
Printed on Recycled Paper

 TMS320C6000 DSP/BIOS
Application Programming Interface

(API) Reference Guide

Literature Number: SPRU403E
October 2002

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services
at any time and to discontinue any product or service without notice. Customers should obtain
the latest relevant information before placing orders and should verify that such information is
current and complete. All products are sold subject to TI's terms and conditions of sale supplied
at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of
sale in accordance with TI's standard warranty. Testing and other quality control techniques
are used to the extent TI deems necessary to support this warranty. Except where mandated
by government requirements, testing of all parameters of each product is not necessarily
performed.

TI assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using TI components. To minimize the risks
associated with customer products and applications, customers should provide adequate
design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under
any TI patent right, copyright, mask work right, or other TI intellectual property right relating to
any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third party products or services does not constitute a license from TI
to use such products or services or a warranty or endorsement thereof. Use of such information
may require a license from a third party under the patents or other intellectual property of that
third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction
is without alteration and is accompanied by all associated warranties, conditions, limitations,
and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters
stated by TI for that product or service voids all express and any implied warranties for the
associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright 2002, Texas Instruments Incorporated

iii

This is a draft version printed from file: apipref.fm on 10/29/02

Preface

Read This First

About This Manual
DSP/BIOS gives developers of mainstream applications on Texas
Instruments TMS320C6000TM DSP devices the ability to develop embedded
real-time software. DSP/BIOS provides a small firmware real-time library and
easy-to-use tools for real-time tracing and analysis.

You should read and become familiar with the TMS320 DSP/BIOS User’s
Guide, a companion volume to this API reference guide.

Before you read this manual, you may use the Code Composer Studio online
tutorial and the DSP/BIOS section of the online help to get an overview of
DSP/BIOS. This manual discusses various aspects of DSP/BIOS in depth
and assumes that you have at least a basic understanding of DSP/BIOS.

Notational Conventions
This document uses the following conventions:

❏ Program listings, program examples, and interactive displays are shown
in a special typeface. Examples use a bold version of the
special typeface for emphasis; interactive displays use a bold version
of the special typeface to distinguish commands that you enter from items
that the system displays (such as prompts, command output, error
messages, etc.).

Here is a sample program listing:

Void copy(HST_Obj *input, HST_Obj *output)
{
 PIP_Obj *in, *out;
 Uns *src, *dst;
 Uns size;
}

iv

 Related Documentation From Texas Instruments

❏ Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets.
Unless the square brackets are in a bold typeface, do not enter the
brackets themselves.

❏ Throughout this manual, 62 represents the two-digit numeric appropriate
to your specific DSP platform. For example, DSP/BIOS assembly
language API header files for the C6000 platform are described as having
a suffix of .h62. For the C64x or C67x DSP platform, substitute either 64
or 67 for each occurrence of 62.

❏ Information specific to a particular device is designated with one of the
following icons:

Related Documentation From Texas Instruments
The following books describe TMS320 devices and related support tools. To
obtain a copy of any of these TI documents, call the Texas Instruments
Literature Response Center at (800) 477-8924. When ordering, please
identify the book by its title and literature number.

TMS320 DSP/BIOS User's Guide (literature number SPRU423) provides an over-
view and description of the DSP/BIOS real-time operating system.

TMS320C6000 Assembly Language Tools User's Guide (literature number
SPRU186) describes the assembly language tools (assembler, linker, and
other tools used to develop assembly language code), assembler directives,
macros, common object file format, and symbolic debugging directives for the
C6000 generation of devices.

TMS320C6000 Optimizing C Compiler User's Guide (literature number
SPRU187) describes the c6000 C/C++ compiler and the assembly optimizer.
This C/C++ compiler accepts ANSI standard C/C++ source code and produc-
es assembly language source code for the C6000 generation of devices. The
assembly optimizer helps you optimize your assembly code.

TMS320C6000 Programmer's Guide (literature number SPRU189) describes
the c6000 CPU architecture, instruction set, pipeline, and interrupts for these
digital signal processors.

Read This First v

Related Documentation

TMS320c6000 Peripherals Reference Guide (literature number SPRU190)
describes common peripherals available on the TMS320C6000 family of
digital signal processors. This book includes information on the internal data
and program memories, the external memory interface (EMIF), the host port,
multichannel buffered serial ports, direct memory access (DMA), clocking and
phase-locked loop (PLL), and the power-down modes.

TMS320C6000 Code Composer Studio Tutorial Online Help (literature number
SPRH125) introduces the Code Composer Studio integrated development
environment and software tools. Of special interest to DSP/BIOS users are
the Using DSP/BIOS lessons.

TMS320C6000 Chip Support LIbrary API Reference Guide (literature number
SPRU401) contains a reference for the Chip Support Library (CSL) application
programming interfaces (APIs). The CSL is a set of APIs used to configure
and control all on-chip peripherals.

Related Documentation
You can use the following books to supplement this reference guide:

The C Programming Language (second edition), by Brian W. Kernighan
and Dennis M. Ritchie, published by Prentice-Hall, Englewood Cliffs, New
Jersey, 1988

Programming in C, Kochan, Steve G., Hayden Book Company

Programming Embedded Systems in C and C++, by Michael Barr, Andy
Oram (Editor), published by O'Reilly & Associates; ISBN: 1565923545,
February 1999

Real-Time Systems, by Jane W. S. Liu, published by Prentice Hall; ISBN:
013099651, June 2000

Principles of Concurrent and Distributed Programming (Prentice Hall
International Series in Computer Science), by M. Ben-Ari, published by
Prentice Hall; ISBN: 013711821X, May 1990

American National Standard for Information Systems-Programming
Language C X3.159-1989, American National Standards Institute (ANSI
standard for C); (out of print)

vi

 Trademarks

Trademarks
MS-DOS, Windows, and Windows NT are trademarks of Microsoft
Corporation.

The Texas Instruments logo and Texas Instruments are registered
trademarks of Texas Instruments. Trademarks of Texas Instruments include:
TI, XDS, Code Composer, Code Composer Studio, Probe Point, Code
Explorer, DSP/BIOS, RTDX, Online DSP Lab, BIOSuite, SPOX, TMS320,
TMS320C28x, TMS320C54x, TMS320C55x, TMS320C62x, TMS320C64x,
TMS320C67x, TMS320C5000, and TMS320C6000.

All other brand or product names are trademarks or registered trademarks of
their respective companies or organizations.

This is a draft version printed from file: apirefTOC.fm on 10/28/02
Contents

1 API Functional Overview .1-1
This chapter provides an overview to the TMS320C6000 DSP/BIOS API functions.
1.1 DSP/BIOS Modules .1-2
1.2 Naming Conventions .1-3
1.3 Assembly Language Interface Overview .1-3
1.4 DSP/BIOS TextConf Overview .1-4
1.5 List of Operations .1-6

2 Application Program Interface .2-1
This chapter describes the TMS320C6000 DSP/BIOS API functions, which are alphabetized by
name. In addition, there are reference sections that describe the overall capabilities of each mod-
ule.
2.1 ATM Module .2-2
2.2 C62 and C64 Modules .2-15
2.3 CLK Module .2-24
2.4 DEV Module .2-35
2.5 GIO Module .2-77
2.6 Global Settings .2-94
2.7 HOOK Module .2-101
2.8 HST Module .2-107
2.9 HWI Module .2-114
2.10 IDL Module .2-134
2.11 LCK Module .2-138
2.12 LOG Module .2-145
2.13 MBX Module .2-159
2.14 MEM Module .2-166
2.15 PIP Module .2-186
2.16 PRD Module .2-208
2.17 QUE Module .2-217
2.18 RTDX Module .2-235
2.19 SEM Module .2-251
2.20 SIO Module. .2-261
2.21 STS Module .2-286
2.22 SWI Module .2-299
2.23 SYS Module .2-333
2.24 TRC Module .2-349
vii

 Contents
2.25 TSK Module . 2-356
2.26 std.h and stdlib.h functions . 2-394

3 Utility Programs . 3-1
This chapter provides documentation for TMS320C6000 utilities that can be used to examine var-
ious files from the MS-DOS command line. These programs are provided with DSP/BIOS in the
bin subdirectory. Any other utilities that may occasionally reside in the bin subdirectory and not
documented here are for internal Texas Instruments’ use only.

A Function Callability and Error Tables . A-1
This appendix provides tables describing TMS320C6000 errors and function callability.
A.1 Function Callability Table . A-2
A.2 DSP/BIOS Error Codes . A-8
viii

ix

This is a draft version printed from file: apireflof.fm on 10/28/02

Figures

2-1 RTA Control Panel Properties Page.. 2-148
2-2 Pipe Schematic ... 2-188
2-3 PRD Tick Cycles ... 2-213
2-4 Statistics Accumulation on the Host.. 2-289
2-5 RTA Control Panel Properties Page.. 2-292
2-6 RTA Control Panel Properties Page.. 2-351

x

This is a draft version printed from file: apireflot.fm on 10/28/02

Tables

1-1 DSP/BIOS Modules .. 1-2
1-2 DSP/BIOS Operations .. 1-6
2-1 HWI interrupts for the TMS320C6000 .. 2-122
2-2 Conversion Characters for LOG_printf ... 2-156
2-3 Typical Memory Segments for c6x EVM Boards .. 2-178
2-4 Typical Memory Segment for c6711 DSK Boards ... 2-178
2-5 Statistics Units for HWI, PIP, PRD, and SWI Modules.. 2-287
2-6 Conversion Characters Recognized by SYS_printf ... 2-340
2-7 Conversion Characters Recognized by SYS_sprintf ... 2-342
2-8 Conversion Characters Recognized by SYS_vprintf ... 2-344
2-9 Conversion Characters Recognized by SYS_vsprintf .. 2-346
2-10 Events and Statistics Traced by TRC ... 2-349
A.1 Function Callability Table... A-2
A.2 DSP/BIOS Error Codes.. A-8

Chapter 1

API Functional Overview

This chapter provides an overview to the TMS320C6000 DSP/BIOS API functions.

1.1 DSP/BIOS Modules . 1–2
1.2 Naming Conventions. 1–3
1.3 Assembly Language Interface Overview. 1–3
1.4 DSP/BIOS TextConf Overview . 1–4
1.5 List of Operations . 1–6

Topic Page
1-1

DSP/BIOS Modules
1.1 DSP/BIOS Modules

Table 1-1. DSP/BIOS Modules

Module Description

ATM Module Atomic functions written in assembly language

C62 and C64 Modules Target-specific functions

CLK Module System clock manager

DEV Module Device driver interface

GIO Module I/O module used with IOM mini-drivers

Global Settings Global setting manager

HOOK Module Hook function manager

HST Module Host channel manager

HWI Module Hardware interrupt manager

IDL Module Idle function and processing loop manager

LCK Module Resource lock manager

LOG Module Event Log manager

MBX Module Mailboxes manager

MEM Module Memory manager

PIP Module Buffered pipe manager

PRD Module Periodic function manager

QUE Module Queue manager

RTDX Module Real-time data exchange manager

SEM Module Semaphores manager

SIO Module Stream I/O manager

STS Module Statistics object manager

SWI Module Software interrupt manager

SYS Module System services manager

TRC Module Trace manager

TSK Module Multitasking manager

std.h and stdlib.h functions Standard C library I/O functions
1-2

Naming Conventions
1.2 Naming Conventions

The format for a DSP/BIOS operation name is a 3- or 4-letter prefix for
the module that contains the operation, an underscore, and the action.

In the Assembly Interface section for each macro, Preconditions lists
registers that must be set before using the macro. Postconditions lists the
registers set by the macro that you may want to use. Modifies lists all
individual registers modified by the macro, including registers in the
Postconditions list.

1.3 Assembly Language Interface Overview

When calling DSP/BIOS APIs from assembly source code, you should
include the module.h62 or module.h64 header file for any API modules
used. This modular approach reduces the assembly time of programs
that do not use all the modules.

Where possible, you should use the DSP/BIOS API macros instead of
using assembly instructions directly. The DSP/BIOS API macros provide
a portable, optimized way to accomplish the same task. For example, use
HWI_disable instead of the equivalent instruction to temporarily disable
interrupts. On some devices, disabling interrupts in a threaded interface
is more complex than it appears. Some of the DSP/BIOS API functions
have assembly macros and some do not.

Most of the DSP/BIOS API macros do not have parameters. Instead they
expect parameter values to be stored in specific registers when the API
macro is called. This makes your program more efficient. A few API
macros accept constant values as parameters. For example, HWI_enter
and HWI_exit accept constants defined as bitmasks identifying the
registers to save or restore.

The Preconditions section for each DSP/BIOS API macro in this chapter
lists registers that must be set before using the macro.

The Postconditions section lists registers set by the macro.

Modifies lists all individual registers modified by the macro, including
registers in the Postconditions list.

Example

Assembly Interface

Syntax SWI_getpri
API Functional Overview 1-3

DSP/BIOS TextConf Overview
Preconditions a4 = address of the SWI object
b14 = address of start of .bss

Postconditions a4 = SWI object’s priority mask

Modifies a4

Assembly functions can call C functions. Remember that the C compiler
adds an underscore prefix to function names, so when calling a C
function from assembly, add an underscore to the beginning of the C
function name. For example, call _myfunction instead of myfunction. See
the TMS320C6000 Optimizing Compiler User’s Guide for more details.

The Configuration Tool creates two names for each object: one beginning
with an underscore, and one without. This allows you to use the name
without the underscore in both C and assembly language functions.

All BIOS APIs are preconditioned per standard C conventions. Individual
APIs in this document only indicate additional conditions, if any.

BIOS APIs save/restore context for each task during the context switch
that comprises all the registers listed as Save by Child in the C compiler
manual appropriate for your platform. You must save/restore all
additional register context you chose to manipulate directly in assembly
or otherwise.

1.4 DSP/BIOS TextConf Overview

The section describing each modules in this manual lists properties that
can be configured in DSP/BIOS TextConf scripts, along with their types
and default values. The sections on manager properties and instance
properties also provide TextConf examples that set each property.

For details on DSP/BIOS TextConf scripts, see the DSP/BIOS TextConf
User’s Guide (SPRU007). The language used is JavaScript with an
object model specific to the needs of DSP/BIOS and CSL configuration.

In general, property names of Module objects are in all uppercase letters.
For example, "STACKSIZE". Property names of Instance objects begin
with a lowercase word. Subsequent words have their first letter
capitalized. For example, "stackSize".

Default values for many properties are dependent on the values of other
properties. The defaults shown are those that apply if related property
values have not been modified. The defaults shown are for ’C62x and
’C67x. Memory segment defaults are different for ’C64x. Default values
for many HWI properties are different for each instance.
1-4

DSP/BIOS TextConf Overview
The data types shown for the properties are not used in TextConf scripts.
However, they do indicate the type of values that are valid for each
property. The types used are as follows:

❏ Arg. Arg properties hold arguments to pass to program functions.
They may be strings, integers, labels, or other types as needed by
the program function.

❏ Bool. You may assign a value of either true or 1 to set a Boolean
property to true. You may assign a value of either false or 0 (zero) to
set a Boolean property to false. Do not set a Boolean property to the
quoted string "true" or "false".

❏ EnumInt. Enumerated integer properties accept a set of valid integer
values. These values are displayed in a drop-down list in the DSP/
BIOS Configuration Tool.

❏ EnumString. Enumerated string properties accept a set of valid
string values. These values are displayed in a drop-down list in the
DSP/BIOS Configuration Tool.

