This is bfd.info, produced by makeinfo version 4.0 from bfd.texinfo. START-INFO-DIR-ENTRY * Bfd: (bfd). The Binary File Descriptor library. END-INFO-DIR-ENTRY This file documents the BFD library. Copyright (C) 1991, 2000 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".  File: bfd.info, Node: typedef arelent, Next: howto manager, Prev: Relocations, Up: Relocations typedef arelent --------------- This is the structure of a relocation entry: typedef enum bfd_reloc_status { /* No errors detected */ bfd_reloc_ok, /* The relocation was performed, but there was an overflow. */ bfd_reloc_overflow, /* The address to relocate was not within the section supplied. */ bfd_reloc_outofrange, /* Used by special functions */ bfd_reloc_continue, /* Unsupported relocation size requested. */ bfd_reloc_notsupported, /* Unused */ bfd_reloc_other, /* The symbol to relocate against was undefined. */ bfd_reloc_undefined, /* The relocation was performed, but may not be ok - presently generated only when linking i960 coff files with i960 b.out symbols. If this type is returned, the error_message argument to bfd_perform_relocation will be set. */ bfd_reloc_dangerous } bfd_reloc_status_type; typedef struct reloc_cache_entry { /* A pointer into the canonical table of pointers */ struct symbol_cache_entry **sym_ptr_ptr; /* offset in section */ bfd_size_type address; /* addend for relocation value */ bfd_vma addend; /* Pointer to how to perform the required relocation */ reloc_howto_type *howto; } arelent; *Description* Here is a description of each of the fields within an `arelent': * `sym_ptr_ptr' The symbol table pointer points to a pointer to the symbol associated with the relocation request. It is the pointer into the table returned by the back end's `get_symtab' action. *Note Symbols::. The symbol is referenced through a pointer to a pointer so that tools like the linker can fix up all the symbols of the same name by modifying only one pointer. The relocation routine looks in the symbol and uses the base of the section the symbol is attached to and the value of the symbol as the initial relocation offset. If the symbol pointer is zero, then the section provided is looked up. * `address' The `address' field gives the offset in bytes from the base of the section data which owns the relocation record to the first byte of relocatable information. The actual data relocated will be relative to this point; for example, a relocation type which modifies the bottom two bytes of a four byte word would not touch the first byte pointed to in a big endian world. * `addend' The `addend' is a value provided by the back end to be added (!) to the relocation offset. Its interpretation is dependent upon the howto. For example, on the 68k the code: char foo[]; main() { return foo[0x12345678]; } Could be compiled into: linkw fp,#-4 moveb @#12345678,d0 extbl d0 unlk fp rts This could create a reloc pointing to `foo', but leave the offset in the data, something like: RELOCATION RECORDS FOR [.text]: offset type value 00000006 32 _foo 00000000 4e56 fffc ; linkw fp,#-4 00000004 1039 1234 5678 ; moveb @#12345678,d0 0000000a 49c0 ; extbl d0 0000000c 4e5e ; unlk fp 0000000e 4e75 ; rts Using coff and an 88k, some instructions don't have enough space in them to represent the full address range, and pointers have to be loaded in two parts. So you'd get something like: or.u r13,r0,hi16(_foo+0x12345678) ld.b r2,r13,lo16(_foo+0x12345678) jmp r1 This should create two relocs, both pointing to `_foo', and with 0x12340000 in their addend field. The data would consist of: RELOCATION RECORDS FOR [.text]: offset type value 00000002 HVRT16 _foo+0x12340000 00000006 LVRT16 _foo+0x12340000 00000000 5da05678 ; or.u r13,r0,0x5678 00000004 1c4d5678 ; ld.b r2,r13,0x5678 00000008 f400c001 ; jmp r1 The relocation routine digs out the value from the data, adds it to the addend to get the original offset, and then adds the value of `_foo'. Note that all 32 bits have to be kept around somewhere, to cope with carry from bit 15 to bit 16. One further example is the sparc and the a.out format. The sparc has a similar problem to the 88k, in that some instructions don't have room for an entire offset, but on the sparc the parts are created in odd sized lumps. The designers of the a.out format chose to not use the data within the section for storing part of the offset; all the offset is kept within the reloc. Anything in the data should be ignored. save %sp,-112,%sp sethi %hi(_foo+0x12345678),%g2 ldsb [%g2+%lo(_foo+0x12345678)],%i0 ret restore Both relocs contain a pointer to `foo', and the offsets contain junk. RELOCATION RECORDS FOR [.text]: offset type value 00000004 HI22 _foo+0x12345678 00000008 LO10 _foo+0x12345678 00000000 9de3bf90 ; save %sp,-112,%sp 00000004 05000000 ; sethi %hi(_foo+0),%g2 00000008 f048a000 ; ldsb [%g2+%lo(_foo+0)],%i0 0000000c 81c7e008 ; ret 00000010 81e80000 ; restore * `howto' The `howto' field can be imagined as a relocation instruction. It is a pointer to a structure which contains information on what to do with all of the other information in the reloc record and data section. A back end would normally have a relocation instruction set and turn relocations into pointers to the correct structure on input - but it would be possible to create each howto field on demand. `enum complain_overflow' ........................ Indicates what sort of overflow checking should be done when performing a relocation. enum complain_overflow { /* Do not complain on overflow. */ complain_overflow_dont, /* Complain if the bitfield overflows, whether it is considered as signed or unsigned. */ complain_overflow_bitfield, /* Complain if the value overflows when considered as signed number. */ complain_overflow_signed, /* Complain if the value overflows when considered as an unsigned number. */ complain_overflow_unsigned }; `reloc_howto_type' .................. The `reloc_howto_type' is a structure which contains all the information that libbfd needs to know to tie up a back end's data. struct symbol_cache_entry; /* Forward declaration */ struct reloc_howto_struct { /* The type field has mainly a documentary use - the back end can do what it wants with it, though normally the back end's external idea of what a reloc number is stored in this field. For example, a PC relative word relocation in a coff environment has the type 023 - because that's what the outside world calls a R_PCRWORD reloc. */ unsigned int type; /* The value the final relocation is shifted right by. This drops unwanted data from the relocation. */ unsigned int rightshift; /* The size of the item to be relocated. This is *not* a power-of-two measure. To get the number of bytes operated on by a type of relocation, use bfd_get_reloc_size. */ int size; /* The number of bits in the item to be relocated. This is used when doing overflow checking. */ unsigned int bitsize; /* Notes that the relocation is relative to the location in the data section of the addend. The relocation function will subtract from the relocation value the address of the location being relocated. */ boolean pc_relative; /* The bit position of the reloc value in the destination. The relocated value is left shifted by this amount. */ unsigned int bitpos; /* What type of overflow error should be checked for when relocating. */ enum complain_overflow complain_on_overflow; /* If this field is non null, then the supplied function is called rather than the normal function. This allows really strange relocation methods to be accomodated (e.g., i960 callj instructions). */ bfd_reloc_status_type (*special_function) PARAMS ((bfd *abfd, arelent *reloc_entry, struct symbol_cache_entry *symbol, PTR data, asection *input_section, bfd *output_bfd, char **error_message)); /* The textual name of the relocation type. */ char *name; /* Some formats record a relocation addend in the section contents rather than with the relocation. For ELF formats this is the distinction between USE_REL and USE_RELA (though the code checks for USE_REL == 1/0). The value of this field is TRUE if the addend is recorded with the section contents; when performing a partial link (ld -r) the section contents (the data) will be modified. The value of this field is FALSE if addends are recorded with the relocation (in arelent.addend); when performing a partial link the relocation will be modified. All relocations for all ELF USE_RELA targets should set this field to FALSE (values of TRUE should be looked on with suspicion). However, the converse is not true: not all relocations of all ELF USE_REL targets set this field to TRUE. Why this is so is peculiar to each particular target. For relocs that aren't used in partial links (e.g. GOT stuff) it doesn't matter what this is set to. */ boolean partial_inplace; /* The src_mask selects which parts of the read in data are to be used in the relocation sum. E.g., if this was an 8 bit byte of data which we read and relocated, this would be 0x000000ff. When we have relocs which have an addend, such as sun4 extended relocs, the value in the offset part of a relocating field is garbage so we never use it. In this case the mask would be 0x00000000. */ bfd_vma src_mask; /* The dst_mask selects which parts of the instruction are replaced into the instruction. In most cases src_mask == dst_mask, except in the above special case, where dst_mask would be 0x000000ff, and src_mask would be 0x00000000. */ bfd_vma dst_mask; /* When some formats create PC relative instructions, they leave the value of the pc of the place being relocated in the offset slot of the instruction, so that a PC relative relocation can be made just by adding in an ordinary offset (e.g., sun3 a.out). Some formats leave the displacement part of an instruction empty (e.g., m88k bcs); this flag signals the fact.*/ boolean pcrel_offset; }; `The HOWTO Macro' ................. *Description* The HOWTO define is horrible and will go away. #define HOWTO(C, R,S,B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \ {(unsigned)C,R,S,B, P, BI, O,SF,NAME,INPLACE,MASKSRC,MASKDST,PC} *Description* And will be replaced with the totally magic way. But for the moment, we are compatible, so do it this way. #define NEWHOWTO( FUNCTION, NAME,SIZE,REL,IN) HOWTO(0,0,SIZE,0,REL,0,complain_overflow_dont,FUNCTION, NAME,false,0,0,IN) *Description* This is used to fill in an empty howto entry in an array. #define EMPTY_HOWTO(C) \ HOWTO((C),0,0,0,false,0,complain_overflow_dont,NULL,NULL,false,0,0,false) *Description* Helper routine to turn a symbol into a relocation value. #define HOWTO_PREPARE(relocation, symbol) \ { \ if (symbol != (asymbol *)NULL) { \ if (bfd_is_com_section (symbol->section)) { \ relocation = 0; \ } \ else { \ relocation = symbol->value; \ } \ } \ } `bfd_get_reloc_size' .................... *Synopsis* unsigned int bfd_get_reloc_size (reloc_howto_type *); *Description* For a reloc_howto_type that operates on a fixed number of bytes, this returns the number of bytes operated on. `arelent_chain' ............... *Description* How relocs are tied together in an `asection': typedef struct relent_chain { arelent relent; struct relent_chain *next; } arelent_chain; `bfd_check_overflow' .................... *Synopsis* bfd_reloc_status_type bfd_check_overflow (enum complain_overflow how, unsigned int bitsize, unsigned int rightshift, unsigned int addrsize, bfd_vma relocation); *Description* Perform overflow checking on RELOCATION which has BITSIZE significant bits and will be shifted right by RIGHTSHIFT bits, on a machine with addresses containing ADDRSIZE significant bits. The result is either of `bfd_reloc_ok' or `bfd_reloc_overflow'. `bfd_perform_relocation' ........................ *Synopsis* bfd_reloc_status_type bfd_perform_relocation (bfd *abfd, arelent *reloc_entry, PTR data, asection *input_section, bfd *output_bfd, char **error_message); *Description* If OUTPUT_BFD is supplied to this function, the generated image will be relocatable; the relocations are copied to the output file after they have been changed to reflect the new state of the world. There are two ways of reflecting the results of partial linkage in an output file: by modifying the output data in place, and by modifying the relocation record. Some native formats (e.g., basic a.out and basic coff) have no way of specifying an addend in the relocation type, so the addend has to go in the output data. This is no big deal since in these formats the output data slot will always be big enough for the addend. Complex reloc types with addends were invented to solve just this problem. The ERROR_MESSAGE argument is set to an error message if this return `bfd_reloc_dangerous'. `bfd_install_relocation' ........................ *Synopsis* bfd_reloc_status_type bfd_install_relocation (bfd *abfd, arelent *reloc_entry, PTR data, bfd_vma data_start, asection *input_section, char **error_message); *Description* This looks remarkably like `bfd_perform_relocation', except it does not expect that the section contents have been filled in. I.e., it's suitable for use when creating, rather than applying a relocation. For now, this function should be considered reserved for the assembler.  File: bfd.info, Node: howto manager, Prev: typedef arelent, Up: Relocations The howto manager ================= When an application wants to create a relocation, but doesn't know what the target machine might call it, it can find out by using this bit of code. `bfd_reloc_code_type' ..................... *Description* The insides of a reloc code. The idea is that, eventually, there will be one enumerator for every type of relocation we ever do. Pass one of these values to `bfd_reloc_type_lookup', and it'll return a howto pointer. This does mean that the application must determine the correct enumerator value; you can't get a howto pointer from a random set of attributes. Here are the possible values for `enum bfd_reloc_code_real': - : BFD_RELOC_64 - : BFD_RELOC_32 - : BFD_RELOC_26 - : BFD_RELOC_24 - : BFD_RELOC_16 - : BFD_RELOC_14 - : BFD_RELOC_8 Basic absolute relocations of N bits. - : BFD_RELOC_64_PCREL - : BFD_RELOC_32_PCREL - : BFD_RELOC_24_PCREL - : BFD_RELOC_16_PCREL - : BFD_RELOC_12_PCREL - : BFD_RELOC_8_PCREL PC-relative relocations. Sometimes these are relative to the address of the relocation itself; sometimes they are relative to the start of the section containing the relocation. It depends on the specific target. The 24-bit relocation is used in some Intel 960 configurations. - : BFD_RELOC_32_GOT_PCREL - : BFD_RELOC_16_GOT_PCREL - : BFD_RELOC_8_GOT_PCREL - : BFD_RELOC_32_GOTOFF - : BFD_RELOC_16_GOTOFF - : BFD_RELOC_LO16_GOTOFF - : BFD_RELOC_HI16_GOTOFF - : BFD_RELOC_HI16_S_GOTOFF - : BFD_RELOC_8_GOTOFF - : BFD_RELOC_32_PLT_PCREL - : BFD_RELOC_24_PLT_PCREL - : BFD_RELOC_16_PLT_PCREL - : BFD_RELOC_8_PLT_PCREL - : BFD_RELOC_32_PLTOFF - : BFD_RELOC_16_PLTOFF - : BFD_RELOC_LO16_PLTOFF - : BFD_RELOC_HI16_PLTOFF - : BFD_RELOC_HI16_S_PLTOFF - : BFD_RELOC_8_PLTOFF For ELF. - : BFD_RELOC_68K_GLOB_DAT - : BFD_RELOC_68K_JMP_SLOT - : BFD_RELOC_68K_RELATIVE Relocations used by 68K ELF. - : BFD_RELOC_32_BASEREL - : BFD_RELOC_16_BASEREL - : BFD_RELOC_LO16_BASEREL - : BFD_RELOC_HI16_BASEREL - : BFD_RELOC_HI16_S_BASEREL - : BFD_RELOC_8_BASEREL - : BFD_RELOC_RVA Linkage-table relative. - : BFD_RELOC_8_FFnn Absolute 8-bit relocation, but used to form an address like 0xFFnn. - : BFD_RELOC_32_PCREL_S2 - : BFD_RELOC_16_PCREL_S2 - : BFD_RELOC_23_PCREL_S2 These PC-relative relocations are stored as word displacements - i.e., byte displacements shifted right two bits. The 30-bit word displacement (<<32_PCREL_S2>> - 32 bits, shifted 2) is used on the SPARC. (SPARC tools generally refer to this as <>.) The signed 16-bit displacement is used on the MIPS, and the 23-bit displacement is used on the Alpha. - : BFD_RELOC_HI22 - : BFD_RELOC_LO10 High 22 bits and low 10 bits of 32-bit value, placed into lower bits of the target word. These are used on the SPARC. - : BFD_RELOC_GPREL16 - : BFD_RELOC_GPREL32 For systems that allocate a Global Pointer