	slower cool	>2% C Think steel	less hard than white,	engine blocks,
		with graphite flakes,	UTS - 20-40ksi	piston rings,
		(ferrite pearlite,	Brittle (flakes)	exhaust
		martensite,)	Vibration damping	manifolds

Nonferrous

Metal	Why Use It?	Challenges	Applications
Copper	Electrical Conductivity	Dense	80% of use is Pure Cu - wire, pipe
	Thermal Conductivity	Expensive	+Zn=Brass Plumbing fixtures
			+Sn,Al,Si,Ni=Bronze Bushings
			+Be=Age Hardenable UTS=165-190 ksi
Aluminum	Density Sp.Gr.=2.7	Fatigue	25% is containers/packaging, cans,foil
	(Fe=7.8)	Corrosion	20% is architectural, windows, siding
	Ductile (FCC)	Resistance	10% is conductors
	Conductive (Elec,	Tmelt	can cold work (1xxx, 3xxx, 5xxx)
	thermal)		foil, highway signs
	Can die cast, extrude		can age harden (2xxx, 6xxx, 7xxx)
			bikes, airplanes
Titanium	High strength to weight	Cost	Aircraft parts, Russian subs
	Sp.Gr.=4.5, UTS to		Biomed implants
	200ksi		
	Corrosion Resis		
Nickel	High Temp of Use	Dense	Gas Turbine parts
Alloys	Corrosion Resis	Expensive	Chemical processing plants
Refractory	High Temperatures	costly	Niobium, Molybdenum, Tungsten,
Metals			Tantalum
Magnesium	Low density SpGr=1.7	combustible	Power tool and computer housings
	die castable	chips, poor	
		ductility	
Zinc	Easy to die cast (cheap)	brittle	competes with injection molded plastic
	galvanize steel		(handles, cranks)

More on

Copper http://www.copper.org/
Zinc http://www.zinc.org/
Titanium http://www.titanium.org/titanium.htm
Magnesium http://members.tripod.com/Mg/ (this one is very unofficial, but I like it)