❏ Int16. Integer properties hold 16-bit unsigned integer values. The
value range accepted for a property may have additional limits.

❏ Extern. Properties that hold function names use the Extern type. In
order to specify a function Extern, use the prog.extern() method as
shown in the examples to refer to objects defined as asm, C, or C++
language symbols. The default language is C.

❏ Int32. Long integer properties hold 32-bit unsigned integer values.
The value range accepted for a property may have additional limits.

❏ Numeric. Numeric properties hold either 32-bit signed or unsigned
values or decimal values, as appropriate for the property.

❏ Reference. Properties that reference other configures objects
contain an object reference. Use the prog.get() method to specify a
reference to another object.

❏ String. String properties hold text strings.
API Functional Overview 1-5

List of Operations
1.5 List of Operations

Table 1-2. DSP/BIOS Operations

 a. ATM module operations

b. C62 operations

 c. CLK module operations

d. DEV module operations

Function Operation

ATM_andi, ATM_andu Atomically AND two memory locations and return previous value of the
second

ATM_cleari, ATM_clearu Atomically clear memory location and return previous value

ATM_deci, ATM_decu Atomically decrement memory and return new value

ATM_inci, ATM_incu Atomically increment memory and return new value

ATM_ori, ATM_oru Atomically OR memory location and return previous value

ATM_seti, ATM_setu Atomically set memory and return previous value

Function Operation

C62_disableIER
C64_disableIER

Disable certain maskable interrupts

C62_enableIER
C64_enableIER

Enable certain maskable interrupts

C62_plug
C64_plug

C function to plug an interrupt vector

Function Operation

CLK_countspms Number of hardware timer counts per millisecond

CLK_gethtime Get high-resolution time

CLK_getltime Get low-resolution time

CLK_getprd Get period register value

Function Operation

DEV_match Match a device name with a driver
1-6

List of Operations
i. GIO module operations

Dxx_close Close device

Dxx_ctrl Device control operation

Dxx_idle Idle device

Dxx_init Initialize device

Dxx_issue Send a buffer to the device

Dxx_open Open device

Dxx_ready Check if device is ready for I/O

Dxx_reclaim Retrieve a buffer from a device

DGN Driver Software generator driver

DGS Driver Stackable gather/scatter driver

DHL Driver Host link driver

DIO Driver Class driver

DNL Driver Null driver

DOV Driver Stackable overlap driver

DPI Driver Pipe driver

DST Driver Stackable split driver

DTR Driver Stackable streaming transformer driver

Function Operation

GIO_abort Abort all pending input and output

GIO_control Device-specific control call

GIO_create Allocate and initialize a GIO object

GIO_delete Delete underlying IOM mini-drivers and free GIO object and its structure

GIO_flush Drain output buffers and discard any pending input

GIO_init Initialize GIO module

GIO_read Synchronous read command

Function Operation
API Functional Overview 1-7

List of Operations
e. HOOK module operations

f. HST module operations

g. HWI module operations

h. IDL module operations

j. LCK module operations

GIO_submit Submit a GIO packet to the mini-driver

GIO_write Synchronous write command

Function Operation

HOOK_getenv Get environment pointer for a given HOOK and TSK combination

HOOK_setenv Set environment pointer for a given HOOK and TSK combination

Function Operation

HST_getpipe Get corresponding pipe object

Function Operation

HWI_disable Globally disable hardware interrupts

HWI_dispatchPlug Plug the HWI dispatcher

HWI_enable Globally enable hardware interrupts

HWI_enter Hardware interrupt service routine prolog

HWI_exit Hardware interrupt service routine epilog

HWI_restore Restore global interrupt enable state

Function Operation

IDL_run Make one pass through idle functions

Function Operation

LCK_create Create a resource lock

LCK_delete Delete a resource lock

Function Operation
1-8

List of Operations
k. LOG module operations

l. MBX module operations

m. MEM module operations:

LCK_pend Acquire ownership of a resource lock

LCK_post Relinquish ownership of a resource lock

Function Operation

LOG_disable Disable a log

LOG_enable Enable a log

LOG_error/LOG_message Write a message to the system log

LOG_event Append an unformatted message to a log

LOG_printf Append a formatted message to a message log

LOG_reset Reset a log

Function Operation

MBX_create Create a mailbox

MBX_delete Delete a mailbox

MBX_pend Wait for a message from mailbox

MBX_post Post a message to mailbox

Function Operation

MEM_alloc, MEM_valloc,
MEM_calloc

Allocate from a memory heap

MEM_define Define a new memory heap

MEM_free Free a block of memory

MEM_redefine Redefine an existing memory heap

MEM_stat Return the status of a memory heap

Function Operation
API Functional Overview 1-9

List of Operations
n. PIP module operations

o. PRD module operations

p. QUE module operations

Function Operation

PIP_alloc Get an empty frame from a pipe

PIP_free Recycle a frame that has been read back into a pipe

PIP_get Get a full frame from a pipe

PIP_getReaderAddr Get the value of the readerAddr pointer of the pipe

PIP_getReaderNumFrames Get the number of pipe frames available for reading

PIP_getReaderSize Get the number of words of data in a pipe frame

PIP_getWriterAddr Get the value of the writerAddr pointer of the pipe

PIP_getWriterNumFrames Get the number of pipe frames available to be written to

PIP_getWriterSize Get the number of words that can be written to a pipe frame

PIP_peek Get the pipe frame size and address without actually claiming the pipe frame

PIP_put Put a full frame into a pipe

PIP_reset Reset all fields of a pipe object to their original values

PIP_setWriterSize Set the number of valid words written to a pipe frame

Function Operation

PRD_getticks Get the current tick counter

PRD_start Arm a periodic function for one-time execution

PRD_stop Stop a periodic function from execution

PRD_tick Advance tick counter, dispatch periodic functions

Function Operation

QUE_create Create an empty queue

QUE_delete Delete an empty queue

QUE_dequeue Remove from front of queue (non-atomically)

QUE_empty Test for an empty queue

QUE_enqueue Insert at end of queue (non-atomically)
1-10

List of Operations
QUE_get Get element from front of queue (atomically)

QUE_head Return element at front of queue

QUE_insert Insert in middle of queue (non-atomically)

QUE_new Set a queue to be empty

QUE_next Return next element in queue (non-atomically)

QUE_prev Return previous element in queue (non-atomically)

QUE_put Put element at end of queue (atomically)

QUE_remove Remove from middle of queue (non-atomically)

Function Operation
API Functional Overview 1-11

List of Operations
q. RTDX module operations

r. SEM module operations

Function Operation

RTDX_channelBusy Return status indicating whether a channel is busy

RTDX_CreateInputChannel Declare input channel structure

RTDX_CreateOutputChannel Declare output channel structure

RTDX_disableInput Disable an input channel

RTDX_disableOutput Disable an output channel

RTDX_enableInput Enable an input channel

RTDX_enableOutput Enable an output channel

RTDX_isInputEnabled Return status of the input data channel

RTDX_isOutputEnabled Return status of the output data channel

RTDX_read Read from an input channel

RTDX_readNB Read from an input channel without blocking

RTDX_sizeofInput Return the number of bytes read from an input channel

RTDX_write Write to an output channel

Function Operation

SEM_count Get current semaphore count

SEM_create Create a semaphore

SEM_delete Delete a semaphore

SEM_ipost Signal a semaphore (interrupt only)

SEM_new Initialize a semaphore

SEM_pend Wait for a semaphore

SEM_post Signal a semaphore

SEM_reset Reset semaphore
1-12

List of Operations
s. SIO module operations

t. STS module operations

Function Operation

SIO_bufsize Size of the buffers used by a stream

SIO_create Create stream

SIO_ctrl Perform a device-dependent control operation

SIO_delete Delete stream

SIO_flush Idle a stream by flushing buffers

SIO_get Get buffer from stream

SIO_idle Idle a stream

SIO_issue Send a buffer to a stream

SIO_put Put buffer to a stream

SIO_ready Determine if device for stream is ready

SIO_reclaim Request a buffer back from a stream

SIO_segid Memory section used by a stream

SIO_select Select a ready device

SIO_staticbuf Acquire static buffer from stream

Function Operation

STS_add Add a value to a statistics object

STS_delta Add computed value of an interval to object

STS_reset Reset the values stored in an STS object

STS_set Store initial value of an interval to object
API Functional Overview 1-13

List of Operations
u. SWI module operations

v. SYS module operations

Function Operation

SWI_andn Clear bits from SWI’s mailbox and post if becomes 0

SWI_andnHook Specialized version of SWI_andn

SWI_create Create a software interrupt

SWI_dec Decrement SWI’s mailbox and post if becomes 0

SWI_delete Delete a software interrupt

SWI_disable Disable software interrupts

SWI_enable Enable software interrupts

SWI_getattrs Get attributes of a software interrupt

SWI_getmbox Return SWI’s mailbox value

SWI_getpri Return an SWI’s priority mask

SWI_inc Increment SWI’s mailbox and post

SWI_or Set or mask in an SWI’s mailbox and post

SWI_orHook Specialized version of SWI_or

SWI_post Post a software interrupt

SWI_raisepri Raise an SWI’s priority

SWI_restorepri Restore an SWI’s priority

SWI_self Return address of currently executing SWI object

SWI_setattrs Set attributes of a software interrupt

Function Operation

SYS_abort Abort program execution

SYS_atexit Stack an exit handler

SYS_error Flag error condition

SYS_exit Terminate program execution

SYS_printf, SYS_sprintf,
SYS_vprintf, SYS_vsprintf

Formatted output

SYS_putchar Output a single character
1-14

List of Operations
w. TRC module operations

x. TSK module operations

Function Operation

TRC_disable Disable a set of trace controls

TRC_enable Enable a set of trace controls

TRC_query Test whether a set of trace controls is enabled

Function Operation

TSK_checkstacks Check for stack overflow

TSK_create Create a task ready for execution

TSK_delete Delete a task

TSK_deltatime Update task STS with time difference

TSK_disable Disable DSP/BIOS task scheduler

TSK_enable Enable DSP/BIOS task scheduler

TSK_exit Terminate execution of the current task

TSK_getenv Get task environment

TSK_geterr Get task error number

TSK_getname Get task name

TSK_getpri Get task priority

TSK_getsts Get task STS object

TSK_itick Advance system alarm clock (interrupt only)

TSK_self Returns a handle to the current task

TSK_setenv Set task environment

TSK_seterr Set task error number

TSK_setpri Set a task execution priority

TSK_settime Set task STS previous time

TSK_sleep Delay execution of the current task

TSK_stat Retrieve the status of a task

TSK_tick Advance system alarm clock

TSK_time Return current value of system clock

TSK_yield Yield processor to equal priority task
API Functional Overview 1-15

List of Operations
y. C library stdlib.h

z.) DSP/BIOS std.h special utility C macros

Function Operation

atexit Registers one or more exit functions used by exit

calloc Allocates memory block initialized with zeros

exit Calls the exit functions registered in atexit

free Frees memory block

getenv Searches for a matching environment string

malloc Allocates memory block

realloc Resizes previously allocated memory block

Function Operation

ArgToInt(arg) Casting to treat Arg type parameter as integer (Int) type on the given target

ArgToPtr(arg) Casting to treat Arg type parameter as pointer (Ptr) type on the given target
1-16

Chapter 2

Application Program Interface

This chapter describes the TMS320C6000 DSP/BIOS API functions, which are alphabetized by name.
In addition, there are reference sections that describe the overall capabilities of each module.

2.1 ATM Module . 2–2
2.2 C62 and C64 Modules . 2–15
2.3 CLK Module . 2–24
2.4 DEV Module . 2–35
2.5 GIO Module. 2–77
2.6 Global Settings . 2–94
2.7 HOOK Module . 2–101
2.8 HST Module . 2–107
2.9 HWI Module . 2–114
2.10 IDL Module . 2–134
2.11 LCK Module . 2–138
2.12 LOG Module . 2–145
2.13 MBX Module . 2–159
2.14 MEM Module. 2–166
2.15 PIP Module . 2–186
2.16 PRD Module . 2–208
2.17 QUE Module . 2–217
2.18 RTDX Module . 2–235
2.19 SEM Module . 2–251
2.20 SIO Module . 2–261
2.21 STS Module . 2–286
2.22 SWI Module . 2–299
2.23 SYS Module . 2–333
2.24 TRC Module . 2–349
2.25 TSK Module . 2–356
2.26 std.h and stdlib.h functions . 2–394

Topic Page
2-1

ATM Module
2.1 ATM Module

The ATM module includes assembly language functions.

Functions ❏ ATM_andi, ATM_andu. AND memory and return previous value

❏ ATM_cleari, ATM_clearu. Clear memory and return previous value

❏ ATM_deci, ATM_decu. Decrement memory and return new value

❏ ATM_inci, ATM_incu. Increment memory and return new value

❏ ATM_ori, ATM_oru. OR memory and return previous value

❏ ATM_seti, ATM_setu. Set memory and return previous value

Description ATM provides a set of assembly language functions that are used to
manipulate variables with interrupts disabled. These functions can
therefore be used on data shared between tasks, and on data shared
between tasks and interrupt routines.
2-2

ATM_andi
C Interface

Syntax ival = ATM_andi(idst, isrc);

Parameters volatile Int *idst; /* pointer to integer */
Int isrc; /* integer mask */

Return Value Int ival; /* previous value of *idst */

Assembly Interface none

Description ATM_andi atomically ANDs the mask contained in isrc with a destination
memory location and overwrites the destination value *idst with the result
as follows:

`interrupt disable`
ival = *idst;
*idst = ival & isrc;
`interrupt enable`
return(ival);
ATM_andi is written in assembly language, efficiently disabling interrupts
on the target processor during the call.

See Also ATM_andu
ATM_ori

ATM_andi Atomically AND Int memory location and return previous value
Application Program Interface 2-3

ATM_andu
C Interface

Syntax uval = ATM_andu(udst, usrc);

Parameters volatile Uns *udst; /* pointer to unsigned */
Uns usrc; /* unsigned mask */

Return Value Uns uval; /* previous value of *udst */

Assembly Interface none

Description ATM_andu atomically ANDs the mask contained in usrc with a
destination memory location and overwrites the destination value *udst
with the result as follows:

`interrupt disable`
uval = *udst;
*udst = uval & usrc;
`interrupt enable`
return(uval);
ATM_andu is written in assembly language, efficiently disabling interrupts
on the target processor during the call.

See Also ATM_andi
ATM_oru

ATM_andu Atomically AND Uns memory location and return previous value
2-4

ATM_cleari
C Interface

Syntax ival = ATM_cleari(idst);

Parameters volatile Int *idst; /* pointer to integer */

Return Value Int ival; /* previous value of *idst */

Assembly Interface none

Description ATM_cleari atomically clears an Int memory location and returns its
previous value as follows:

`interrupt disable`
ival = *idst;
*dst = 0;
`interrupt enable`
return (ival);
ATM_cleari is written in assembly language, efficiently disabling
interrupts on the target processor during the call.

See Also ATM_clearu
ATM_seti

ATM_cleari Atomically clear Int memory location and return previous value
Application Program Interface 2-5

ATM_clearu
C Interface

Syntax uval = ATM_clearu(udst);

Parameters volatile Uns *udst; /* pointer to unsigned */

Return Value Uns uval; /* previous value of *udst */

Assembly Interface none

Description ATM_clearu atomically clears an Uns memory location and returns its
previous value as follows:

`interrupt disable`
uval = *udst;
*udst = 0;
`interrupt enable`
return (uval);
ATM_clearu is written in assembly language, efficiently disabling
interrupts on the target processor during the call.