register, these are displacements off that register. These relocation types are handled specially, because the value the register will have is decided relatively late. - : BFD_RELOC_I960_CALLJ Reloc types used for i960/b.out. - : BFD_RELOC_NONE - : BFD_RELOC_SPARC_WDISP22 - : BFD_RELOC_SPARC22 - : BFD_RELOC_SPARC13 - : BFD_RELOC_SPARC_GOT10 - : BFD_RELOC_SPARC_GOT13 - : BFD_RELOC_SPARC_GOT22 - : BFD_RELOC_SPARC_PC10 - : BFD_RELOC_SPARC_PC22 - : BFD_RELOC_SPARC_WPLT30 - : BFD_RELOC_SPARC_COPY - : BFD_RELOC_SPARC_GLOB_DAT - : BFD_RELOC_SPARC_JMP_SLOT - : BFD_RELOC_SPARC_RELATIVE - : BFD_RELOC_SPARC_UA16 - : BFD_RELOC_SPARC_UA32 - : BFD_RELOC_SPARC_UA64 SPARC ELF relocations. There is probably some overlap with other relocation types already defined. - : BFD_RELOC_SPARC_BASE13 - : BFD_RELOC_SPARC_BASE22 I think these are specific to SPARC a.out (e.g., Sun 4). - : BFD_RELOC_SPARC_64 - : BFD_RELOC_SPARC_10 - : BFD_RELOC_SPARC_11 - : BFD_RELOC_SPARC_OLO10 - : BFD_RELOC_SPARC_HH22 - : BFD_RELOC_SPARC_HM10 - : BFD_RELOC_SPARC_LM22 - : BFD_RELOC_SPARC_PC_HH22 - : BFD_RELOC_SPARC_PC_HM10 - : BFD_RELOC_SPARC_PC_LM22 - : BFD_RELOC_SPARC_WDISP16 - : BFD_RELOC_SPARC_WDISP19 - : BFD_RELOC_SPARC_7 - : BFD_RELOC_SPARC_6 - : BFD_RELOC_SPARC_5 - : BFD_RELOC_SPARC_DISP64 - : BFD_RELOC_SPARC_PLT64 - : BFD_RELOC_SPARC_HIX22 - : BFD_RELOC_SPARC_LOX10 - : BFD_RELOC_SPARC_H44 - : BFD_RELOC_SPARC_M44 - : BFD_RELOC_SPARC_L44 - : BFD_RELOC_SPARC_REGISTER SPARC64 relocations - : BFD_RELOC_SPARC_REV32 SPARC little endian relocation - : BFD_RELOC_ALPHA_GPDISP_HI16 Alpha ECOFF and ELF relocations. Some of these treat the symbol or "addend" in some special way. For GPDISP_HI16 ("gpdisp") relocations, the symbol is ignored when writing; when reading, it will be the absolute section symbol. The addend is the displacement in bytes of the "lda" instruction from the "ldah" instruction (which is at the address of this reloc). - : BFD_RELOC_ALPHA_GPDISP_LO16 For GPDISP_LO16 ("ignore") relocations, the symbol is handled as with GPDISP_HI16 relocs. The addend is ignored when writing the relocations out, and is filled in with the file's GP value on reading, for convenience. - : BFD_RELOC_ALPHA_GPDISP The ELF GPDISP relocation is exactly the same as the GPDISP_HI16 relocation except that there is no accompanying GPDISP_LO16 relocation. - : BFD_RELOC_ALPHA_LITERAL - : BFD_RELOC_ALPHA_ELF_LITERAL - : BFD_RELOC_ALPHA_LITUSE The Alpha LITERAL/LITUSE relocs are produced by a symbol reference; the assembler turns it into a LDQ instruction to load the address of the symbol, and then fills in a register in the real instruction. The LITERAL reloc, at the LDQ instruction, refers to the .lita section symbol. The addend is ignored when writing, but is filled in with the file's GP value on reading, for convenience, as with the GPDISP_LO16 reloc. The ELF_LITERAL reloc is somewhere between 16_GOTOFF and GPDISP_LO16. It should refer to the symbol to be referenced, as with 16_GOTOFF, but it generates output not based on the position within the .got section, but relative to the GP value chosen for the file during the final link stage. The LITUSE reloc, on the instruction using the loaded address, gives information to the linker that it might be able to use to optimize away some literal section references. The symbol is ignored (read as the absolute section symbol), and the "addend" indicates the type of instruction using the register: 1 - "memory" fmt insn 2 - byte-manipulation (byte offset reg) 3 - jsr (target of branch) The GNU linker currently doesn't do any of this optimizing. - : BFD_RELOC_ALPHA_USER_LITERAL - : BFD_RELOC_ALPHA_USER_LITUSE_BASE - : BFD_RELOC_ALPHA_USER_LITUSE_BYTOFF - : BFD_RELOC_ALPHA_USER_LITUSE_JSR - : BFD_RELOC_ALPHA_USER_GPDISP - : BFD_RELOC_ALPHA_USER_GPRELHIGH - : BFD_RELOC_ALPHA_USER_GPRELLOW The BFD_RELOC_ALPHA_USER_* relocations are used by the assembler to process the explicit !!sequence relocations, and are mapped into the normal relocations at the end of processing. - : BFD_RELOC_ALPHA_HINT The HINT relocation indicates a value that should be filled into the "hint" field of a jmp/jsr/ret instruction, for possible branch- prediction logic which may be provided on some processors. - : BFD_RELOC_ALPHA_LINKAGE The LINKAGE relocation outputs a linkage pair in the object file, which is filled by the linker. - : BFD_RELOC_ALPHA_CODEADDR The CODEADDR relocation outputs a STO_CA in the object file, which is filled by the linker. - : BFD_RELOC_MIPS_JMP Bits 27..2 of the relocation address shifted right 2 bits; simple reloc otherwise. - : BFD_RELOC_MIPS16_JMP The MIPS16 jump instruction. - : BFD_RELOC_MIPS16_GPREL MIPS16 GP relative reloc. - : BFD_RELOC_HI16 High 16 bits of 32-bit value; simple reloc. - : BFD_RELOC_HI16_S High 16 bits of 32-bit value but the low 16 bits will be sign extended and added to form the final result. If the low 16 bits form a negative number, we need to add one to the high value to compensate for the borrow when the low bits are added. - : BFD_RELOC_LO16 Low 16 bits. - : BFD_RELOC_PCREL_HI16_S Like BFD_RELOC_HI16_S, but PC relative. - : BFD_RELOC_PCREL_LO16 Like BFD_RELOC_LO16, but PC relative. - : BFD_RELOC_MIPS_GPREL Relocation relative to the global pointer. - : BFD_RELOC_MIPS_LITERAL Relocation against a MIPS literal section. - : BFD_RELOC_MIPS_GOT16 - : BFD_RELOC_MIPS_CALL16 - : BFD_RELOC_MIPS_GPREL32 - : BFD_RELOC_MIPS_GOT_HI16 - : BFD_RELOC_MIPS_GOT_LO16 - : BFD_RELOC_MIPS_CALL_HI16 - : BFD_RELOC_MIPS_CALL_LO16 - : BFD_RELOC_MIPS_SUB - : BFD_RELOC_MIPS_GOT_PAGE - : BFD_RELOC_MIPS_GOT_OFST - : BFD_RELOC_MIPS_GOT_DISP - : BFD_RELOC_MIPS_SHIFT5 - : BFD_RELOC_MIPS_SHIFT6 - : BFD_RELOC_MIPS_INSERT_A - : BFD_RELOC_MIPS_INSERT_B - : BFD_RELOC_MIPS_DELETE - : BFD_RELOC_MIPS_HIGHEST - : BFD_RELOC_MIPS_HIGHER - : BFD_RELOC_MIPS_SCN_DISP - : BFD_RELOC_MIPS_REL16 - : BFD_RELOC_MIPS_RELGOT - : BFD_RELOC_MIPS_JALR MIPS ELF relocations. - : BFD_RELOC_386_GOT32 - : BFD_RELOC_386_PLT32 - : BFD_RELOC_386_COPY - : BFD_RELOC_386_GLOB_DAT - : BFD_RELOC_386_JUMP_SLOT - : BFD_RELOC_386_RELATIVE - : BFD_RELOC_386_GOTOFF - : BFD_RELOC_386_GOTPC i386/elf relocations - : BFD_RELOC_X86_64_GOT32 - : BFD_RELOC_X86_64_PLT32 - : BFD_RELOC_X86_64_COPY - : BFD_RELOC_X86_64_GLOB_DAT - : BFD_RELOC_X86_64_JUMP_SLOT - : BFD_RELOC_X86_64_RELATIVE - : BFD_RELOC_X86_64_GOTPCREL - : BFD_RELOC_X86_64_32S x86-64/elf relocations - : BFD_RELOC_NS32K_IMM_8 - : BFD_RELOC_NS32K_IMM_16 - : BFD_RELOC_NS32K_IMM_32 - : BFD_RELOC_NS32K_IMM_8_PCREL - : BFD_RELOC_NS32K_IMM_16_PCREL - : BFD_RELOC_NS32K_IMM_32_PCREL - : BFD_RELOC_NS32K_DISP_8 - : BFD_RELOC_NS32K_DISP_16 - : BFD_RELOC_NS32K_DISP_32 - : BFD_RELOC_NS32K_DISP_8_PCREL - : BFD_RELOC_NS32K_DISP_16_PCREL - : BFD_RELOC_NS32K_DISP_32_PCREL ns32k relocations - : BFD_RELOC_PJ_CODE_HI16 - : BFD_RELOC_PJ_CODE_LO16 - : BFD_RELOC_PJ_CODE_DIR16 - : BFD_RELOC_PJ_CODE_DIR32 - : BFD_RELOC_PJ_CODE_REL16 - : BFD_RELOC_PJ_CODE_REL32 Picojava relocs. Not all of these appear in object files. - : BFD_RELOC_PPC_B26 - : BFD_RELOC_PPC_BA26 - : BFD_RELOC_PPC_TOC16 - : BFD_RELOC_PPC_B16 - : BFD_RELOC_PPC_B16_BRTAKEN - : BFD_RELOC_PPC_B16_BRNTAKEN - : BFD_RELOC_PPC_BA16 - : BFD_RELOC_PPC_BA16_BRTAKEN - : BFD_RELOC_PPC_BA16_BRNTAKEN - : BFD_RELOC_PPC_COPY - : BFD_RELOC_PPC_GLOB_DAT - : BFD_RELOC_PPC_JMP_SLOT - : BFD_RELOC_PPC_RELATIVE - : BFD_RELOC_PPC_LOCAL24PC - : BFD_RELOC_PPC_EMB_NADDR32 - : BFD_RELOC_PPC_EMB_NADDR16 - : BFD_RELOC_PPC_EMB_NADDR16_LO - : BFD_RELOC_PPC_EMB_NADDR16_HI - : BFD_RELOC_PPC_EMB_NADDR16_HA - : BFD_RELOC_PPC_EMB_SDAI16 - : BFD_RELOC_PPC_EMB_SDA2I16 - : BFD_RELOC_PPC_EMB_SDA2REL - : BFD_RELOC_PPC_EMB_SDA21 - : BFD_RELOC_PPC_EMB_MRKREF - : BFD_RELOC_PPC_EMB_RELSEC16 - : BFD_RELOC_PPC_EMB_RELST_LO - : BFD_RELOC_PPC_EMB_RELST_HI - : BFD_RELOC_PPC_EMB_RELST_HA - : BFD_RELOC_PPC_EMB_BIT_FLD - : BFD_RELOC_PPC_EMB_RELSDA Power(rs6000) and PowerPC relocations. - : BFD_RELOC_I370_D12 IBM 370/390 relocations - : BFD_RELOC_CTOR The type of reloc used to build a contructor table - at the moment probably a 32 bit wide absolute relocation, but the target can choose. It generally does map to one of the other relocation types. - : BFD_RELOC_ARM_PCREL_BRANCH ARM 26 bit pc-relative branch. The lowest two bits must be zero and are not stored in the instruction. - : BFD_RELOC_ARM_PCREL_BLX ARM 26 bit pc-relative branch. The lowest bit must be zero and is not stored in the instruction. The 2nd lowest bit comes from a 1 bit field in the instruction. - : BFD_RELOC_THUMB_PCREL_BLX Thumb 22 bit pc-relative branch. The lowest bit must be zero and is not stored in the instruction. The 2nd lowest bit comes from a 1 bit field in the instruction. - : BFD_RELOC_ARM_IMMEDIATE - : BFD_RELOC_ARM_ADRL_IMMEDIATE - : BFD_RELOC_ARM_OFFSET_IMM - : BFD_RELOC_ARM_SHIFT_IMM - : BFD_RELOC_ARM_SWI - : BFD_RELOC_ARM_MULTI - : BFD_RELOC_ARM_CP_OFF_IMM - : BFD_RELOC_ARM_ADR_IMM - : BFD_RELOC_ARM_LDR_IMM - : BFD_RELOC_ARM_LITERAL - : BFD_RELOC_ARM_IN_POOL - : BFD_RELOC_ARM_OFFSET_IMM8 - : BFD_RELOC_ARM_HWLITERAL - : BFD_RELOC_ARM_THUMB_ADD - : BFD_RELOC_ARM_THUMB_IMM - : BFD_RELOC_ARM_THUMB_SHIFT - : BFD_RELOC_ARM_THUMB_OFFSET - : BFD_RELOC_ARM_GOT12 - : BFD_RELOC_ARM_GOT32 - : BFD_RELOC_ARM_JUMP_SLOT - : BFD_RELOC_ARM_COPY - : BFD_RELOC_ARM_GLOB_DAT - : BFD_RELOC_ARM_PLT32 - : BFD_RELOC_ARM_RELATIVE - : BFD_RELOC_ARM_GOTOFF - : BFD_RELOC_ARM_GOTPC These relocs are only used within the ARM assembler. They are not (at present) written to any object files. - : BFD_RELOC_SH_PCDISP8BY2 - : BFD_RELOC_SH_PCDISP12BY2 - : BFD_RELOC_SH_IMM4 - : BFD_RELOC_SH_IMM4BY2 - : BFD_RELOC_SH_IMM4BY4 - : BFD_RELOC_SH_IMM8 - : BFD_RELOC_SH_IMM8BY2 - : BFD_RELOC_SH_IMM8BY4 - : BFD_RELOC_SH_PCRELIMM8BY2 - : BFD_RELOC_SH_PCRELIMM8BY4 - : BFD_RELOC_SH_SWITCH16 - : BFD_RELOC_SH_SWITCH32 - : BFD_RELOC_SH_USES - : BFD_RELOC_SH_COUNT - : BFD_RELOC_SH_ALIGN - : BFD_RELOC_SH_CODE - : BFD_RELOC_SH_DATA - : BFD_RELOC_SH_LABEL - : BFD_RELOC_SH_LOOP_START - : BFD_RELOC_SH_LOOP_END - : BFD_RELOC_SH_COPY - : BFD_RELOC_SH_GLOB_DAT - : BFD_RELOC_SH_JMP_SLOT - : BFD_RELOC_SH_RELATIVE - : BFD_RELOC_SH_GOTPC Hitachi SH relocs. Not all of these appear in object files. - : BFD_RELOC_THUMB_PCREL_BRANCH9 - : BFD_RELOC_THUMB_PCREL_BRANCH12 - : BFD_RELOC_THUMB_PCREL_BRANCH23 Thumb 23-, 12- and 9-bit pc-relative branches. The lowest bit must be zero and is not stored in the instruction. - : BFD_RELOC_ARC_B22_PCREL ARC Cores relocs. ARC 22 bit pc-relative branch. The lowest two bits must be zero and are not stored in the instruction. The high 20 bits are installed in bits 26 through 7 of the instruction. - : BFD_RELOC_ARC_B26 ARC 26 bit absolute branch. The lowest two bits must be zero and are not stored