Chapter 8 — Entropy Production and Accounting

1. Define, illustrate, and explain the following terms and concepts:

Second Law of Thermodynamics

Reversible processes

internally reversible vs internally irreversible

Entropy

units: kJ/K; Btu/oR specific entropy: s

units: kJ/(K·kg); Btu/(oR·lbm)

Thermodynamic temperature

Application of Accounting Principle for Entropy

rate of accumulation of entropy within the system

amount of entropy within the system: $S_{sys} = \int_{V} s \rho dV$

transport rate of entropy across system boundaries

transport rate of entropy by heat transfer: $\sum \frac{Q_j}{T_{h,j}}$

transport rate of entropy by mass flow: $\sum_{in} \dot{m}_i s_i - \sum_{out} \dot{m}_e s_e$

production/consumption of entropy

EMPIRICAL EVIDENCE ---- Entropy can only be produced and in the limit of an internally reversible process entropy is conserved.

Rate of entropy production:

$$\begin{vmatrix} \dot{S}_{gen} \\ \end{vmatrix} = 0 \text{ Internally irreversible}$$

$$= 0 \text{ Internally reversible}$$

Accounting Equation for Entropy

$$\text{rate form:} \qquad \frac{dS_{\text{sys}}}{dt} \quad = \quad \sum \frac{\dot{Q}_{j}}{T_{b,j}} \quad + \quad \sum_{in} \dot{m}_{i} s_{i} - \sum_{out} \dot{m}_{e} s_{e} \quad + \quad \dot{S}_{\text{gen}} \qquad \qquad \\$$

Carnot Efficiency for a Power Cycle

Isentropic Processs

2. Apply the accounting equation for entropy in conjunction with the conservation of energy equation to calculate the entropy generation rate or entropy generation for a steady-state device or cycle.

- 3. Given sufficient information, determine the specific entropy change Δs for a substance when one of the following models apply:
 - Ideal gas with room-temperature specific heats Incompressible substance with room-temperature specific heats
- 4. Apply the entropy accounting equation in conjunction with the conservation of energy equation to calculate the entropy generation or the entropy generation rate for a system when all other necessary information is known
- 5. Apply the accounting equation for entropy in conjunction with the conservation of energy equation to determine the theoretical "best" performance, i.e. theoretical maximum thermal efficiency or coefficient of performance for a cycle.
- 6. Determine if a specific device or system is operating in a reversible fashion, an irreversible fashion, or is not physically possible.
- 7. Evalute the performance of a device or system when it is operating in an internally reversible fashion.