See Also ATM_cleari
ATM_setu

ATM_clearu Atomically clear Uns memory location and return previous value
2-6

ATM_deci
C Interface

Syntax ival = ATM_deci(idst);

Parameters volatile Int *idst; /* pointer to integer */

Return Value Int ival; /* new value after decrement */

Assembly Interface none

Description ATM_deci atomically decrements an Int memory location and returns its
new value as follows:

`interrupt disable`
ival = *idst - 1;
*idst = ival;
`interrupt enable`
return (ival);
ATM_deci is written in assembly language, efficiently disabling interrupts
on the target processor during the call.

Decrementing a value equal to the minimum signed integer results in a
value equal to the maximum signed integer.

See Also ATM_decu
ATM_inci

ATM_deci Atomically decrement Int memory and return new value
Application Program Interface 2-7

ATM_decu
C Interface

Syntax uval = ATM_decu(udst);

Parameters volatile Uns *udst; /* pointer to unsigned */

Return Value Uns uval; /* new value after decrement */

Assembly Interface none

Description ATM_decu atomically decrements a Uns memory location and returns its
new value as follows:

`interrupt disable`
uval = *udst - 1;
*udst = uval;
`interrupt enable`
return (uval);
ATM_decu is written in assembly language, efficiently disabling interrupts
on the target processor during the call.

Decrementing a value equal to the minimum unsigned integer results in
a value equal to the maximum unsigned integer.

See Also ATM_deci
ATM_incu

ATM_decu Atomically decrement Uns memory and return new value
2-8

ATM_inci
C Interface

Syntax ival = ATM_inci(idst);

Parameters volatile Int *idst; /* pointer to integer */

Return Value Int ival; /* new value after increment */

Assembly Interface none

Description ATM_inci atomically increments an Int memory location and returns its
new value as follows:

`interrupt disable`
ival = *idst + 1;
*idst = ival;
`interrupt enable`
return (ival);
ATM_inci is written in assembly language, efficiently disabling interrupts
on the target processor during the call.

Incrementing a value equal to the maximum signed integer results in a
value equal to the minimum signed integer.

See Also ATM_deci
ATM_incu

ATM_inci Atomically increment Int memory and return new value
Application Program Interface 2-9

ATM_incu
C Interface

Syntax uval = ATM_incu(udst);

Parameters volatile Uns *udst; /* pointer to unsigned */

Return Value Uns uval; /* new value after increment */

Assembly Interface none

Description ATM_incu atomically increments an Uns memory location and returns its
new value as follows:

`interrupt disable`
uval = *udst + 1;
*udst = uval;
`interrupt enable`
return (uval);
ATM_incu is written in assembly language, efficiently disabling interrupts
on the target processor during the call.

Incrementing a value equal to the maximum unsigned integer results in a
value equal to the minimum unsigned integer.

See Also ATM_decu
ATM_inci

ATM_incu Atomically increment Uns memory and return new value
2-10

ATM_ori
C Interface

Syntax ival = ATM_ori(idst, isrc);

Parameters volatile Int *idst; /* pointer to integer */
Int isrc; /* integer mask */

Return Value Int ival; /* previous value of *idst */

Assembly Interface none

Description ATM_ori atomically ORs the mask contained in isrc with a destination
memory location and overwrites the destination value *idst with the result
as follows:

`interrupt disable`
ival = *idst;
*idst = ival | isrc;
`interrupt enable`
return(ival);
ATM_ori is written in assembly language, efficiently disabling interrupts
on the target processor during the call.

See Also ATM_andi
ATM_oru

ATM_ori Atomically OR Int memory location and return previous value
Application Program Interface 2-11

ATM_oru
C Interface

Syntax uval = ATM_oru(udst, usrc);

Parameters volatile Uns *udst; /* pointer to unsigned */
Uns usrc; /* unsigned mask */

Return Value Uns uva; /* previous value of *udst */

Assembly Interface none

Description ATM_oru atomically ORs the mask contained in usrc with a destination
memory location and overwrites the destination value *udst with the
result as follows:

`interrupt disable`
uval = *udst;
*udst = uval | usrc;
`interrupt enable`
return(uval);
ATM_oru is written in assembly language, efficiently disabling interrupts
on the target processor during the call.

See Also ATM_andu
ATM_ori

ATM_oru Atomically OR Uns memory location and return previous value
2-12

ATM_seti
C Interface

Syntax iold = ATM_seti(idst, inew);

Parameters volatile Int *idst; /* pointer to integer */
Int inew; /* new integer value */

Return Value Int iold; /* previous value of *idst */

Assembly Interface none

Description ATM_seti atomically sets an Int memory location to a new value and
returns its previous value as follows:

`interrupt disable`
ival = *idst;
*idst = inew;
`interrupt enable`
return (ival);
ATM_seti is written in assembly language, efficiently disabling interrupts
on the target processor during the call.

See Also ATM_setu
ATM_cleari

ATM_seti Atomically set Int memory and return previous value
Application Program Interface 2-13

ATM_setu
C Interface

Syntax uold = ATM_setu(udst, unew);

Parameters volatile Uns *udst; /* pointer to unsigned */
Uns unew; /* new unsigned value */

Return Value Uns uold; /* previous value of *udst */

Assembly Interface none

Description ATM_setu atomically sets an Uns memory location to a new value and
returns its previous value as follows:

`interrupt disable`
uval = *udst;
*udst = unew;
`interrupt enable`
return (uval);
ATM_setu is written in assembly language, efficiently disabling interrupts
on the target processor during the call.

See Also ATM_clearu
ATM_seti

ATM_setu Atomically set Uns memory and return previous value
2-14

C62 and C64 Modules
2.2 C62 and C64 Modules

The C62 and C64 modules include target-specific functions for the
TMS320C6000 family.

Functions ❏ C62_disableIER. ASM macro to disable selected interrupts in the
IER

❏ C62_enableIER. ASM macro to enable selected interrupts in the IER

❏ C62_plug. Plug interrupt vector

❏ C64_disableIER. ASM macro to disable selected interrupts in the
IER

❏ C64_enableIER. ASM macro to enable selected interrupts in the IER

❏ C64_plug. Plug interrupt vector

Description The C62 and C64 modules provide certain target-specific functions and
definitions for the TMS320C6000 family of processors.

See the c62.h or c64.h files for a complete list of definitions for hardware
flags for C. The c62.h and c64.h files contain C language macros,
#defines for various TMS320C6000 registers, and structure definitions.
The c62.h62 and c64.h64 files also contain assembly language macros
for saving and restoring registers in interrupt service routines.
Application Program Interface 2-15

C62_disableIER
C Interface

Syntax oldmask = C62_disableIER(mask);

Parameters Uns mask; /* disable mask */

Return Value Uns oldmask; /* actual bits cleared by disable mask */

Assembly Interface

Syntax C62_disableIER IEMASK, REG0, REG1

Preconditions IEMASK ; interrupt disable mask
REG0 ; temporary register that can be modified
REG1 ; temporary register that can be modified

Postconditions none

Description C62_disableIER disables interrupts by clearing the bits specified by
mask in the Interrupt Enable Register (IER).

The C version of C62_disableIER returns a mask of bits actually cleared.
This return value should be passed to C62_enableIER to re-enable
interrupts.

See C62_enableIER for a description and code examples for safely
protecting a critical section of code from interrupts.

See Also C62_enableIER

C62_disableIER Disable certain maskable interrupts
2-16

C64_disableIER
C Interface

Syntax oldmask = C64_disableIER(mask);

Parameters Uns mask; /* disable mask */

Return Value Uns oldmask; /* actual bits cleared by disable mask */

Assembly Interface

Syntax C64_disableIER IEMASK, REG0, REG1

Preconditions IEMASK ; interrupt disable mask
REG0 ; temporary register that can be modified
REG1 ; temporary register that can be modified

Postconditions none

Description C64_disableIER disables interrupts by clearing the bits specified by
mask in the Interrupt Enable Register (IER).

The C version of C64_disableIER returns a mask of bits actually cleared.
This return value should be passed to C64_enableIER to re-enable
interrupts.

See C64_enableIER for a description and code examples for safely
protecting a critical section of code from interrupts.

See Also C64_enableIER

C64_disableIER Disable certain maskable interrupts
Application Program Interface 2-17

C62_enableIER
C Interface

Syntax C62_enableIER(oldmask);

Parameters Uns oldmask; /* enable mask */

Return Value Void

Assembly Interface

Syntax C62_enableIER IEMASK, REG0, REG1

Preconditions IEMASK ; interrupt enable mask
REG0 ; temporary register that can be modified
REG1 ; temporary register that can be modified

Postconditions none

Description C62_disableIER and C62_enableIER disable and enable specific
internal interrupts by modifying the Interrupt Enable Register (IER).
C62_disableIER clears the bits specified by the mask parameter in the
IER and returns a mask of the bits it cleared. C62_enableIER sets the bits
specified by the oldmask parameter in the IER.

C62_disableIER and C62_enableIER are usually used in tandem to
protect a critical section of code from interrupts. The following code
examples show a region protected from all interrupts:

; ASM example

.include c62.h62

...

; disable interrupts specified by IEMASK
C62_disableIER IEMASK, b0, b1

`do some critical operation`

; enable interrupts specified by IEMASK
C62_enableIER IEMASK, b0, b1

/* C example */
Uns oldmask;

oldmask = C62_disableIER(~0);
 `do some critical operation; `
 `do not call TSK_sleep, SEM_post, etc.`
C62_enableIER(oldmask);

C62_enableIER Enable certain maskable interrupts
2-18

C62_enableIER
Note:

DSP/BIOS kernel calls that can cause a task switch (for example,
SEM_post and TSK_sleep) should be avoided within a
C62_disableIER / C62_enableIER block since the interrupts can be
disabled for an indeterminate amount of time if a task switch occurs.

Alternatively, you can disable DSP/BIOS task scheduling for this block by
enclosing it with TSK_disable / TSK_enable. You can also use
C62_disableIER / C62_enableIER to disable selected interrupts, allowing
other interrupts to occur. However, if another HWI does occur during this
region, it could cause a task switch. You can prevent this by using
TSK_disable / TSK_enable around the entire region:

Uns oldmask;

TSK_disable();
oldmask = C62_disableIER(INTMASK);
 `do some critical operation;`
 `NOT OK to call TSK_sleep, SEM_post, etc.`
C62_enableIER(oldmask);
TSK_enable();

Note:

If you use C_disableIER / C62_enableIER to disable only some
interrupts, you must surround this region with SWI_disable /
SWI_enable, to prevent an intervening HWI from causing a SWI or TSK
switch.

The second approach is preferable if it is important not to disable all
interrupts in your system during the critical operation.

See Also C62_disableIER
Application Program Interface 2-19

C64_enableIER
C Interface

Syntax C64_enableIER(oldmask);

Parameters Uns oldmask; /* enable mask */

Return Value Void

Assembly Interface

Syntax C64_enableIER IEMASK, REG0, REG1

Preconditions IEMASK ; interrupt enable mask
REG0 ; temporary register that can be modified
REG1 ; temporary register that can be modified

Postconditions none

Description C64_disableIER and C64_enableIER are used to disable and enable
specific internal interrupts by modifying the Interrupt Enable Register
(IER). C64_disableIER clears the bits specified by the mask parameter in
the Interrupt Mask Register and returns a mask of the bits it cleared.
C64_enableIER sets the bits specified by the oldmask parameter in the
Interrupt Mask Register.

C64_disableIER and C64_enableIER are usually used in tandem to
protect a critical section of code from interrupts. The following code
examples show a region protected from all maskable interrupts:

; ASM example

.include c64.h64

...

; disable interrupts specified by IEMASK
C64_disableIER IEMASK, b0, b1

`do some critical operation`

; enable interrupts specified by IEMASK
C64_enableIER IEMASK, b0, b1

C64_enableIER Enable certain maskable interrupts
2-20

C64_enableIER
/* C example */
Uns oldmask;

oldmask = C64_disableIMR(~0);
 `do some critical operation; `
 `do not call TSK_sleep, SEM_post, etc.`
C64_enableIMR(oldmask);

Note:

DSP/BIOS kernel calls that can cause a task switch (for example,
SEM_post and TSK_sleep) should be avoided within a
C64_disableIER and C64_enableIER block since the interrupts can be
disabled for an indeterminate amount of time if a task switch occurs.

Alternatively, you can disable DSP/BIOS task scheduling for this block by
enclosing it with TSK_disable / TSK_enable. You can also use
C64_disableIER and C64_enableIER to disable selected interrupts,
allowing other interrupts to occur. However, if another HWI does occur
during this region, it could cause a task switch. You can prevent this by
using TSK_disable / TSK_enable around the entire region:

Uns oldmask;

TSK_disable();
oldmask = C64_disableIER(INTMASK);
 `do some critical operation;`
 `NOT OK to call TSK_sleep, SEM_post, etc.`
C64_enableIER(oldmask);
TSK_enable();

Note:

If you use C64_disableIER and C64_enableIER to disable only some
interrupts, you must surround this region with SWI_disable /
SWI_enable, to prevent an intervening HWI from causing a SWI or TSK
switch.

The second approach is preferable if it is important not to disable all
interrupts in your system during the critical operation.

See Also C64_disableIER
Application Program Interface 2-21

C62_plug
C Interface
Syntax C62_plug(vecid, fxn, dmachan);

Parameters Int vecid; /* interrupt id */
Fxn fxn; /* pointer to HWI function */
Int dmachan; /* DMA channel to use for performing plug */

Return Value Void

Assembly Interface none

Description C62_plug writes an Interrupt Service Fetch Packet (ISFP) into the
Interrupt Service Table (IST), at the address corresponding to vecid. The
op-codes written in the ISFP create a branch to the function entry point
specified by fxn:
stw b0, *SP--[1]
mvk fxn, b0
mvkh fxn, b0
b b0
ldw *++SP[1],b0
nop 4
For ’C6x0x devices, if the IST is stored in external RAM, a DMA channel
is not necessary and the dmachan parameter can be set to -1 to cause a
CPU copy instead. A DMA channel can still be used to plug a vector in
external RAM. A DMA channel must be used to plug a vector in internal
program RAM.

For ’C6x11 devices, the dmachan should be set to -1, regardless of
where the IST is stored.

If a DMA channel is specified by the dmachan parameter, C62_plug
assumes that the DMA channel is available for use, and stops the DMA
channel before programming it. If the DMA channel is shared with other
code, a sempahore or other DSP/BIOS signaling method should be used
to provide mutual exclusion before calling C62_plug.

C62_plug does not enable the interrupt. Use C62_enableIER to enable
specific interrupts.

Constraints and
Calling Context

❏ vecid must be a valid interrupt ID in the range of 0-15.

❏ dmachan must be 0, 1, 2, or 3 if the IST is in internal program
memory and the device is a ’C6x0x.

See Also C62_enableIER
HWI_dispatchPlug

C62_plug C function to plug an interrupt vector
2-22

C64_plug
C Interface
Syntax C64_plug(vecid, fxn);

Parameters Int vecid; /* interrupt id */
Fxn fxn; /* pointer to HWI function */

Return Value Void

Assembly Interface none

Description C64_plug writes an Interrupt Service Fetch Packet (ISFP) into the
Interrupt Service Table (IST), at the address corresponding to vecid. The
op-codes written in the ISFP create a branch to the function entry point
specified by fxn:

stw b0, *SP--[1]
mvk fxn, b0
mvkh fxn, b0
b b0
ldw *++SP[1],b0
nop 4
For ’C6x0x devices, if the IST is stored in external RAM, a DMA channel
is not necessary and the dmachan parameter can be set to -1 to cause a
CPU copy instead. A DMA channel can still be used to plug a vector in
external RAM. A DMA channel must be used to plug a vector in internal
program RAM.