in the instruction. The high 24 bits are installed in bits 23 through 0. - : BFD_RELOC_D10V_10_PCREL_R Mitsubishi D10V relocs. This is a 10-bit reloc with the right 2 bits assumed to be 0. - : BFD_RELOC_D10V_10_PCREL_L Mitsubishi D10V relocs. This is a 10-bit reloc with the right 2 bits assumed to be 0. This is the same as the previous reloc except it is in the left container, i.e., shifted left 15 bits. - : BFD_RELOC_D10V_18 This is an 18-bit reloc with the right 2 bits assumed to be 0. - : BFD_RELOC_D10V_18_PCREL This is an 18-bit reloc with the right 2 bits assumed to be 0. - : BFD_RELOC_D30V_6 Mitsubishi D30V relocs. This is a 6-bit absolute reloc. - : BFD_RELOC_D30V_9_PCREL This is a 6-bit pc-relative reloc with the right 3 bits assumed to be 0. - : BFD_RELOC_D30V_9_PCREL_R This is a 6-bit pc-relative reloc with the right 3 bits assumed to be 0. Same as the previous reloc but on the right side of the container. - : BFD_RELOC_D30V_15 This is a 12-bit absolute reloc with the right 3 bitsassumed to be 0. - : BFD_RELOC_D30V_15_PCREL This is a 12-bit pc-relative reloc with the right 3 bits assumed to be 0. - : BFD_RELOC_D30V_15_PCREL_R This is a 12-bit pc-relative reloc with the right 3 bits assumed to be 0. Same as the previous reloc but on the right side of the container. - : BFD_RELOC_D30V_21 This is an 18-bit absolute reloc with the right 3 bits assumed to be 0. - : BFD_RELOC_D30V_21_PCREL This is an 18-bit pc-relative reloc with the right 3 bits assumed to be 0. - : BFD_RELOC_D30V_21_PCREL_R This is an 18-bit pc-relative reloc with the right 3 bits assumed to be 0. Same as the previous reloc but on the right side of the container. - : BFD_RELOC_D30V_32 This is a 32-bit absolute reloc. - : BFD_RELOC_D30V_32_PCREL This is a 32-bit pc-relative reloc. - : BFD_RELOC_M32R_24 Mitsubishi M32R relocs. This is a 24 bit absolute address. - : BFD_RELOC_M32R_10_PCREL This is a 10-bit pc-relative reloc with the right 2 bits assumed to be 0. - : BFD_RELOC_M32R_18_PCREL This is an 18-bit reloc with the right 2 bits assumed to be 0. - : BFD_RELOC_M32R_26_PCREL This is a 26-bit reloc with the right 2 bits assumed to be 0. - : BFD_RELOC_M32R_HI16_ULO This is a 16-bit reloc containing the high 16 bits of an address used when the lower 16 bits are treated as unsigned. - : BFD_RELOC_M32R_HI16_SLO This is a 16-bit reloc containing the high 16 bits of an address used when the lower 16 bits are treated as signed. - : BFD_RELOC_M32R_LO16 This is a 16-bit reloc containing the lower 16 bits of an address. - : BFD_RELOC_M32R_SDA16 This is a 16-bit reloc containing the small data area offset for use in add3, load, and store instructions. - : BFD_RELOC_V850_9_PCREL This is a 9-bit reloc - : BFD_RELOC_V850_22_PCREL This is a 22-bit reloc - : BFD_RELOC_V850_SDA_16_16_OFFSET This is a 16 bit offset from the short data area pointer. - : BFD_RELOC_V850_SDA_15_16_OFFSET This is a 16 bit offset (of which only 15 bits are used) from the short data area pointer. - : BFD_RELOC_V850_ZDA_16_16_OFFSET This is a 16 bit offset from the zero data area pointer. - : BFD_RELOC_V850_ZDA_15_16_OFFSET This is a 16 bit offset (of which only 15 bits are used) from the zero data area pointer. - : BFD_RELOC_V850_TDA_6_8_OFFSET This is an 8 bit offset (of which only 6 bits are used) from the tiny data area pointer. - : BFD_RELOC_V850_TDA_7_8_OFFSET This is an 8bit offset (of which only 7 bits are used) from the tiny data area pointer. - : BFD_RELOC_V850_TDA_7_7_OFFSET This is a 7 bit offset from the tiny data area pointer. - : BFD_RELOC_V850_TDA_16_16_OFFSET This is a 16 bit offset from the tiny data area pointer. - : BFD_RELOC_V850_TDA_4_5_OFFSET This is a 5 bit offset (of which only 4 bits are used) from the tiny data area pointer. - : BFD_RELOC_V850_TDA_4_4_OFFSET This is a 4 bit offset from the tiny data area pointer. - : BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET This is a 16 bit offset from the short data area pointer, with the bits placed non-contigously in the instruction. - : BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET This is a 16 bit offset from the zero data area pointer, with the bits placed non-contigously in the instruction. - : BFD_RELOC_V850_CALLT_6_7_OFFSET This is a 6 bit offset from the call table base pointer. - : BFD_RELOC_V850_CALLT_16_16_OFFSET This is a 16 bit offset from the call table base pointer. - : BFD_RELOC_MN10300_32_PCREL This is a 32bit pcrel reloc for the mn10300, offset by two bytes in the instruction. - : BFD_RELOC_MN10300_16_PCREL This is a 16bit pcrel reloc for the mn10300, offset by two bytes in the instruction. - : BFD_RELOC_TIC30_LDP This is a 8bit DP reloc for the tms320c30, where the most significant 8 bits of a 24 bit word are placed into the least significant 8 bits of the opcode. - : BFD_RELOC_TIC54X_PARTLS7 This is a 7bit reloc for the tms320c54x, where the least significant 7 bits of a 16 bit word are placed into the least significant 7 bits of the opcode. - : BFD_RELOC_TIC54X_PARTMS9 This is a 9bit DP reloc for the tms320c54x, where the most significant 9 bits of a 16 bit word are placed into the least significant 9 bits of the opcode. - : BFD_RELOC_TIC54X_23 This is an extended address 23-bit reloc for the tms320c54x. - : BFD_RELOC_TIC54X_16_OF_23 This is a 16-bit reloc for the tms320c54x, where the least significant 16 bits of