Quiz 2 – Properties-Microstructure-Processing Callister Chapters, 7,3,4

You need to know/be able to

- Name the two types of solid solutions (interstitial and substitutional) and explain how they differ.
- Describe the difference between amorphous and crystalline and state how that structure affects properties.
- Name the three most common types of unit cells for metals and explain how the unit cell affects properties
- State the relationship of dislocation motion and planar slip on the behavior of metals, and explain how it affects strength and ductility.
- For the following processes, determine (from graphs and/or calculations) the strength/ductility and describe the governing microstructural mechanism
 - Solid Solution Strengthening
 - Grain Size Refinement
 - Cold Work and Annealing
- For Cold Work and Annealing
 - Calculate %cold work from change in cross-sectional geometry
 - Describe the microstructural and property changes during Recovery, Recrystallization and Grain Growth, and the relationship between microstructure and properties
 - Use tables and graphs (such as fig. 7.19) to design a process that will produce a set of desired properties

Vocabulary

Chapter 7

Cold working Recrystallization Temperature

Dislocation Density Slip

Grain Growth Slip System

Lattice Strain Solid-solution strengthening

Recovery Strain hardening

Recrystallization

Chap 3

Amorphous Grain Boundary

Anisotropy Hexagonal close-packed

Body-centered-cubic I sotropic
Crystal structure Noncrystalline
Crystalline Polycrystalline

Face Centered-cubic Unit cell

Grain

Chap 4

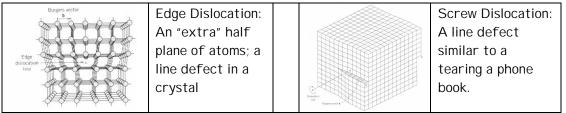
Alloy solid solution

edge dislocation solute interstitial solid solution solvent

microstructure substitutional solid solution

screw dislocation vacancy

Exam 2 Review


Metal Crystal Structures

The ten of John Constitution of						
Туре	Name	Properties	Example			
FCC	Face-Centered-cubic	Ductile at all temps	Aluminum, copper, Nickel			
BCC	Body-centered-cubic	ductile-brittle transition	Iron (steel) tungsten			
		with temp or strain rate				
HCP	Hexagonal-close-	less ductile	Magnesium, zinc			
	packed					

FCC	This is a close packed structure (packing factor is 0.74, max possible). Has close packed planes and close packed directions in several orientations.	Excellent slip systems leads to excellent ductility
BCC	Not a close packed structure (packing factor of 0.68). No close packed planes, several close packed directions.	Good slip systems lead to good ductility unless cold or rapidly loaded
HCP	Close packed structure with close packed planes and directions. Unfortunately, the planes are only in one orientation.	One excellent slip system in a single orientation leads to less ductility. (Mag wheels vs Al wheels)

(Figures from Materials Science and Engineering, An Introduction by Callister)

Dislocations

(Figures from Materials Science and Engineering, An Introduction by Callister)

Importance: Dislocations make planar slip much easier. Since only one row of atoms moves at a time, many fewer atomic bonds must break for plastic deformation to occur

Grand Truth - Strengthening in metals

- 1. Yield strength is the onset of plastic flow
- 2. Plastic flow results from planar slip
- 3. Planar slip results from dislocation motion

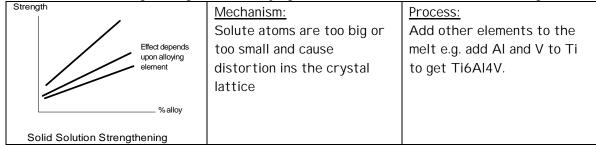
Therefore

To increase Strength - Prevent/Impede Dislocation Motion

Ductility Corollary

- 1. I mpeding dislocation motion makes slip harder
- 2. Lower slip means lower ductility

Therefore:

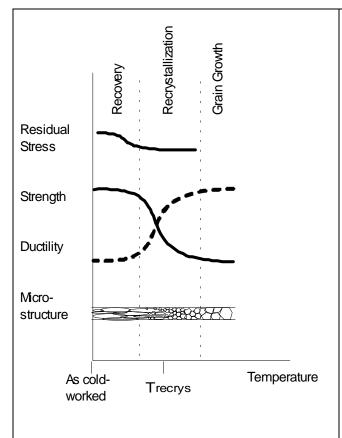

Increasing Strength generally Lowers Ductility

Strengthening Methods for Metals

Grain Size Reduction - Small grained metals are stronger than coarse grained metals

Yield Strength	Mechanism:	Process:
	Grain boundaries block	Cold work to add internal
	dislocation motion. More	energy, anneal to
	grains (smaller grains) means	recrystallize and form new
$s_{ys} = s_{o} + k_{y}d^{-1/2}$	more boundaries and more	small grains.
ما-1/2	blocking of dislocations	Note: Strength increases
d 1/2		without loss of toughness
Effect of Grain Size Reduction		

Solid Solution Strengthening - Often alloying with a second element increases strength


Strain Hardening (Cold Work) - Plastic deformation often increases strength

Yield Strength	Mechanism:	Process:		
	Number of dislocations	Mechanically deform		
	increases by orders of	plastically. (e.g. cold roll,		
Degree of	magnitude, distorting	wire draw)		
strengthening depends on	lattice and impeding			
material	dislocations			
%area reduction				
Effect of Plastic Deformation				

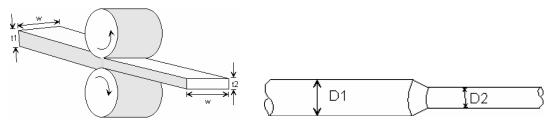
Annealing - Reversing the effects of Strain Hardening

Stages

- Recovery residual stresses are relieved
- **Recrystallization** If previously cold worked, new equiaxed, strain-free grains nucleate from high energy regions.
- **Grain Growth** Grains grow with higher temperature and longer time (diffusion)

This process is best understood by remembering that everything is spontaneously heading toward lowest potential energy.

Therefore, if we have no cold work, we can have no annealing since we are already at lowest potential.


It is the high internal energy (from strain energy) of a cold worked metal that provides the energy potential for action. The increase in temperature adds enough energy (and interatomic distance) for diffusion to occur so the atoms can rearrange into new grains.

Note that the Recrystallization Temp is about 0.4*Absolute Melting temperature of the metal.

%Cold Work

The %Cold work is the %area reduction of the cross section

$$\%CW = \frac{A_0 - A_1}{A_0} (100\%)$$

In Cold rolling only thickness changes