For ’C6x11 devices, the dmachan should be set to -1, regardless of
where the IST is stored.

If a DMA channel is specified by the dmachan parameter, C64_plug
assumes that the DMA channel is available for use, and stops the DMA
channel before programming it. If the DMA channel is shared with other
code, a sempahore or other DSP/BIOS signaling method should be used
to provide mutual exclusion before calling C64_plug.

C64_plug hooks up the specified function as the branch target or a
hardware interrupt (fielded by the CPU) at the vector address specified in
vecid. C64_plug does not enable the interrupt. Use or C64_enableIER to
enable specific interrupts.

Constraints and
Calling Context

❏ vecid must be a valid interrupt ID in the range of 0-15.

❏ dmachan must be 0, 1, 2, or 3 if the IST is in internal program
memory and the device is a ’C6x0x.

See Also C64_enableIER

C64_plug C function to plug an interrupt vector
Application Program Interface 2-23

CLK Module
2.3 CLK Module

The CLK module is the system clock manager.

Functions ❏ CLK_countspms. Timer counts per millisecond

❏ CLK_gethtime. Get high resolution time

❏ CLK_getltime. Get low resolution time

❏ CLK_getprd. Get period register value

Configuration
Properties

The following list shows the properties that can be configured in a
DSP/BIOS TextConf script, along with their types and default values. For
details, see the CLK Manager Properties and CLK Object Properties
headings. For descriptions of data types, see Section 1.4, DSP/BIOS
TextConf Overview, page 1-4.

Module Configuration Parameters

Instance Configuration Parameters

Description The CLK module provides a method for invoking functions periodically.

DSP/BIOS provides two separate timing methods: the high- and low-
resolution times managed by the CLK module and the system clock. In
the default configuration, the low-resolution time and the system clock
are the same.

Name Type Default

OBJMEMSEG Reference prog.get("IDRAM")

TIMERSELECT String "Timer 0"

ENABLECLK Bool true

HIRESTIME Bool true

MICROSECONDS Int16 1000

CONFIGURETIMER Bool false

PRD Int16 33250

Name Type Default

comment String "<add comments here>"

fxn Extern prog.extern("FXN_NOP")

order Int16 0
2-24

CLK Module
The CLK module provides a real-time clock with functions to access this
clock at two resolutions. This clock can be used to measure the passage
of time in conjunction with STS accumulator objects, as well as to add
timestamp messages to event logs. Both the low-resolution and high-
resolution times are stored as 32-bit values. The value restarts at 0 when
the maximum value is reached.

If the Clock Manager is enabled in the Configuration Tool, the timer
counter register is incremented every four CPU cycles.

When this register reaches the value set for the period register, the
counter is reset to 0 and a timer interrupt occurs. When a timer interrupt
occurs, the HWI object for the selected timer runs the CLK_F_isr
function. This function causes these events to occur:

❏ The low-resolution time is incremented by 1

❏ All the functions specified by CLK objects are performed in sequence
in the context of that HWI

Note: Specifying On-device Timer

The Configuration Tool allows you to specify which on-device timer you
want to use. DSP/BIOS requires the default setting in the interrupt
selector register for the selected timer. For example, interrupt 14 must
be configured for timer 0, interrupt 15 must be configured for timer 1,
and interrupt 11 must be configured for timer 2.

Therefore, the low-resolution clock ticks at the timer interrupt rate and the
clock’s value is equal to the number of timer interrupts that have
occurred. You can use the CLK_getltime function to get the low-
resolution time and the CLK_getprd function to get the value of the period
register property.

The high-resolution time is the number of times the timer counter register
has been incremented (number of instruction cycles divided by 4). The
32-bit high-resolution time is actually calculated by multiplying the low-
resolution time by the value of the period register property and adding the
current value of the timer counter register. You can use the CLK_gethtime
function to get the high-resolution time and the CLK_countspms function
to get the number of hardware timer counter register ticks per
millisecond.
Application Program Interface 2-25

CLK Module
The CLK functions performed when a timer interrupt occurs are
performed in the context of the hardware interrupt that caused the system
clock to tick. Therefore, the amount of processing performed within CLK
functions should be minimized and these functions can only invoke
DSP/BIOS calls that are allowable from within an HWI.

Note:

CLK functions should not call HWI_enter and HWI_exit as these are
called internally by the HWI dispatcher when it runs CLK_F_isr.
Additionally, CLK functions should not use the interrupt keyword or the
INTERRUPT pragma in C functions.

If you do not want the on-device timer to drive the system clock, you can
disable the CLK Manager by clearing the Enable CLK Manager checkbox
on the CLK Manager Properties dialog. If this box is gray, go to the PRD
Manager Properties dialog and clear the Use CLK Manager to Drive PRD
box. Then you can disable the CLK Manager.

The HWI object that runs the CLK_F_isr function is configured to use the
HWI dispatcher. You can modify the dispatcher-specific properties of this
HWI object. For example, you can change the interrupt mask value and
the cache control value. See the HWI Module, page 2–114, for a
description of the HWI dispatcher and these HWI properties. You may not
disable the use of the HWI dispatcher for the HWI object that runs the
CLK_F_isr function.

CLK Manager
Properties

The following global properties can be set for the CLK module in the CLK
Manager Properties dialog of the DSP/BIOS Configuration Tool or in a
DSP/BIOS TextConf script:

❏ Object Memory. The memory segment that contains the CLK
objects created with the Configuration Tool.
TextConf Name: OBJMEMSEG Type: Ref

Example: CLK.OBJMEMSEG = prog.get("myMEM");
❏ CPU Interrupt. Shows which HWI interrupt is used to drive the timer

services. The value is changed automatically when you change the
Timer Selection. This is an informational field only.
TextConf Name: N/A
2-26

CLK Module
❏ Timer Selection. The on-device timer to use. Changing this setting
also automatically changes the CPU Interrupt used to drive the timer
services and the function property of the relevant HWI objects.
TextConf Name: TIMERSELECT Type: String

Options: "Timer 0", "Timer 1"
Example: CLK.TIMERSELECT = "Timer 0";

❏ Enable CLK Manager. If checked, the on-device timer hardware is
used to drive the high- and low-resolution times and to trigger
execution of CLK functions.
TextConf Name: ENABLECLK Type: Bool

Example: CLK.ENABLECLK = true;
❏ Use high resolution time for internal timings. If checked, the high-

resolution timer is used to monitor internal periods; otherwise the less
intrusive, low-resolution timer is used.
TextConf Name: HIRESTIME Type: Bool

Example: CLK.HIRESTIME = true;
❏ Microseconds/Int. The number of microseconds between timer

interrupts. The period register is set to a value that achieves the
desired period as closely as possible.
TextConf Name: MICROSECONDS Type: Int

Example: CLK.MICROSECONDS = 1000;
❏ Directly configure on-device timer registers. If checked, the

period register can be directly set to the desired value. In this case,
the Microseconds/Int field is computed based on the value in period
register and the CPU clock speed in the Global Settings Properties.
TextConf Name: CONFIGURETIMER Type: Bool

Example: CLK.CONFIGURETIMER = false;
❏ PRD Register. This value is written to the PRD register.

TextConf Name: PRD Type: Int
Example: CLK.PRD = 33250;

❏ Instructions/Int. The number of instruction cycles represented by
the period specified above. This is an informational field only.
TextConf Name: N/A

CLK Object Properties The Clock Manager allows you to create an arbitrary number of CLK
objects. Clock objects have functions, which are executed by the Clock
Manager every time a timer interrupt occurs. These functions can invoke
any DSP/BIOS operations allowable from within an HWI except
HWI_enter or HWI_exit.
Application Program Interface 2-27

CLK Module
To create a CLK object in a configuration script, use the following syntax:

var myClk = CLK.create("myClk");
The following properties can be set for a clock function object in the CLK
Object Properties dialog in the Configuration Tool or in a DSP/BIOS
TextConf script. The DSP/BIOS TextConf examples assume the myClk
object has been created as shown.

❏ comment. Type a comment to identify this CLK object.
TextConf Name: comment Type: String

Example: myClk.comment = "Runs timeFxn";
❏ function. The function to be executed when the timer hardware

interrupt occurs. This function must be written like an HWI function; it
must be written in C or assembly and must save and restore any
registers this function modifies. However, this function can not call
HWI_enter or HWI_exit because DSP/BIOS calls them internally
before and after this function runs.

These functions should be very short as they are performed
frequently.

Since all CLK functions are performed at the same periodic rate,
functions that need to run at a multiple of that rate should either count
the number of interrupts and perform their activities when the counter
reaches the appropriate value or be configured as PRD objects.

If this function is written in C, use a leading underscore before the C
function name. (The Configuration Tool generates assembly code,
which must use leading underscores when referencing C functions or
labels.)
TextConf Name: fxn Type: Extern

Example: myClk.fxn = prog.extern("timeFxn");
❏ order. This field is not shown in the CLK Object Properties dialog.

You can change the sequence in which CLK functions are executed
by selecting the CLK Manager and dragging the CLK objects shown
in the second pane up and down.
TextConf Name: order Type: Int

Example: myClk.order = 2;
CLK - Code Composer
Studio Interface

To enable CLK logging, choose DSP/BIOS→RTA Control Panel and put
a check in the appropriate box. You see indicators for low resolution clock
interrupts in the Time row of the Execution Graph, which you can open by
choosing DSP/BIOS→Execution Graph.
2-28

CLK_countspms
C Interface

Syntax ncounts = CLK_countspms();

Parameters Void

Return Value LgUns ncounts;

Assembly Interface

Syntax CLK_countspms

Preconditions amr = 0

Postconditions a4 = the number of hardware timer register ticks per millisecond

Modifies a4

Reentrant yes

Description CLK_countspms returns the number of hardware timer register ticks per
millisecond. This corresponds to the number of high-resolution ticks per
millisecond.

CLK_countspms can be used to compute an absolute length of time from
the number of hardware timer counts. For example, the following code
returns the number of milliseconds since the 32-bit high-resolution time
last wrapped back to 0:

timeAbs = (CLK_getltime() * (CLK_getprd())) /
CLK_countspms();

See Also CLK_gethtime
CLK_getprd
STS_delta

CLK_countspms Number of hardware timer counts per millisecond
Application Program Interface 2-29

CLK_gethtime
C Interface

Syntax currtime = CLK_gethtime();

Parameters Void

Return Value LgUns currtime /* high-resolution time */

Assembly Interface

Syntax CLK_gethtime

Preconditions interrupts are disabled
b14 = pointer to the start of .bss
amr = 0

Postconditions a4 = high-resolution time value

Modifies a2, a3, a4, a5, b1, b2, b3, b4, b5

Reentrant no

Description CLK_gethtime returns the number of high-resolution clock cycles that
have occurred as a 32-bit value. When the number of cycles reaches the
maximum value that can be stored in 32 bits, the value wraps back to 0.

High-resolution time is the number of times the timer counter register has
been incremented. When the CLK manager is enabled in the
Configuration Tool, the timer counter register is incremented every four
CPU cycles.

When this register reaches the value set for the period register, the
counter is reset to 0 and a timer interrupt occurs. When a timer interrupt
occurs, the HWI object for the selected timer runs the CLK_F_isr
function.

In contrast, CLK_getltime returns the number of timer interrupts that have
occurred. When the timer counter register reaches the value set for the
period register property of the CLK module, the counter is reset to 0 and
a timer interrupt occurs.

High-resolution time is actually calculated by multiplying the low-
resolution time by the value of the period register property and adding to
it the current value of the timer counter register. Although the
CLK_gethtime uses the period register value to calculate the high-
resolution time, the value of the high-resolution time is independent of the

CLK_gethtime Get high-resolution time
2-30

CLK_gethtime
actual value in the period register. This is because the timer counter
register is divided by the period register value when incrementing the low-
resolution time, and the result is multiplied by the same period register
value to calculate the high-resolution time.

CLK_gethtime provides a value with greater accuracy than
CLK_getltime, but which wraps back to 0 more frequently. For example,
if the device’s clock rate is 200 MHz, then regardless of the period
register value, the CLK_gethtime value wraps back to 0 approximately
every 86 seconds.

CLK_gethtime can be used in conjunction with STS_set and STS_delta
to benchmark code. CLK_gethtime can also be used to add a time stamp
to event logs.

Constraints and
Calling Context

❏ CLK_gethtime cannot be called from the program’s main function.

Example /* ======== showTime ======== */

 Void showTicks
 {
 LOG_printf(&trace, "time = %d", CLK_gethtime());
 }

See Also CLK_getltime
PRD_getticks
STS_delta
Application Program Interface 2-31

CLK_getltime
C Interface

Syntax currtime = CLK_getltime();

Parameters Void

Return Value LgUns currtime /* low-resolution time */

Assembly Interface

Syntax CLK_getltime

Preconditions b14 = pointer to the start of .bss
amr = 0

Postconditions a4 = low-resolution time value

Modifies a4

Reentrant yes

Description CLK_getltime returns the number of timer interrupts that have occurred
as a 32-bit time value. When the number of interrupts reaches the
maximum value that can be stored in 32 bits, value wraps back to 0 on
the next interrupt.

The low-resolution time is the number of timer interrupts that have
occurred.

The timer counter is incremented every four CPU cycles. When this
register reaches the value set for the period register property of the CLK
module, the counter is reset to 0 and a timer interrupt occurs. When a
timer interrupt occurs, all the functions specified by CLK objects are
performed in sequence in the context of that HWI.

The default low resolution interrupt rate is 1 millisecond/interrupt. By
adjusting the period register, you can set rates from less than 1
microsecond/interrupt to more than 1 second/interrupt.

If you use the default configuration, the system clock rate matches the
low-resolution rate.

In contrast, CLK_gethtime returns the number of high resolution clock
cycles that have occurred. When the timer counter register reaches the
value set for the period register property of the CLK module, the counter
is reset to 0 and a timer interrupt occurs.

CLK_getltime Get low-resolution time
2-32

CLK_getltime
Therefore, CLK_gethtime provides a value with greater accuracy than
CLK_getltime, but which wraps back to 0 more frequently. For example,
if the device’s clock rate is 200 MHz, and you use the default period
register value of 50000, the CLK_gethtime value wraps back to 0
approximately every 86 seconds, while the CLK_getltime value wraps
back to 0 approximately every 49.7 days.

CLK_getltime is often used to add a time stamp to event logs for events
that occur over a relatively long period of time.

Constraints and
Calling Context

❏ CLK_getltime cannot be called from the program’s main function.

Example /* ======== showTicks ======== */

 Void showTicks
 {
 LOG_printf(&trace, "time = 0x%x", CLK_getltime());
 }

See Also CLK_gethtime
PRD_getticks
STS_delta
Application Program Interface 2-33

CLK_getprd
C Interface

Syntax period = CLK_getprd();

Parameters Void

Return Value Uns period /* period register value */

Assembly Interface

Syntax CLK_getprd

Preconditions amr = 0

Postconditions a4

Modifies a4

Reentrant yes

Description CLK_getprd returns the value set for the period register property of the
CLK Manager in the Configuration Tool. CLK_getprd can be used to
compute an absolute length of time from the number of hardware timer
counts. For example, the following code returns the number of
milliseconds since the 32-bit high-resolution time last wrapped back to 0:

timeAbs = (CLK_getltime() * (CLK_getprd())) /
CLK_countspms();

See Also CLK_countspms
CLK_gethtime
STS_delta

CLK_getprd Get period register value
2-34

DEV Module
2.4 DEV Module

The DEV module is the device driver interface.