a 23-bit extended address are placed into the opcode. - : BFD_RELOC_TIC54X_MS7_OF_23 This is a reloc for the tms320c54x, where the most significant 7 bits of a 23-bit extended address are placed into the opcode. - : BFD_RELOC_FR30_48 This is a 48 bit reloc for the FR30 that stores 32 bits. - : BFD_RELOC_FR30_20 This is a 32 bit reloc for the FR30 that stores 20 bits split up into two sections. - : BFD_RELOC_FR30_6_IN_4 This is a 16 bit reloc for the FR30 that stores a 6 bit word offset in 4 bits. - : BFD_RELOC_FR30_8_IN_8 This is a 16 bit reloc for the FR30 that stores an 8 bit byte offset into 8 bits. - : BFD_RELOC_FR30_9_IN_8 This is a 16 bit reloc for the FR30 that stores a 9 bit short offset into 8 bits. - : BFD_RELOC_FR30_10_IN_8 This is a 16 bit reloc for the FR30 that stores a 10 bit word offset into 8 bits. - : BFD_RELOC_FR30_9_PCREL This is a 16 bit reloc for the FR30 that stores a 9 bit pc relative short offset into 8 bits. - : BFD_RELOC_FR30_12_PCREL This is a 16 bit reloc for the FR30 that stores a 12 bit pc relative short offset into 11 bits. - : BFD_RELOC_MCORE_PCREL_IMM8BY4 - : BFD_RELOC_MCORE_PCREL_IMM11BY2 - : BFD_RELOC_MCORE_PCREL_IMM4BY2 - : BFD_RELOC_MCORE_PCREL_32 - : BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2 - : BFD_RELOC_MCORE_RVA Motorola Mcore relocations. - : BFD_RELOC_AVR_7_PCREL This is a 16 bit reloc for the AVR that stores 8 bit pc relative short offset into 7 bits. - : BFD_RELOC_AVR_13_PCREL This is a 16 bit reloc for the AVR that stores 13 bit pc relative short offset into 12 bits. - : BFD_RELOC_AVR_16_PM This is a 16 bit reloc for the AVR that stores 17 bit value (usually program memory address) into 16 bits. - : BFD_RELOC_AVR_LO8_LDI This is a 16 bit reloc for the AVR that stores 8 bit value (usually data memory address) into 8 bit immediate value of LDI insn. - : BFD_RELOC_AVR_HI8_LDI This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit of data memory address) into 8 bit immediate value of LDI insn. - : BFD_RELOC_AVR_HH8_LDI This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit of program memory address) into 8 bit immediate value of LDI insn. - : BFD_RELOC_AVR_LO8_LDI_NEG This is a 16 bit reloc for the AVR that stores negated 8 bit value (usually data memory address) into 8 bit immediate value of SUBI insn. - : BFD_RELOC_AVR_HI8_LDI_NEG This is a 16 bit reloc for the AVR that stores negated 8 bit value (high 8 bit of data memory address) into 8 bit immediate value of SUBI insn. - : BFD_RELOC_AVR_HH8_LDI_NEG This is a 16 bit reloc for the AVR that stores negated 8 bit value (most high 8 bit of program memory address) into 8 bit immediate value of LDI or SUBI insn. - : BFD_RELOC_AVR_LO8_LDI_PM This is a 16 bit reloc for the AVR that stores 8 bit value (usually command address) into 8 bit immediate value of LDI insn. - : BFD_RELOC_AVR_HI8_LDI_PM This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit of command address) into 8 bit immediate value of LDI insn. - : BFD_RELOC_AVR_HH8_LDI_PM This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit of command address) into 8 bit immediate value of LDI insn. - : BFD_RELOC_AVR_LO8_LDI_PM_NEG This is a 16 bit reloc for the AVR that stores negated 8 bit value (usually command address) into 8 bit immediate value of SUBI insn. - : BFD_RELOC_AVR_HI8_LDI_PM_NEG This is a 16 bit reloc for the AVR that stores negated 8 bit value (high 8 bit of 16 bit command address) into 8 bit immediate value of SUBI insn. - : BFD_RELOC_AVR_HH8_LDI_PM_NEG This is a 16 bit reloc for the AVR that stores negated 8 bit value (high 6 bit of 22 bit command address) into 8 bit immediate value of SUBI insn. - : BFD_RELOC_AVR_CALL This is a 32 bit reloc for the AVR that stores 23 bit value into 22 bits. - : BFD_RELOC_VTABLE_INHERIT - : BFD_RELOC_VTABLE_ENTRY These two relocations are used by the linker to determine which of the entries in a C++ virtual function table are actually used. When the -gc-sections option is given, the linker will zero out the entries that are not used, so that the code for those functions need not be included in the output. VTABLE_INHERIT is a zero-space relocation used to describe to the linker the inheritence tree of a C++ virtual function table. The relocation's symbol should be the parent class' vtable, and the relocation should be located at the child vtable. VTABLE_ENTRY is a zero-space relocation that describes the use of a virtual function table entry. The reloc's symbol should refer to the table of the class mentioned in the code. Off of that base, an offset describes the entry that is being used. For Rela hosts, this offset is stored in the reloc's addend. For Rel hosts, we are forced to put this offset in the reloc's section offset. - : BFD_RELOC_IA64_IMM14 - : BFD_RELOC_IA64_IMM22 - : BFD_RELOC_IA64_IMM64 - : BFD_RELOC_IA64_DIR32MSB - : BFD_RELOC_IA64_DIR32LSB - : BFD_RELOC_IA64_DIR64MSB - : BFD_RELOC_IA64_DIR64LSB - : BFD_RELOC_IA64_GPREL22 - : BFD_RELOC_IA64_GPREL64I - : BFD_RELOC_IA64_GPREL32MSB - : BFD_RELOC_IA64_GPREL32LSB - : BFD_RELOC_IA64_GPREL64MSB - : BFD_RELOC_IA64_GPREL64LSB - : BFD_RELOC_IA64_LTOFF22 - : BFD_RELOC_IA64_LTOFF64I - : BFD_RELOC_IA64_PLTOFF22 - : BFD_RELOC_IA64_PLTOFF64I - : BFD_RELOC_IA64_PLTOFF64MSB - : BFD_RELOC_IA64_PLTOFF64LSB - : BFD_RELOC_IA64_FPTR64I - : BFD_RELOC_IA64_FPTR32MSB - : BFD_RELOC_IA64_FPTR32LSB - : BFD_RELOC_IA64_FPTR64MSB - : BFD_RELOC_IA64_FPTR64LSB - : BFD_RELOC_IA64_PCREL21B - : BFD_RELOC_IA64_PCREL21BI - : BFD_RELOC_IA64_PCREL21M - : BFD_RELOC_IA64_PCREL21F - : BFD_RELOC_IA64_PCREL22 - : BFD_RELOC_IA64_PCREL60B - : BFD_RELOC_IA64_PCREL64I - : BFD_RELOC_IA64_PCREL32MSB - : BFD_RELOC_IA64_PCREL32LSB - : BFD_RELOC_IA64_PCREL64MSB - : BFD_RELOC_IA64_PCREL64LSB - : BFD_RELOC_IA64_LTOFF_FPTR22 - : BFD_RELOC_IA64_LTOFF_FPTR64I - : BFD_RELOC_IA64_LTOFF_FPTR64MSB - : BFD_RELOC_IA64_LTOFF_FPTR64LSB - : BFD_RELOC_IA64_SEGREL32MSB - : BFD_RELOC_IA64_SEGREL32LSB - : BFD_RELOC_IA64_SEGREL64MSB - : BFD_RELOC_IA64_SEGREL64LSB - : BFD_RELOC_IA64_SECREL32MSB - : BFD_RELOC_IA64_SECREL32LSB - : BFD_RELOC_IA64_SECREL64MSB - : BFD_RELOC_IA64_SECREL64LSB - : BFD_RELOC_IA64_REL32MSB - : BFD_RELOC_IA64_REL32LSB - : BFD_RELOC_IA64_REL64MSB - : BFD_RELOC_IA64_REL64LSB - : BFD_RELOC_IA64_LTV32MSB - : BFD_RELOC_IA64_LTV32LSB - : BFD_RELOC_IA64_LTV64MSB - : BFD_RELOC_IA64_LTV64LSB - : BFD_RELOC_IA64_IPLTMSB - : BFD_RELOC_IA64_IPLTLSB - : BFD_RELOC_IA64_COPY - : BFD_RELOC_IA64_TPREL22 - : BFD_RELOC_IA64_TPREL64MSB - : BFD_RELOC_IA64_TPREL64LSB - : BFD_RELOC_IA64_LTOFF_TP22 - : BFD_RELOC_IA64_LTOFF22X - : BFD_RELOC_IA64_LDXMOV Intel IA64 Relocations. - : BFD_RELOC_M68HC11_HI8 Motorola 68HC11 reloc. This is the 8 bits high part of an absolute address. - : BFD_RELOC_M68HC11_LO8 Motorola 68HC11 reloc. This is the 8 bits low part of an absolute address. - : BFD_RELOC_M68HC11_3B Motorola 68HC11 reloc. This is the 3 bits of a value. - : BFD_RELOC_CRIS_BDISP8 - : BFD_RELOC_CRIS_UNSIGNED_5 - : BFD_RELOC_CRIS_SIGNED_6 - : BFD_RELOC_CRIS_UNSIGNED_6 - : BFD_RELOC_CRIS_UNSIGNED_4 These relocs are only used within the CRIS assembler. They are not (at present) written to any object files. - : BFD_RELOC_860_COPY - : BFD_RELOC_860_GLOB_DAT - : BFD_RELOC_860_JUMP_SLOT - : BFD_RELOC_860_RELATIVE - : BFD_RELOC_860_PC26 - : BFD_RELOC_860_PLT26 - : BFD_RELOC_860_PC16 - : BFD_RELOC_860_LOW0 - : BFD_RELOC_860_SPLIT0 - : BFD_RELOC_860_LOW1 - : BFD_RELOC_860_SPLIT1 - : BFD_RELOC_860_LOW2 - : BFD_RELOC_860_SPLIT2 - : BFD_RELOC_860_LOW3 - : BFD_RELOC_860_LOGOT0 - : BFD_RELOC_860_SPGOT0 - : BFD_RELOC_860_LOGOT1 - : BFD_RELOC_860_SPGOT1 - : BFD_RELOC_860_LOGOTOFF0 - : BFD_RELOC_860_SPGOTOFF0 - : BFD_RELOC_860_LOGOTOFF1 - : BFD_RELOC_860_SPGOTOFF1 - : BFD_RELOC_860_LOGOTOFF2 - : BFD_RELOC_860_LOGOTOFF3 - : BFD_RELOC_860_LOPC - : BFD_RELOC_860_HIGHADJ - : BFD_RELOC_860_HAGOT - : BFD_RELOC_860_HAGOTOFF - : BFD_RELOC_860_HAPC - : BFD_RELOC_860_HIGH - : BFD_RELOC_860_HIGOT - : BFD_RELOC_860_HIGOTOFF Intel i860 Relocations. typedef enum bfd_reloc_code_real bfd_reloc_code_real_type; `bfd_reloc_type_lookup' ....................... *Synopsis* reloc_howto_type * bfd_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code); *Description* Return a pointer to a howto structure which, when invoked, will perform the relocation CODE on data from the architecture noted. `bfd_default_reloc_type_lookup' ............................... *Synopsis* reloc_howto_type *bfd_default_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code); *Description* Provides a default relocation lookup routine for any architecture. `bfd_get_reloc_code_name' ......................... *Synopsis* const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code); *Description* Provides a printable name for the supplied relocation code. Useful mainly for printing error messages. `bfd_generic_relax_section' ........................... *Synopsis* boolean bfd_generic_relax_section (bfd *abfd, asection *section, struct bfd_link_info *, boolean *); *Description* Provides default handling for relaxing for back ends which don't do relaxing - i.e., does nothing. `bfd_generic_gc_sections' ......................... *Synopsis* boolean bfd_generic_gc_sections (bfd *, struct bfd_link_info *); *Description* Provides default handling for relaxing for back ends which don't do section gc - i.e., does nothing. `bfd_generic_get_relocated_section_contents' ............................................ *Synopsis* bfd_byte * bfd_generic_get_relocated_section_contents (bfd *abfd, struct bfd_link_info *link_info, struct bfd_link_order *link_order, bfd_byte *data, boolean relocateable, asymbol **symbols); *Description* Provides default handling of relocation effort for back ends which can't be bothered to do it efficiently.  File: bfd.info, Node: Core Files, Next: Targets, Prev: Relocations, Up: BFD front end Core files ========== *Description* These are functions pertaining to core files. `bfd_core_file_failing_command' ............................... *Synopsis* CONST char *bfd_core_file_failing_command(bfd *abfd); *Description* Return a read-only string explaining which program was running when it failed and produced the core file ABFD. `bfd_core_file_failing_signal' .............................. *Synopsis* int bfd_core_file_failing_signal(bfd *abfd); *Description* Returns the signal number which caused the core dump which generated the file the BFD ABFD is attached to. `core_file_matches_executable_p' ................................ *Synopsis* boolean core_file_matches_executable_p (bfd *core_bfd, bfd *exec_bfd); *Description* Return `true' if the core file attached to CORE_BFD was generated by a run of the executable file attached to EXEC_BFD, `false' otherwise.