/* * Copyright (c) 1988, 1992, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in_cksum.c 8.1 (Berkeley) 6/10/93 * $Id: NetIPchecksum.c,v 1.1 2000/03/31 17:50:37 gfa Exp $ */ /* Modified for TOPSY by David Schweikert */ #include #include /* * Checksum routine for Internet Protocol family headers (Portable Version). * * This routine is very heavily used in the network * code and should be modified for each CPU to be as fast as possible. */ #define ADDCARRY(x) (x > 65535 ? x -= 65535 : x) #define REDUCE {l_util.l = sum; sum = l_util.s[0] + l_util.s[1]; ADDCARRY(sum);} int netipChecksum(NetBuf buf, int len) { unsigned short *w; int sum = 0; int buflen = 0; int byte_swapped = 0; union { char c[2]; unsigned short s; } s_util; union { unsigned short s[2]; long l; } l_util; for (;buf && len; buf = buf->next) { if (buf->start == buf->end) continue; w = (unsigned short *) NETBUF_DATA(buf); if (buflen == -1) { /* * The first byte of this netbuf is the continuation * of a word spanning between this netbuf and the * last netbuf. * * s_util.c[0] is already saved when scanning previous * netbuf. */ s_util.c[1] = *(char *)w; sum += s_util.s; w = (unsigned short *)((char *)w + 1); buflen = NETBUF_LEN(buf) - 1; len--; } else { buflen = NETBUF_LEN(buf); } if (len < buflen) buflen = len; len -= buflen; /* * Force to even boundary. */ if ((1 & (int) w) && (buflen > 0)) { REDUCE; sum <<= 8; s_util.c[0] = *(unsigned char *)w; w = (unsigned short *)((char *)w + 1); buflen--; byte_swapped = 1; } /* * Unroll the loop to make overhead from * branches &c small. */ while ((buflen -= 32) >= 0) { sum += w[0]; sum += w[1]; sum += w[2]; sum += w[3]; sum += w[4]; sum += w[5]; sum += w[6]; sum += w[7]; sum += w[8]; sum += w[9]; sum += w[10]; sum += w[11]; sum += w[12]; sum += w[13]; sum += w[14]; sum += w[15]; w += 16; } buflen += 32; while ((buflen -= 8) >= 0) { sum += w[0]; sum += w[1]; sum += w[2]; sum += w[3]; w += 4; } buflen += 8; if (buflen == 0 && byte_swapped == 0) continue; REDUCE; while ((buflen -= 2) >= 0) { sum += *w++; } if (byte_swapped) { REDUCE; sum <<= 8; byte_swapped = 0; if (buflen == -1) { s_util.c[1] = *(char *)w; sum += s_util.s; buflen = 0; } else { buflen = -1; } } else if (buflen == -1) { s_util.c[0] = *(char *)w; } } if (len) netdbgDisplay(NETDEBUG_GENERIC, "netip : cksum: out of data.\n"); if (buflen == -1) { /* The last netbuf has odd # of bytes. Follow the standard (the odd byte may be shifted left by 8 bits or not as determined by endian-ness of the machine) */ s_util.c[1] = 0; sum += s_util.s; } REDUCE; return (~sum & 0xffff); }