Functions ❏ DEV_match. Match device name with driver
❏ Dxx_close. Close device
❏ Dxx_ctrl. Device control
❏ Dxx_idle. Idle device
❏ Dxx_init. Initialize device
❏ Dxx_issue. Send frame to device
❏ Dxx_open. Open device
❏ Dxx_ready. Device ready
❏ Dxx_reclaim. Retrieve frame from device

Constants, Types, and
Structures

#define DEV_INPUT 0
#define DEV_OUTPUT 1

typedef struct DEV_Frame { /* frame object */
 QUE_Elem link; /* queue link */
 Ptr addr; /* buffer address */
 Uns size; /* buffer size */
 Arg misc; /* reserved for driver */
 Arg arg; /* user argument */
 Uns cmd; /* mini-driver command */
 Int status; /* status of command */
} DEV_Frame;

typedef struct DEV_Obj { /* device object */
 QUE_Handle todevice; /* downstream frames here */
 QUE_Handle fromdevice; /* upstream frames here */
 Uns bufsize; /* buffer size */
 Uns nbufs; /* number of buffers */
 Int segid; /* buffer segment ID */
 Int mode; /* DEV_INPUT/DEV_OUTPUT */
 Int devid; /* device ID */

Ptr params; /* device parameters */
 Ptr object; /* ptr to dev instance obj */
 DEV_Fxns fxns; /* driver functions */
 Uns timeout; /* SIO_reclaim timeout value */
 Uns align; /* buffer alignment */
 DEV_Callback *callback; /* pointer to callback */
} DEV_Obj;
Application Program Interface 2-35

DEV Module
typedef struct DEV_Fxns { /* driver function table */
 Int (*close)(DEV_Handle);
 Int (*ctrl)(DEV_Handle, Uns, Arg);
 Int (*idle)(DEV_Handle, Bool);
 Int (*issue)(DEV_Handle);
 Int (*open)(DEV_Handle, String);
 Bool (*ready)(DEV_Handle, SEM_Handle);
 Int (*reclaim)(DEV_Handle);
} DEV_Fxns;

typedef struct DEV_Callback {
 Fxn fxn; /* function */
 Arg arg0; /* argument 0 */
 Arg arg1; /* argument 1 */
} DEV_Callback;

typedef struct DEV_Device { /* device specifier */
 String name; /* device name */
 DEV_Fxns *fxns; /* device function table*/
 Int devid; /* device ID */
 Ptr params; /* device parameters */
 Uns type; /* type of the device */
 Ptr devp; /* pointer to device handle */
} DEV_Device;

Configuration
Properties

The following list shows the properties that can be configured in a
DSP/BIOS TextConf script, along with their types and default values. For
details, see the DEV Manager Properties and DEV Object Properties
headings. For descriptions of data types, see Section 1.4, DSP/BIOS
TextConf Overview, page 1-4.

Instance Configuration Parameters.

Name Type Default (Enum Options)

comment String "<add comments here>"

initFxn Arg 0x00000000

fxnTable Arg 0x00000000

fxnTableType EnumString "DEV_Fxns"
("IOM_Fxns", "other")

deviceId Arg 0x00000000

params Arg 0x00000000

deviceGlobalDataPtr Arg 0x00000000
2-36

DEV Module
Description Using generic functions provided by the SIO Module, programs indirectly
invoke corresponding functions which manage the particular device
attached to the stream. Unlike other modules, your application programs
do not issue direct calls to driver functions that manipulate individual
device objects managed by the module. Instead, each driver module
exports a distinguished structure of type DEV_Fxns, which is used by the
SIO module to route generic function calls to the proper driver function.

The Dxx functions are templates for driver functions. To ensure that all
driver functions present an identical interface to DEV, the driver functions
must follow these templates.

DEV Manager
Properties

The default configuration contains managers for the following built-in
device drivers:

❏ DGN Driver (software generator driver). A pseudo-device that
generates one of several data streams, such as a sin/cos series or
white noise. This driver can be useful for testing applications that
require an input stream of data.

❏ DHL Driver (host link driver). A driver that uses the HST interface to
send data to and from the DSP/BIOS Host Channel Control Analysis
Tool.

❏ DIO Adapter (class driver). A driver used with the device driver
model.

❏ DPI Driver (pipe driver). A software device used to stream data
between DSP/BIOS tasks.

To configure devices for other drivers, use the Configuration Tool to insert
a User-defined Device object. There are no global properties for the user-
defined device manager.

The following additional device drivers are supplied with DSP/BIOS:

❏ DGS Driver. Stackable gather/scatter driver

❏ DNL Driver. Null driver

❏ DOV Driver. Stackable overlap driver

❏ DST Driver. Stackable “split” driver

❏ DTR Driver. Stackable streaming transformer driver

DEV Object Properties The following properties can be set for a user-defined device in the UDEV
Object Properties dialog in the Configuration Tool or in a DSP/BIOS
TextConf script. To create a user-defined device object in a configuration
script, use the following syntax:

var myDev = UDEV.create("myDev");
Application Program Interface 2-37

DEV Module
The DSP/BIOS TextConf examples assume the myDev object has been
created as shown.

❏ comment. Type a comment to identify this object.
TextConf Name: comment Type: String

Example: myDev.comment = "My device";
❏ init function. Specify the function to run to initialize this device.

Use a leading underscore before the function name if the function is
written in C.
TextConf Name: initFxn Type: Arg

Example: myDev.initFxn =
prog.extern("myInitFxn");

❏ function table ptr. Specify the name of the device functions table for
the driver or mini-driver. This table is of type DEV_Fxns or IOM_Fxns
depending on the setting for the function table type property. Use a
leading underscore before the table name. (The Configuration Tool
generates assembly code which must use the leading underscore
when referencing C functions or labels.)
TextConf Name: fxnTable Type: Arg

Example: myDev.fxnTable =
prog.extern("mydevFxnTable");

❏ function table type. Choose the type of function table used by the
driver to which this device interfaces. Use the IOM_Fxns option if you
are using the DIO class driver to interface to a mini-driver with an
IOM_Fxns function table. Otherwise, use the DEV_Fxns option for
other drivers that use a DEV_Fxns function table and Dxx functions.
You can create a DIO object only if a UDEV object with the IOM_Fxns
function table type exists. The "other" option is for use with custom
drivers.
TextConf Name: fxnTableType Type: EnumString

Options: "DEV_Fxns", "IOM_Fxns", "other"
Example: myDev.fxnTableType = "DEV_Fxns";

❏ device id. Specify the device ID. If the value you provide is non-zero,
the value takes the place of a value that would be appended to the
device name in a call to SIO_create. The purpose of such a value is
driver-specific.
TextConf Name: deviceId Type: Arg

Example: myDev.deviceId =
prog.extern("devID");
2-38

DEV Module
❏ device params ptr. If this device uses additional parameters,
provide the name of the parameter structure. This structure should
have a name with the format DXX_Params where XX is the two-letter
code for the driver used by this device.

Use a leading underscore before the structure name.
TextConf Name: params Type: Arg

Example: myDev.params =
prog.extern("myParams");

❏ device global data ptr. Provide a pointer to any global data to be
used by this device. This value can be set only if the function table
type is IOM_Fxns.
TextConf Name: deviceGlobalDataPtr Type: Arg

Example: myDev.deviceGlobalDataPtr =
0x00000000;
Application Program Interface 2-39

DEV_match
C Interface

Syntax substr = DEV_match(name, device);

Parameters String name; /* device name */
DEV_Device **device; /* pointer to device table entry */

Return Value String substr; /* remaining characters after match */

Assembly Interface none

Description DEV_match searches the device table for the first device name that
matches a prefix of name. The output parameter, device, points to the
appropriate entry in the device table if successful and is set to NULL on
error. The DEV_Device structure is defined in dev.h.

The substr return value contains a pointer to the characters remaining
after the match. This string is used by stacking devices to specify the
name(s) of underlying devices (for example, /scale10/sine might match
/scale10 a stacking device which would, in turn, use /sine to open the
underlying generator device).

See Also SIO_create

DEV_match Match a device name with a driver
2-40

Dxx_close
C Interface

Syntax status = Dxx_close(device);

Parameters DEV_Handle device; /* device handle */

Return Value Int status; /* result of operation */

Assembly Interface none

Description Dxx_close closes the device associated with device and returns an error
code indicating success (SYS_OK) or failure. device is bound to the
device through a prior call to Dxx_open.

SIO_delete first calls Dxx_idle to idle the device. Then it calls Dxx_close.

Once device has been closed, the underlying device is no longer
accessible via this descriptor.

Constraints and
Calling Context

❏ device must be bound to a device by a prior call to Dxx_open.

See Also Dxx_idle
Dxx_open
SIO_delete

Dxx_close Close device
Application Program Interface 2-41

Dxx_ctrl
C Interface

Syntax status = Dxx_ctrl(device, cmd, arg);

Parameters DEV_Handle device /* device handle */
Uns cmd; /* driver control code */
Arg arg; /* control operation argument */

Return Value Int status; /* result of operation */

Assembly Interface none

Description Dxx_ctrl performs a control operation on the device associated with
device and returns an error code indicating success (SYS_OK) or failure.
The actual control operation is designated through cmd and arg, which
are interpreted in a driver-dependent manner.

Dxx_ctrl is called by SIO_ctrl to send control commands to a device.

Constraints and
Calling Context

❏ device must be bound to a device by a prior call to Dxx_open.

See Also SIO_ctrl

Dxx_ctrl Device control operation
2-42

Dxx_idle
C Interface

Syntax status = Dxx_idle(device, flush);

Parameters DEV_Handle device; /* device handle */
Bool flush; /* flush output flag */

Return Value Int status; /* result of operation */

Assembly Interface none

Description Dxx_idle places the device associated with device into its idle state and
returns an error code indicating success (SYS_OK) or failure. Devices
are initially in this state after they are opened with Dxx_open.

Dxx_idle returns the device to its initial state. Dxx_idle should move any
frames from the device->todevice queue to the device->fromdevice
queue. In SIO_ISSUERECLAIM mode, any outstanding buffers issued to
the stream must be reclaimed in order to return the device to its true initial
state.

Dxx_idle is called by SIO_idle, SIO_flush, and SIO_delete to recycle
frames to the appropriate queue.

flush is a boolean parameter that indicates what to do with any pending
data of an output stream. If flush is TRUE, all pending data is discarded
and Dxx_idle does not block waiting for data to be processed. If flush is
FALSE, the Dxx_idle function does not return until all pending output data
has been rendered. All pending data in an input stream is always
discarded, without waiting.

Constraints and
Calling Context

❏ device must be bound to a device by a prior call to Dxx_open.

See Also SIO_delete
SIO_idle
SIO_flush

Dxx_idle Idle device
Application Program Interface 2-43

Dxx_init
C Interface

Syntax Dxx_init();

Parameters Void

Return Value Void

Assembly Interface none

Description Dxx_init is used to initialize the device driver module for a particular
device. This initialization often includes resetting the actual device to its
initial state.

Dxx_init is called at system startup, before the application’s main function
is called.

Dxx_init Initialize device
2-44

Dxx_issue
C Interface

Syntax status = Dxx_issue(device);

Parameters DEV_Handle device; /* device handle */

Return Value Int status; /* result of operation */

Assembly Interface none

Description Dxx_issue is used to notify a device that a new frame has been placed
on the device->todevice queue. If the device was opened in DEV_INPUT
mode then Dxx_issue uses this frame for input. If the device was opened
in DEV_OUTPUT mode, Dxx_issue processes the data in the frame,
then outputs it. In either mode, Dxx_issue ensures that the device has
been started, and returns an error code indicating success (SYS_OK) or
failure.

Dxx_issue does not block. In output mode it processes the buffer and
places it in a queue to be rendered. In input mode, it places a buffer in a
queue to be filled with data, then returns.

Dxx_issue is used in conjunction with Dxx_reclaim to operate a stream.
The Dxx_issue call sends a buffer to a stream, and the Dxx_reclaim
retrieves a buffer from a stream. Dxx_issue performs processing for
output streams, and provides empty frames for input streams. The
Dxx_reclaim recovers empty frames in output streams, retrieves full
frames, and performs processing for input streams.

SIO_issue calls Dxx_issue after placing a new input frame on the
device->todevice. If Dxx_issue fails, it should return an error code. Before
attempting further I/O through the device, the device should be idled, and
all pending buffers should be flushed if the device was opened for
DEV_OUTPUT.

In a stacking device, Dxx_issue must preserve all information in the
DEV_Frame object except link and misc. On a device opened for
DEV_INPUT, Dxx_issue should preserve the size and the arg fields. On
a device opened for DEV_OUTPUT, Dxx_issue should preserve the
buffer data (transformed as necessary), the size (adjusted as appropriate
by the transform) and the arg field. The DEV_Frame objects themselves
do not need to be preserved, only the information they contain.

Dxx_issue must preserve and maintain buffers sent to the device so they
can be returned in the order they were received, by a call to Dxx_reclaim.

Dxx_issue Send a buffer to the device
Application Program Interface 2-45

Dxx_issue
Constraints and
Calling Context

❏ device must be bound to a device by a prior call to Dxx_open.

See Also Dxx_reclaim
SIO_issue
SIO_get
SIO_put
2-46

Dxx_open
C Interface

Syntax status = Dxx_open(device, name);

Parameters DEV_Handle device; /* driver handle */
String name; /* device name */

Return Value Int status; /* result of operation */

Assembly Interface none

Description Dxx_open is called by SIO_create to open a device. Dxx_open opens a
device and returns an error code indicating success (SYS_OK) or failure.

The device parameter points to a DEV_Obj whose fields have been
initialized by the calling function (that is, SIO_create). These fields can be
referenced by Dxx_open to initialize various device parameters.
Dxx_open is often used to attach a device-specific object to
device->object. This object typically contains driver-specific fields that
can be referenced in subsequent Dxx driver calls.

name is the string remaining after the device name has been matched by
SIO_create using DEV_match.

See Also Dxx_close
SIO_create

Dxx_open Open device
Application Program Interface 2-47

Dxx_ready
C Interface

Syntax status = Dxx_ready(device, sem);

Parameters DEV_Handle device; /* device handle */
SEM_Handle sem; /* semaphore to post when ready */

Return Value Bool status; /* TRUE if device is ready */

Assembly Interface none

Description Dxx_ready is called by SIO_select to determine if the device is ready for
an I/O operation. In this context, ready means a call that retrieves a buffer
from a device does not block. If a frame exists, Dxx_ready returns TRUE,
indicating that the next SIO_get, SIO_put, or SIO_reclaim operation on
the device does not cause the calling task to block. If there are no frames
available, Dxx_ready returns FALSE. This informs the calling task that a
call to SIO_get, SIO_put, or SIO_reclaim for that device would result in
blocking.

Dxx_ready registers the device’s ready semaphore with the SIO_select
semaphore sem. In cases where SIO_select calls Dxx_ready for each of
several devices, each device registers its own ready semaphore with the
unique SIO_select semaphore. The first device that becomes ready calls
SEM_post on the semaphore.

