Creating Simulation Diagrams

Basic concepts and methods

ES205 Analysis and Design of Engineering Systems Rose-Hulman Institute of Technology

Why use block/simulation diagrams?

- Required for Simulink
- Provides a visual representation and shows causal relationships
- Handles non-linearity easily

- Simulation diagram
- a graphical representation of a set of EOM
- linear or nonlinear, algebraic, 1st-order, 2nd-order, or higher-order ODEs
- Block diagram
- a graphical representation of a set of EOM using transfer functions (linear, s-domain, zero ICs)

Skills to practice

- You should be able to convert
- ODE model \leftrightarrows sim-diag model
- ODE model \leftrightarrows TF model
- 1st- and 2nd-order TFs to standard form
- Also
- Learn basic terminology
- Given a TF, draw its block diagram

Blocks, inputs, and outputs

- A block is a symbol that represents a mathematical operation
- A signal is represented by an arrow
- The input signal (to the block) is operated on to produce the output signal (of the block)

Coefficient

$$
m \ddot{X}=f(t)-c \dot{X}-k x
$$

- Does the output of the summer have a coefficient?
- Add a gain (multiplier) block to eliminate the coefficient and produce the highestderivative alone

I ICs

$$
m \ddot{X}=f(t)-c \dot{X}-k x
$$

- Add initial conditions to the integrators

Feedback

$$
m \ddot{x}=f(t)-c \dot{x}-k x
$$

- Connect the feedback signals to the summer

Integrators

$$
m \ddot{X}=f(t)-c \dot{X}-k x
$$

- Add integrators to obtain the desired output variable

$$
m \ddot{X}=f(t)-c \dot{X}-k x
$$

- Do any signals feedback to the summer?
- Yes. Connect to the integrated signals with gain blocks to create the necessary signals

Inputs/outputs

$$
m \ddot{X}=f(t)-c \dot{X}-k x
$$

- Identify inputs and outputs

- Identify for the examples shown:

Example 1

- summing points
- branch points
- gain blocks
- transfer function blocks
- On example block diagrams
- locate inputs and outputs

- Identify for the examples shown:

Example 2

- summing points
- branch points
- gain blocks
- transfer function blocks
- On example block diagrams
- locate inputs and outputs

Simulation diagram examples

- 2nd-order ODE, by example
- 1st-order ODE, your turn

Example 1

- Create a simulation diagram model that solves the following ODE
- 2nd-order mass-spring-damper system
- zero initial conditions
- input $f(t)$ is a step with magnitude 3
- parameters: $m=0.25, c=0.5, k=1$

$$
m \ddot{x}+c \dot{x}+k x=f(t)
$$

Solve for highest derivative

- Solve for the term with highest-order derivative

$$
m \ddot{x} \neq f(t)-c \dot{x}-k x
$$

Coefficient

$$
m \ddot{x}=f(t)-c \dot{x}-k x
$$

- Does the output of the summer have a coefficient?
- Add a gain (multiplier) block to eliminate the coefficient and produce the highestderivative alone

- Summer

$$
m \dot{x}=f(t)-c \dot{x}-k x
$$

- Make the left-hand term the output of a summing block
- Make the right-hand term(s) the input(s) to the summing block

Integrators

$$
m \ddot{X}=f(t)-c \dot{X}-k x
$$

- Add integrators to obtain the desired output variable

ICs

$$
m \ddot{X}=f(t)-c \dot{X}-k x
$$

- Add initial conditions to the integrators

Feedback

$$
m \ddot{X}=f(t)-c \dot{X}-k x
$$

- Connect the feedback signals to the summer

Simulation

$$
m \ddot{x}=f(t)-c \dot{X}-k x
$$

- Simulation diagram is complete
- Run in Simulink

Feedback

$$
m \ddot{X}=f(t)-c \dot{X}-k x
$$

- Do any signals feedback to the summer?
- Yes. Connect to the integrated signals with gain blocks to create the necessary signals

$$
m \ddot{X}=f(t)-c \dot{X}-k x
$$

- Identify inputs and outputs

Example 2 (your turn)

- Create a simulation diagram model that solves the following 1st-order ODE
- IC: $x(0)=2$

$$
\tau \dot{x}+x=u(t)
$$

Example 2 (your turn)

- Create a simulation diagram model that solves the following 1st-order ODE
- IC: $x(0)=2$

$$
\tau \dot{x}+x=u(t)
$$