SIO_select calls Dxx_ready twice; the second time, sem = NULL. This
results in each device’s ready semaphore being set to NULL. This
information is needed by the Dxx HWI that normally calls SEM_post on
the device’s ready semaphore when I/O is completed; if the device ready
semaphore is NULL, the semaphore should not be posted.

See Also SIO_select

Dxx_ready Check if device is ready for I/O
2-48

Dxx_reclaim
C Interface

Syntax status = Dxx_reclaim(device);

Parameters DEV_Handle device; /* device handle */

Return Value Int status; /* result of operation */

Assembly Interface none

Description Dxx_reclaim is used to request a buffer back from a device. Dxx_reclaim
does not return until a buffer is available for the client in the
device->fromdevice queue. If the device was opened in DEV_INPUT
mode then Dxx_reclaim blocks until an input frame has been filled with
the number of MADUs requested, then processes the data in the frame
and place it on the device->fromdevice queue. If the device was opened
in DEV_OUTPUT mode, Dxx_reclaim blocks until an output frame has
been emptied, then place the frame on the device->fromdevice queue. In
either mode, Dxx_reclaim blocks until it has a frame to place on the
device->fromdevice queue, or until the stream’s timeout expires, and it
returns an error code indicating success (SYS_OK) or failure.

If device->timeout is not equal to SYS_FOREVER or 0, the task
suspension time can be up to 1 system clock tick less than timeout due
to granularity in system timekeeping.

If device->timeout is SYS_FOREVER, the task remains suspended until
a frame is available on the device’s fromdevice queue. If timeout is 0,
Dxx_reclaim returns immediately.

If timeout expires before a buffer is available on the device’s fromdevice
queue, Dxx_reclaim returns SYS_ETIMEOUT. Otherwise Dxx_reclaim
returns SYS_OK for success, or an error code.

If Dxx_reclaim fails due to a time out or any other reason, it does not
place a frame on the device->fromdevice queue.

Dxx_reclaim is used in conjunction with Dxx_issue to operate a stream.
The Dxx_issue call sends a buffer to a stream, and the Dxx_reclaim
retrieves a buffer from a stream. Dxx_issue performs processing for
output streams, and provides empty frames for input streams. The
Dxx_reclaim recovers empty frames in output streams, and retrieves full
frames and performs processing for input streams.

Dxx_reclaim Retrieve a buffer from a device
Application Program Interface 2-49

Dxx_reclaim
SIO_reclaim calls Dxx_reclaim, then it gets the frame from the
device->fromdevice queue.

In a stacking device, Dxx_reclaim must preserve all information in the
DEV_Frame object except link and misc. On a device opened for
DEV_INPUT, Dxx_reclaim should preserve the buffer data (transformed
as necessary), the size (adjusted as appropriate by the transform), and
the arg field. On a device opened for DEV_OUTPUT, Dxx_reclaim should
preserve the size and the arg field. The DEV_Frame objects themselves
do not need to be preserved, only the information they contain.

Dxx_reclaim must preserve buffers sent to the device. Dxx_reclaim
should never return a buffer that was not received from the client through
the Dxx_issue call. Dxx_reclaim always preserves the ordering of the
buffers sent to the device, and returns with the oldest buffer that was
issued to the device.

Constraints and
Calling Context

❏ device must be bound to a device by a prior call to Dxx_open.

See Also Dxx_issue
SIO_issue
SIO_get
SIO_put
2-50

DGN Driver
Description The DGN driver manages a class of software devices known as
generators, which produce an input stream of data through successive
application of some arithmetic function. DGN devices are used to
generate sequences of constants, sine waves, random noise, or other
streams of data defined by a user function.The number of active
generator devices in the system is limited only by the availability of
memory.

Configuring a
DGN Device

To add a DGN device, right-click on the DGN - Software Generator Driver
icon and select Insert DGN. From the Object menu, choose Rename and
type a new name for the DGN device. Open the DGN Object Properties
dialog for the device you created and modify its properties.

Configuration
Properties

The following list shows the properties that can be configured in a
DSP/BIOS TextConf script, along with their types and default values. For
details, see the DGN Object Properties heading. For descriptions of data
types, see Section 1.4, DSP/BIOS TextConf Overview, page 1-4.

Instance Configuration Parameters.

DGN Driver Software generator driver

Name Type Default (Enum Options)

comment String "<add comments here>"

device EnumString "user" ("sine", "random", "constant",
"printHex", or "printInt")

useDefaultParam Bool false

deviceId Arg prog.extern("DGN_USER", "asm")

constant Numeric 1

seedValue Int32 1

lowerLimit Numeric -32767

upperLimit Numeric 32767

gain Numeric 32767

frequency Numeric 1

phase Numeric 0

rate Int32 256

fxn Extern prog.extern("FXN_F_nop")

arg Arg 0x00000000
Application Program Interface 2-51

DGN Driver
Data Streaming DGN generator devices can be opened for input data streaming only;
generators cannot be used as output devices.

The DGN driver places no inherent restrictions on the size or memory
segment of the data buffers used when streaming from a generator
device. Since generators are fabricated entirely in software and do not
overlap I/O with computation, no more than one buffer is required to
attain maximum performance.

Since DGN generates data “on demand,” tasks do not block when calling
SIO_get, SIO_put, or SIO_reclaim on a DGN data stream. High-priority
tasks must, therefore, be careful when using these streams since lower-
or even equal-priority tasks do not get a chance to run until the high-
priority task suspends execution for some other reason.

DGN Driver Properties There are no global properties for the DGN driver manager.

DGN Object Properties The following properties can be set for a DGN device on the DGN Object
Properties dialog in the Configuration Tool or in a DSP/BIOS TextConf
script. To create a DGN device object in a configuration script, use the
following syntax:

var myDgn = DGN.create("myDgn");
The DSP/BIOS TextConf examples assume the myDgn object has been
created as shown.

❏ comment. Type a comment to identify this object.
TextConf Name: comment Type: String

Example: myDgn.comment = "DGN device";
❏ Device category. The device category (user, sine, random,

constant, printHex, or printInt) determines the type of data stream
produced by the device. A sine, random, or constant device can be
opened for input data streaming only. A printHex or printInt device
can be opened for output data streaming only.

� user. Uses a custom function to produce or consume a data
stream.

� sine. Produce a stream of sine wave samples.

� random. Produces a stream of random values.

� constant. Produces a constant stream of data.

� printHex. Writes the stream data buffers to the trace buffer in
hexadecimal format.
2-52

DGN Driver
� printInt. Writes the stream data buffers to the trace buffer in
integer format.

TextConf Name: device Type: EnumString
Options: "user", "sine", "random", "constant", "printHex",

or "printInt"
Example: myDgn.device = "user";

❏ Use default parameters. Check this box if you want to use the
default parameters shown in this dialog for the Device category you
selected.
TextConf Name: useDefaultParam Type: Bool

Example: myDgn.useDefaultParam = false;
❏ Device ID. This field is set automatically when you select a Device

category.
TextConf Name: deviceId Type: Arg

Example: myDgn.deviceId =
prog.extern("DGN_USER", "asm");

❏ Constant value. The constant value to be generated if the Device
category is constant.
TextConf Name: constant Type: Numeric

Example: myDgn.constant = 1;
❏ Seed value. The initial seed value used by an internal pseudo-

random number generator if the Device category is random. Used to
produce a uniformly distributed sequence of numbers ranging
between Lower limit and Upper limit.
TextConf Name: seedValue Type: Int32

Example: myDgn.seedValue = 1;
❏ Lower limit. The lowest value to be generated if the Device category

is random.
TextConf Name: lowerLimit Type: Numeric

Example: myDgn.lowerLimit = -32767;
❏ Upper limit. The highest value to be generated if the Device

category is random.
TextConf Name: upperLimit Type: Numeric

Example: myDgn.upperLimit = 32767;
❏ Gain. The amplitude scaling factor of the generated sine wave if the

Device category is sine. This factor is applied to each data point. To
improve performance, the sine wave magnitude (maximum and
minimum) value is approximated to the nearest power of two. This is
done by computing a shift value by which each entry in the table is
Application Program Interface 2-53

DGN Driver
right-shifted before being copied into the input buffer. For example, if
you set the Gain to 100, the sine wave magnitude is 128, the nearest
power of two.
TextConf Name: gain Type: Numeric

Example: myDgn.gain = 32767;
❏ Frequency. The frequency of the generated sine wave (in cycles per

second) if the Device category is sine. DGN uses a static (256 word)
sine table to approximate a sine wave. Only frequencies that divide
evenly into 256 can be represented exactly with DGN. A “step” value
is computed at open time for stepping through this table:

 step = (256 * Frequency / Rate)
TextConf Name: frequency Type: Numeric

Example: myDgn.frequency = 1;
❏ Phase. The phase of the generated sine wave (in radians) if the

Device category is sine.
TextConf Name: phase Type: Numeric

Example: myDgn.phase = 0;
❏ Sample rate. The sampling rate of the generated sine wave (in

sample points per second) if the Device category is sine.
TextConf Name: rate Type: Int32

Example: myDgn.rate = 256;
❏ User function. If the Device category is user, specifies the function

to be used to compute the successive values of the data sequence
in an input device, or to be used to process the data stream, in an
output device. If this function is written in C, use a leading underscore
before the C function name. (The Configuration Tool generates
assembly code which must use the leading underscore when
referencing C functions or labels.)
TextConf Name: fxn Type: Extern

Example: myDgn.fxn = prog.extern("usrFxn");
❏ User function argument. An argument to pass to the User function.

A user function must have the following form:

 fxn(Arg arg, Ptr buf, Uns nmadus)
where buf contains the values generated or to be processed. buf and
nmadus correspond to the buffer address and buffer size (in
MADUs), respectively, for an SIO_get operation.
TextConf Name: arg Type: Arg

Example: myDgn.arg = prog.extern("myArg");
2-54

DGS Driver
Description The DGS driver manages a class of stackable devices which compress
or expand a data stream by applying a user-supplied function to each
input or output buffer. This driver might be used to pack data buffers
before writing them to a disk file or to unpack these same buffers when
reading from a disk file. All (un)packing must be completed on frame
boundaries as this driver (for efficiency) does not maintain remainders
across I/O operations.

On opening a DGS device by name, DGS uses the unmatched portion of
the string to recursively open an underlying device.

This driver requires a transform function and a packing/unpacking ratio
which are used when packing/unpacking buffers to/from the underlying
device.

Configuring a DGS
Device

To add a DGS device, right-click on the User-defined Devices icon in the
Configuration Tool, and select Insert UDEV. From the Object menu,
choose Rename and type a new name for the device. Open the DEV
Object Properties dialog for the device you created and modify its
properties as follows.

❏ init function. Type 0 (zero).

❏ function table ptr. Type _DGS_FXNS

❏ function table type. DEV_Fxns

❏ device id. Type 0 (zero).

❏ device params ptr. Type 0 (zero) to use the default parameters. To
use different values, you must declare a DGS_Params structure (as
described after this list) containing the values to use for the
parameters.

DGS_Params is defined in dgs.h as follows:

/* ======== DGS_Params ======== */
typedef struct DGS_Params { /* device parameters
*/
 Fxn createFxn;
 Fxn deleteFxn;
 Fxn transFxn;
 Arg arg;
 Int num;
 Int den;
} DGS_Params;

DGS Driver Stackable gather/scatter driver
Application Program Interface 2-55

DGS Driver
The device parameters are:

❏ create function. Optional, default is NULL. Specifies a function that
is called to create and/or initialize a transform specific object. If non-
NULL, the create function is called in DGS_open upon creating the
stream with argument as its only parameter. The return value of the
create function is passed to the transform function.

❏ delete function. Optional, default is NULL. Specifies a function to be
called when the device is closed. It should be used to free the object
created by the create function.

❏ transform function. Required, default is localcopy. Specifies the
transform function that is called before calling the underlying device's
output function in output mode and after calling the underlying
device’s input function in input mode. Your transform function should
have the following interface:

dstsize = myTrans(Arg arg, Void *src, Void *dst, Int srcsize)
where arg is an optional argument (either argument or created by the
create function), and *src and *dst specify the source and destination
buffers, respectively. srcsize specifies the size of the source buffer
and dstsize specifies the size of the resulting transformed buffer
(srcsize * numerator/denominator).

❏ arg. Optional argument, default is 0. If the create function is non-
NULL, the arg parameter is passed to the create function and the
create function's return value is passed as a parameter to the
transform function; otherwise, argument is passed to the transform
function.

❏ num and den (numerator and denominator). Required, default is 1
for both parameters. These parameters specify the size of the
transformed buffer. For example, a transformation that compresses
two 32-bit words into a single 32-bit word would have numerator = 1
and denominator = 2 since the buffer resulting from the
transformation is 1/2 the size of the original buffer.

Transform Functions The following transform functions are already provided with the DGS
driver:

❏ u32tou8/u8tou32. These functions provide conversion to/from
packed unsigned 8-bit integers to unsigned 32-bit integers. The
buffer must contain a multiple of 4 number of 32-bit/8-bit unsigned
values.

❏ u16tou32/u32tou16. These functions provide conversion to/from
packed unsigned 16-bit integers to unsigned 32-bit integers. The
buffer must contain an even number of 16-bit/32-bit unsigned values.
2-56

DGS Driver
❏ i16toi32/i32toi16. These functions provide conversion to/from
packed signed 16-bit integers to signed 32-bit integers. The buffer
must contain an even number of 16-bit/32-bit integers.

❏ u8toi16/i16tou8. These functions provide conversion to/from a
packed 8-bit format (two 8-bit words in one 16-bit word) to a one word
per 16 bit format.

❏ i16tof32/f32toi16. These functions provide conversion to/from
packed signed 16-bit integers to 32-bit floating point values. The
buffer must contain an even number of 16-bit integers/32-bit Floats.

❏ localcopy. This function simply passes the data to the underlying
device without packing or compressing it.

Data Streaming DGS devices can be opened for input or output. DGS_open allocates
buffers for use by the underlying device. For input devices, the size of
these buffers is (bufsize * numerator) / denominator. For output devices,
the size of these buffers is (bufsize * denominator) / numerator. Data is
transformed into or out of these buffers before or after calling the
underlying device’s output or input functions respectively.

You can use the same stacking device in more that one stream, provided
that the terminating device underneath it is not the same. For example, if
u32tou8 is a DGS device, you can create two streams dynamically as
follows:

stream = SIO_create("/u32tou8/codec", SIO_INPUT, 128, NULL);
...
stream = SIO_create("/u32tou8/port", SIO_INPUT, 128, NULL);

You can also create the streams with the Configuration Tool. To do that,
add two new SIO objects. Enter /codec (or any other configured terminal
device) as the Device Control String for the first stream. Then select the
DGS device configured to use u32tou8 in the Device property. For the
second stream, enter /port as the Device Control String. Then select the
DGS device configured to use u32tou8 in the Device property.
Application Program Interface 2-57

DGS Driver
Example The following code example declares DGS_PRMS as a DGS_Params
structure:

#include <dgs.h>

DGS_Params DGS_PRMS {
 NULL, /* optional create function */
 NULL, /* optional delete function */
 u32tou8, /* required transform function */
 0, /* optional argument */
 4, /* numerator */
 1 /* denominator */
}
By typing _DGS_PRMS for the Parameters property of a device, the
values above are used as the parameters for this device.

See Also DTR Driver
2-58

DHL Driver
Description The DHL driver manages data streaming between the host and the DSP.
Each DHL device has an underlying HST object. The DHL device allows
the target program to send and receive data from the host through an
HST channel using the SIO streaming API rather than using pipes. The
DHL driver copies data between the stream’s buffers and the frames of
the pipe in the underlying HST object.

Configuring a DHL
Device

To add a DHL device you must first add an HST object and make it
available to the DHL driver. Right click on the HST – Host Channel
Manager icon and add a new HST object. Open the Properties dialog of
the HST object and put a checkmark in the Make this channel available
for a new DHL device box. If you plan to use this channel for an output
DHL device, make sure that you select output as the mode of the HST
channel.

Once there are HST channels available for DHL, right click on the DHL –
Host Link Driver icon and select Insert DHL. You can rename the DHL
device and then open the Properties dialog to select which HST channel,
of those available for DHL, is used by this DHL device. If you plan to use
the DHL device for output to the host, be sure to select an HST channel
whose mode is output. Otherwise, select an HST channel with input
mode.

Note that once you have selected an HST channel to be used by a DHL
device, that channel is now owned by the DHL device and is no longer
available to other DHL channels.

Configuration
Properties

The following list shows the properties that can be configured in a
DSP/BIOS TextConf script, along with their types and default values. For
details, see the DHL Driver Properties and DHL Object Properties
headings. For descriptions of data types, see Section 1.4, DSP/BIOS
TextConf Overview, page 1-4.

Module Configuration Parameters.

DHL Driver Host link driver

Name Type Default

OBJMEMSEG Reference prog.get("IDRAM")
Application Program Interface 2-59

DHL Driver
Instance Configuration Parameters.

Data Streaming DHL devices can be opened for input or output data streaming. A DHL
device used by a stream created in output mode must be associated with
an output HST channel. A DHL device used by a stream created in input
mode must be associated with an input HST channel. If these conditions
are not met, a SYS_EBADOBJ error is reported in the system log during
startup when the BIOS_start routine calls the DHL_open function for the
device.

To use a DHL device in a stream created with the Configuration Tool,
select the device from the drop-down list in the Device box of its
Properties dialog.

To use a DHL device in a stream created dynamically with SIO_create,
use the DHL device name (as it appears in the Configuration Tool)
preceded by “/” (forward slash) as the first parameter of SIO_create:

stream = SIO_create(“/dhl0”, SIO_INPUT, 128, NULL);
To enable data streaming between the target and the host through
streams that use DHL devices, you must bind and start the underlying
HST channels of the DHL devices from the Host Channels Control in
Code Composer Studio, just as you would with other HST objects.

DHL devices copy the data between the frames in the HST channel’s
pipe and the stream’s buffers. In input mode, it is the size of the frame in
the HST channel that drives the data transfer. In other words, when all the
data in a frame has been transferred to stream buffers, the DHL device
returns the current buffer to the stream’s fromdevice queue, making it
available to the application. (If the stream buffers can hold more data than
the HST channel frames, the stream buffers always come back partially
full.) In output mode it is the opposite: the size of the buffers in the stream
drives the data transfer so that when all the data in a buffer has been
transferred to HST channel frames, the DHL device returns the current
frame to the channel’s pipe. In this situation, if the HST channel’s frames
can hold more data than the stream’s buffers, the frames always return
to the HST pipe partially full.

Name Type Default (Enum Options)

comment String "<add comments here>"

hstChannel Reference prog.get("myHST")

mode EnumString "output" ("input")
2-60

DHL Driver
The maximum performance in a DHL device is obtained when you
configure the frame size of its HST channel to match the buffer size of the
stream that uses the device. The second best alternative is to configure
the stream buffer (or HST frame) size to be larger than, and a multiple of,
the size of the HST frame (or stream buffer) size for input (or output)
devices. Other configuration settings also work since DHL does not
impose restrictions on the size of the HST frames or the stream buffers,
but performance is reduced.

Constraints ❏ HST channels used by DHL devices are not available for use with
PIP APIs.

❏ Multiple streams cannot use the same DHL device. If more than one
stream attempts to use the same DHL device, a SYS_EBUSY error
is reported in the system LOG during startup when the BIOS_start
routing calls the DHL_open function for the device.

DHL Driver Properties The following global property can be set for the DHL - Host Link Driver on
the DHL Properties dialog in the Configuration Tool or in a DSP/BIOS
TextConf script:

❏ Object memory. Enter the memory segment from which to allocate
DHL objects. Note that this does not affect the memory segments
from where the underlying HST object or its frames are allocated.
The memory segment for HST objects and their frames can be set in
the HST Manager Properties and HST Object Properties dialogs of
the Configuration Tool.
TextConf Name: OBJMEMSEG Type: Ref

Example: DHL.OBJMEMSEG = prog.get("myMEM");
DHL Object Properties The following properties can be set for a DHL device using the DHL

Object Properties dialog in the Configuration Tool or in a DSP/BIOS
TextConf script. To create a DHL device object in a configuration script,
use the following syntax:

var myDhl = DHL.create("myDhl");
The DSP/BIOS TextConf examples assume the myDhl object has been
created as shown.

❏ comment. Type a comment to identify this object.
TextConf Name: comment Type: String

Example: myDhl.comment = "DHL device";
Application Program Interface 2-61

DHL Driver
❏ Underlying HST Channel. Select the underlying HST channel from
the drop-down list. The HST Object Properties dialog must have a
checkmark in the Make this channel available for a new DHL device
box in order for that HST object to be listed here.
TextConf Name: hstChannel Type: Ref

Example: myDhl.hstChannel =
prog.get("myHST");

❏ Mode. This informational property shows the mode (input or output)
of the underlying HST channel. This becomes the mode of the DHL
device.
TextConf Name: mode Type: EnumString

Options: "input", "output"
Example: myDhl.mode = "output";
2-62

DIO Adapter
Description The DIO adapter allows GIO-compliant mini-drivers to be used through
SIO module functions. Such mini-drivers are described in the DSP/BIOS
Device Driver Developer's Guide (SPRU616).

Configuring a Mini-
driver

To add a DIO device, right-click on the User-defined Devices icon in the
Configuration Tool, and select Insert UDEV. From the Object menu,
choose Rename and type a new name for the device. Open the DEV
Object Properties dialog for the device you created and modify its
properties as follows.

❏ init function. Type 0 (zero).

❏ function table ptr. Type _DIO_FXNS

❏ function table type. GIO_Fxns

❏ device id. Type 0 (zero).

❏ device params ptr. Type 0 (zero).

Once there are UDEV objects with the GIO_Fxns function table type, you
can right click on the DIO – Class Driver icon and select Insert DIO. You
can rename the DIO device and then open its Properties dialog.

DIO Configuration
Properties

The following list shows the properties that can be configured in a
DSP/BIOS TextConf script, along with their types and default values. For
details, see the DIO Driver Properties and DIO Object Properties
headings. For descriptions of data types, see Section 1.4, DSP/BIOS
TextConf Overview, page 1-4.

Module Configuration Parameters

Instance Configuration Parameters.

DIO Adapter SIO Mini-driver adapter

Name Type Default

OBJMEMSEG Reference prog.get("IDRAM")

STATICCREATE Bool false

Name Type Default

comment String "<add comments here>"

useCallBackFxn Bool false

deviceName Reference prog.get("UDEV0")

chanParams Arg 0x00000000
Application Program Interface 2-63

DIO Adapter
Description The mini-drivers described in the DSP/BIOS Device Driver Developer's
Guide (SPRU616) are intended for use with the GIO module. However,
the DIO driver allows them to be used with the SIO module instead of the
GIO module.

The following figure summarizes how modules are related in an
application that uses the DIO driver and a mini-driver:

DIO Driver Properties The following global properties can be set for the DIO - Class Driver on
the DIO Properties dialog in the Configuration Tool or in a DSP/BIOS
TextConf script:

❏ Object memory. Enter the memory segment from which to allocate
DIO objects.
TextConf Name: OBJMEMSEG Type: Ref

Example: DIO.OBJMEMSEG = prog.get("myMEM");
❏ Create All DIO Objects Statically. Check this box if you want DIO

objects to be created completely statically. If you leave this box
unchecked, MEM_calloc is used internally to allocate space for DIO
objects. If you check this box, you must create all SIO and DIO
objects using the Configuration Tool or DSP/BIOS TextConf. Any

Application
TSK or SW I threads

SIO Module API

DIO adapter

IOM mini-driver
(IOM_Fxns function table)

DEV module
(DEV_match, DEV_Fxns,

DEV_Handle, DEV_Callback)
2-64

DIO Adapter
calls to SIO_create fail. Checking this box reduces the application’s
code size (so long as the application does not call MEM_alloc or its
related functions elsewhere).
TextConf Name: STATICCREATE Type: Bool

Example: DIO.STATICCREATE = false;
DIO Object Properties The following properties can be set for a DIO device using the DIO Object

Properties dialog in the Configuration Tool or in a DSP/BIOS TextConf
script. To create a DIO device object in a configuration script, use the
following syntax:

var myDio = DIO.create("myDio");
The DSP/BIOS TextConf examples assume the myDio object has been
created as shown.

❏ comment. Type a comment to identify this object.
TextConf Name: comment Type: String

Example: myDio.comment = "DIO device";
❏ use callback version of DIO function table. Check this box if you

want to use DIO with a callback function. Typically, the callback
function is SWI_andnHook or a similar function that posts a SWI. Do
not check this box if you want to use DIO with a TSK thread.
TextConf Name: useCallBackFxn Type: Bool

Example: myDio.useCallBackFxn = false;
❏ fxnsTable. This informational property shows the DIO function table

used as a result of the settings in the "use callback version of DIO
function table" and "Create ALL DIO Objects Statically" checkboxes.
The four possible setting combinations of these two checkboxes
correspond to the four function tables: DIO_tskDynamicFxns,
DIO_tskStaticFxns, DIO_cbDynamicFxns, and DIO_cbStaticFxns.
TextConf Name: N/A

❏ device name. Name of the device to use with this DIO object.
TextConf Name: deviceName Type: Ref

Example: myDio.deviceName = prog.get("UDEV0");
❏ channel parameters. This field allows you to pass an optional

argument to the mini-driver create function. See the optArgs
parameter of the GIO_create function.
TextConf Name: chanParams Type: Arg

Example: myDio.chanParams = 0x00000000;
Application Program Interface 2-65

DNL Driver
Description The DNL driver manages “empty” devices which nondestructively
produce or consume data streams. The number of empty devices in the
system is limited only by the availability of memory; DNL instantiates a
new object representing an empty device on opening, and frees this
object when the device is closed.

The DNL driver does not define device ID values or a params structure
which can be associated with the name used when opening an empty
device. The driver also ignores any unmatched portion of the name
declared in the system configuration file when opening a device.

Configuring a
DNL Device

To add a DNL device, right-click on the User-defined Devices icon in the
Configuration Tool, and select Insert UDEV. From the Object menu,
choose Rename and type a new name for the device. Open the DEV
Object Properties dialog for the device you created and modify its
properties as follows.

❏ init function. Type 0 (zero).

❏ function table ptr. Type _DNL_FXNS

❏ function table type. DEV_Fxns

❏ device id. Type 0 (zero).

❏ device params ptr. Type 0 (zero).

Data Streaming DNL devices can be opened for input or output data streaming. Note that
these devices return buffers of undefined data when used for input.

The DNL driver places no inherent restrictions on the size or memory
segment of the data buffers used when streaming to or from an empty
device. Since DNL devices are fabricated entirely in software and do not
overlap I/O with computation, no more that one buffer is required to attain
maximum performance.

Tasks do not block when using SIO_get, SIO_put, or SIO_reclaim with a
DNL data stream.

DNL Driver Null driver
2-66

DOV Driver
Description The DOV driver manages a class of stackable devices that generate an
overlapped stream by retaining the last N minimum addressable data
units (MADUs) of each buffer input from an underlying device. These N
points become the first N points of the next input buffer. MADUs are
equivalent to a 8-bit word in the data address space of the processor on
C6x platforms.

Configuring a
DOV Device

To add a DOV device, right-click on the User-defined Devices icon in the
Configuration Tool, and select Insert UDEV. From the Object menu,
choose Rename and type a new name for the device. Open the DEV
Object Properties dialog for the device you created and modify its
properties as follows.

❏ init function. Type 0 (zero).

❏ function table ptr. Type _DOV_FXNS

❏ function table type. DEV_Fxns

❏ device id. Type 0 (zero).

❏ device params ptr. Type 0 (zero) or the length of the overlap as
described after this list.

If you enter 0 for the Device ID, you need to specify the length of the
overlap when you create the stream with SIO_create by appending the
length of the overlap to the device name. If you create the stream with the
Configuration Tool instead, enter the length of the overlap in the Device
Control String for the stream.

For example, if you create a device called overlap with the Configuration
Tool, and enter 0 as its Device ID, you can open a stream with:

stream = SIO_create("/overlap16/codec", SIO_INPUT,
128,NULL);

This causes SIO to open a stack of two devices. /overlap16 designates
the device called overlap, and 16 tells the driver to use the last 16 MADUs
of the previous frame as the first 16 MADUs of the next frame. codec
specifies the name of the physical device which corresponds to the actual
source for the data.

If, on the other hand you add a device called overlap and enter 16 as its
Device ID, you can open the stream with:

stream = SIO_create("/overlap/codec", SIO_INPUT, 128, NULL);

DOV Driver Stackable overlap driver
Application Program Interface 2-67

DOV Driver
This causes the SIO Module to open a stack of two devices. /overlap
designates the device called overlap, which you have configured to use
the last 16 MADUs of the previous frame as the first 16 MADUs of the
next frame. As in the previous example, codec specifies the name of the
physical device that corresponds to the actual source for the data.

If you create the stream with the Configuration Tool and enter 16 as the
Device ID property, leave the Device Control String blank.

In addition to the Configuration Tool properties, you need to specify the
value that DOV uses for the first overlap, as in the example:

#include <dov.h>

static DOV_Config DOV_CONFIG = {
 (Char) 0
}
DOV_Config *DOV = &DOV_CONFIG;

If floating point 0.0 is required, the initial value should be set to (Char) 0.0.

Data Streaming DOV devices can only be opened for input.

The overlap size, specified in the string passed to SIO_create, must be
greater than 0 and less than the size of the actual input buffers.

DOV does not support any control calls. All SIO_ctrl calls are passed to
the underlying device.

You can use the same stacking device in more that one stream, provided
that the terminating device underneath it is not the same. For example, if
overlap is a DOV device with a Device ID of 0:

stream = SIO_create("/overlap16/codec", SIO_INPUT, 128, NULL);
...
stream = SIO_create("/overlap4/port", SIO_INPUT, 128, NULL);
or if overlap is a DOV device with positive Device ID:

stream = SIO_create("/overlap/codec", SIO_INPUT, 128, NULL);
...
stream = SIO_create("/overlap/port", SIO_INPUT, 128, NULL);

To create the same streams with the Configuration Tool (rather than
dynamically with SIO_create), add SIO objects with the Configuration
Tool. Enter the string that identifies the terminating device preceded by “/”
(forward slash) in the SIO object’s Device Control Strings (for example,
/codec, /port). Then select the stacking device (overlap, overlapio) from
the Device property.

See Also DTR Driver
DGS Driver
2-68

DPI Driver
Description The DPI driver is a software device used to stream data between tasks
on a single processor. It provides a mechanism similar to that of UNIX
named pipes; a reader and a writer task can open a named pipe device
and stream data to/from the device. Thus, a pipe simply provides a
mechanism by which two tasks can exchange data buffers.

Any stacking driver can be stacked on top of DPI. DPI can have only one
reader and one writer task.

It is possible to delete one end of a pipe with SIO_delete and recreate
that end with SIO_create without deleting the other end.

Configuring a
DPI Device

To add a DPI device, right-click on the DPI - Pipe Driver folder, and select
Insert DPI. From the Object menu, choose Rename and type a new name
for the DPI device.

Configuration
Properties

The following list shows the properties that can be configured in a
DSP/BIOS TextConf script, along with their types and default values. For
details, see the DPI Object Properties heading. For descriptions of data
types, see Section 1.4, DSP/BIOS TextConf Overview, page 1-4.

Instance Configuration Parameters.

Data Streaming After adding a DPI device called pipe0 in the Configuration Tool, you can
use it to establish a communication pipe between two tasks. You can do
this dynamically, by calling in the function for one task:

inStr = SIO_create("/pipe0", SIO_INPUT, bufsize, NULL);
...
SIO_get(inStr, bufp);
And in the function for the other task:

outStr = SIO_create("/pipe0", SIO_OUTPUT, bufsize, NULL);
...
SIO_put(outStr, bufp, nmadus);
or by adding with the Configuration Tool two streams that use pipe0, one
in output mode (outStream) and the other one in input mode(inStream).
Then, from the reader task call:

DPI Driver Pipe driver

Name Type Default

comment String "<add comments here>"

allowVirtual Bool false
Application Program Interface 2-69

DPI Driver
extern SIO_Obj inStream;
SIO_handle inStr = &inStream
...
SIO_get(inStr, bufp);
and from the writer task call:

extern SIO_Obj outStream;
SIO_handle outStr = &outStream
...
SIO_put(outStr, bufp, nmadus);
The DPI driver places no inherent restrictions on the size or memory
segments of the data buffers used when streaming to or from a pipe
device, other than the usual requirement that all buffers be the same size.

Tasks block within DPI when using SIO_get, SIO_put, or SIO_reclaim if
a buffer is not available. SIO_select can be used to guarantee that a call
to one of these functions do not block. SIO_select can be called
simultaneously by both the input and the output sides.

DPI and the
SIO_ISSUERECLAIM
Streaming Model

In the SIO_ISSUERECLAIM streaming model, an application reclaims
buffers from a stream in the same order as they were previously issued.
To preserve this mechanism of exchanging buffers with the stream, the
default implementation of the DPI driver for ISSUERECLAIM copies the
full buffers issued by the writer to the empty buffers issued by the reader.

A more efficient version of the driver that exchanges the buffers across
both sides of the stream, rather than copying them, is also provided. To
use this variant of the pipe driver for ISSUERECLAIM, edit the C source
file dpi.c provided in the C:\ti\c6000\bios\src\drivers folder. Comment out
the following line:

#define COPYBUFS
Rebuild dpi.c. Link your application with this version of dpi.obj instead of
the default one. To do this, add this version of dpi.obj to your project
explicitly. This buffer exchange alters the way in which the streaming
mechanism works. When using this version of the DPI driver, the writer
reclaims first the buffers issued by the reader rather than its own issued
buffers, and vice versa.

This version of the pipe driver is not suitable for applications in which
buffers are broadcasted from a writer to several readers. In this situation
it is necessary to preserve the ISSUERECLAIM model original
mechanism, so that the buffers reclaimed on each side of a stream are
the same that were issued on that side of the stream, and so that they are
reclaimed in the same order that they were issued. Otherwise, the writer
reclaims two or more different buffers from two or more readers, when the
number of buffers it issued was only one.
2-70

DPI Driver
Converting a Single
Processor Application
to a Multiprocessor
Application

It is trivial to convert a single-processor application using tasks and pipes
into a multiprocessor application using tasks and communication
devices. If using SIO_create, the calls in the source code would change
to use the names of the communication devices instead of pipes. (If the
communication devices were given names like /pipe0, there would be no
source change at all.) If the streams were created with the Configuration
Tool instead, you would need to change the Device property for the
stream in the configuration template, save and rebuild your application
for the new configuration. No source change would be necessary.

Constraints Only one reader and one writer can open the same pipe.

DPI Driver Properties There are no global properties for the DPI driver manager.

DPI Object Properties The following property can be set for a DPI device in the DPI Object
Properties dialog on the Configuration Tool or in a DSP/BIOS TextConf
script. To create a DPI device object in a configuration script, use the
following syntax:

var myDpi = DPI.create("myDpi");
The DSP/BIOS TextConf examples assume the myDpi object has been
created as shown.

❏ comment. Type a comment to identify this object.
TextConf Name: comment Type: String

Example: myDpi.comment = "DPI device";
❏ Allow virtual instances of this device. Put a checkmark in this box

if you want to be able to use SIO_create to dynamically create
multiple streams to use this DPI device. DPI devices are used by SIO
stream objects, which you create with the DSP/BIOS Configuration
Tool or the SIO_create function.

If this box is checked, when you use SIO_create, you can create
multiple streams that use the same DPI driver by appending numbers
to the end of the name. For example, if the DPI object is named
"pipe", you can call SIO_create to create pipe0, pipe1, and pipe2.
Only integer numbers can be appended to the name.

If this box is not checked, when you use SIO_create, the name of the
SIO object must exactly match the name of the DPI object. As a
result, only one open stream can use the DPI object. For example, if
the DPI object is named "pipe", an attempt to use SIO_create to
create pipe0 fails.
TextConf Name: allowVirtual Type: Bool

Example: myDpi.allowVirtual = false;
Application Program Interface 2-71

DST Driver
Description This stacking driver can be used to input or output buffers that are larger
than the physical device can actually handle. For output, a single (large)
buffer is split into multiple smaller buffers which are then sent to the
underlying device. For input, multiple (small) input buffers are read from
the device and copied into a single (large) buffer.

Configuring a
DST Device

To add a DST device, right-click on the User-defined Devices icon in the
Configuration Tool, and select Insert UDEV. From the Object menu,
choose Rename and type a new name for the device. Open the DEV
Object Properties dialog for the device you created and modify its
properties as follows.

❏ init function. Type 0 (zero).

❏ function table ptr. Type _DST_FXNS

❏ function table type. DEV_Fxns

❏ device id. Type 0 (zero) or the number of small buffers
corresponding to a large buffer as described after this list.

❏ device params ptr. Type 0 (zero).

If you enter 0 for the Device ID, you need to specify the number of small
buffers corresponding to a large buffer when you create the stream with
SIO_create, by appending it to the device name.

Example 1: For example, if you create a user-defined device called split with the
Configuration Tool, and enter 0 as its Device ID property, you can open a
stream with:

stream = SIO_create("/split4/codec", SIO_INPUT, 1024, NULL);

This causes SIO to open a stack of two devices: /split4 designates the
device called split, and 4 tells the driver to read four 256-word buffers
from the codec device and copy the data into 1024-word buffers for your
application. codec specifies the name of the physical device which
corresponds to the actual source for the data.

Alternatively, you can create the stream with the Configuration Tool
(rather than by calling SIO_create at run-time). To do so, first create and
configure two user-defined devices called split and codec. Then, create
an SIO object. Type 4/codec as the Device Control String. Select split
from the Device list.

DST Driver Stackable split driver
2-72

DST Driver
Example 2: Conversely, you can open an output stream that accepts 1024-word
buffers, but breaks them into 256-word buffers before passing them to
/codec, as follows:

stream = SIO_create("/split4/codec", SIO_OUTPUT, 1024,
NULL);

To create this output stream with the Configuration Tool, you would follow
the steps for example 1, but would select output for the Mode property of
the SIO object.

Example 3: If, on the other hand, you add a device called split and enter 4 as its
Device ID, you need to open the stream with:

stream = SIO_create("/split/codec", SIO_INPUT, 1024, NULL);

This causes SIO to open a stack of two devices: /split designates the
device called split, which you have configured to read four buffers from
the codec device and copy the data into a larger buffer for your
application. As in the previous example, codec specifies the name of the
physical device that corresponds to the actual source for the data.

When you type 4 as the Device ID, you do not need to type 4 in the
Device Control String for an SIO object created with the Configuration
Tool. Type only/codec for the Device Control String.

Data Streaming DST stacking devices can be opened for input or output data streaming.

Constraints ❏ The size of the application buffers must be an integer multiple of the
size of the underlying buffers.

❏ This driver does not support any SIO_ctrl calls.
Application Program Interface 2-73

DTR Driver
Description The DTR driver manages a class of stackable devices known as
transformers, which modify a data stream by applying a function to each
point produced or consumed by an underlying device. The number of
active transformer devices in the system is limited only by the availability
of memory; DTR instantiates a new transformer on opening a device, and
frees this object when the device is closed.

Buffers are read from the device and copied into a single (large) buffer.

Configuring a
DTR Device

To add a DTR device, right-click on the User-defined Devices icon in the
Configuration Tool, and select Insert UDEV. From the Object menu,
choose Rename and type a new name for the device. Open the DEV
Object Properties dialog for the device you created and modify its
properties as follows.

❏ init function. Type 0 (zero).

❏ function table ptr. Type _DTR_FXNS

❏ function table type. DEV_Fxns

❏ device id. Type 0 (zero) or _DTR_multiply.

If you type 0, you need to supply a user function in the device
parameters. This function is called by the driver as follows to perform
the transformation on the data stream:

 if (user.fxn != NULL) {
 (*user.fxn)(user.arg, buffer, size);
 }

If you type _DTR_multiply, a data scaling operation is performed on
the data stream to multiply the contents of the buffer by the
scale.value of the device parameters.

❏ device params ptr. Enter the name of a DTR_Params structure
declared in your C application code. See the information following
this list for details.

DTR Driver Stackable streaming transformer driver
2-74

DTR Driver
The DTR_Params structure is defined in dtr.h as follows:

/* ======== DTR_Params ======== */
typedef struct { /* device parameters */
 struct {
 DTR_Scale value; /* scaling factor */
 } scale;
 struct {
 Arg arg; /* user-defined argument */
 Fxn fxn; /* user-defined function */
 } user;
} DTR_Params;
In the following code example, DTR_PRMS is declared as a
DTR_Params structure:

#include <dtr.h>
...
struct DTR_Params DTR_PRMS = {
 10.0,
 NULL,
 NULL
};
By typing _DTR_PRMS as the Parameters property of a DTR device, the
values above are used as the parameters for this device.

You can also use the default values that the driver assigns to these
parameters by entering _DTR_PARAMS for this property. The default
values are:

DTR_Params DTR_PARAMS = {
 { 1 }, /* scale.value */
 { (Arg)NULL, /* user.arg */
 (Fxn)NULL }, /* user.fxn */
};
scale.value is a floating-point quantity multiplied with each data point in
the input or output stream.

user.fxn and user.arg define a transformation that is applied to inbound
or outbound blocks of data, where buffer is the address of a data block
containing size points; if the value of user.fxn is NULL, no transformation
is performed at all.

if (user.fxn != NULL) {
 (*user.fxn)(user.arg, buffer, size);
}

Data Streaming DTR transformer devices can be opened for input or output and use the
same mode of I/O with the underlying streaming device. If a transformer
Application Program Interface 2-75

DTR Driver
is used as a data source, it inputs a buffer from the underlying streaming
device and then transforms this data in place. If the transformer is used
as a data sink, it outputs a given buffer to the underlying device after
transforming this data in place.

The DTR driver places no inherent restrictions on the size or memory
segment of the data buffers used when streaming to or from a
transformer device; such restrictions, if any, would be imposed by the
underlying streaming device.

Tasks do not block within DTR when using the SIO Module. A task can,
of course, block as required by the underlying device.
2-76

GIO Module
2.5 GIO Module

The GIO module is the Input/Output Module used with IOM mini-drivers
as described in DSP/BIOS Device Driver Developer's Guide (SPRU616).

Functions ❏ GIO_abort. Abort all pending input and output.

❏ GIO_control. Device specific control call.

❏ GIO_create. Allocate and initialize an GIO object.

❏ GIO_delete. Delete underlying mini-drivers and free up the GIO
object and any associated IOM packet structures.

❏ GIO_flush. Drain output buffers and discard any pending input.

❏ GIO_init. Initializes GIO module.

❏ GIO_read. Synchronous read command.

❏ GIO_submit. Submits a

❏ packet to the mini-driver.

❏ GIO_write. Synchronous write command.

Constants, Types,
and Structures

/* Modes for GIO_create */
#define IOM_INPUT 0x0001
#define IOM_OUTPUT 0x0002
#define IOM_INOUT (IOM_INPUT | IOM_OUTPUT)

/* IOM Status and Error Codes */
#define IOM_COMPLETED SYS_OK /* I/O successful */
#define IOM_PENDING 1 /* I/O queued and pending */
#define IOM_FLUSHED 2 /* I/O request flushed */
#define IOM_ABORTED 3 /* I/O aborted */
#define IOM_EBADIO -1 /* generic failure */
#define IOM_ETIMEOUT -2 /* timeout occurred */
#define IOM_ENOPACKETS -3 /* no packets available */
#define IOM_EFREE -4 /* unable to free resources */
#define IOM_EALLOC -5 /* unable to alloc resource */
#define IOM_EABORT -6 /* I/O aborted uncompleted*/
#define IOM_EBADMODE -7 /* illegal device mode */
#define IOM_EOF -8 /* end-of-file encountered */
#define IOM_ENOTIMPL -9 /* operation not supported */
#define IOM_EBADARGS -10 /* illegal arguments used */

/* Command codes */
#define IOM_READ 0
#define IOM_WRITE 1
#define IOM_ABORT 2
#define IOM_FLUSH 3
#define IOM_USER 128 /* 0-127 reserved for system */
Application Program Interface 2-77

GIO Module
/* Structure passed to GIO_create */
typedef struct GIO_Attrs {
 Int nPackets; /* number of asynch I/O packets */
 Uns timeout; /* for blocking (SYS_FOREVER) */
} GIO_Attrs;

/* Struct passed to GIO_submit for synchronous use*/
typedef struct GIO_AppCallback {
 GIO_TappCallback fxn;
 Ptr arg;
} GIO_AppCallback;

typedef struct GIO_Obj {
 IOM_Fxns *fxns; /* pointer to function table */
 Uns mode; /* create mode */
 Uns timeout; /* timeout for blocking */
 IOM_Packet syncPacket; /* for synchronous use */
 QUE_Obj freeList; /* frames for asynch I/O */
 Ptr syncObj; /* ptr to synchronization obj */
 Ptr mdChan; /* ptr to channel obj */
} GIO_Obj, *GIO_Handle;

typedef struct IOM_Fxns
{
 IOM_TmdBindDev mdBindDev;
 IOM_TmdControlChan mdControlChan;
 IOM_TmdCreateChan mdCreateChan;
 IOM_TmdDeleteChan mdDeleteChan;
 IOM_TmdSubmitChan mdSubmitChan;
 IOM_TmdUnBindDev mdUnBindDev;
} IOM_Fxns;

typedef struct IOM_Packet { /* frame object */
 QUE_Elem link; /* queue link */
 Ptr addr; /* buffer address */
 Uns size; /* buffer size */
 Arg misc; /* reserved for driver */
 Arg arg; /* user argument */
 Uns cmd; /* mini-driver command */
 Int status; /* status of command */
} IOM_Packet;

Configuration
Properties

The following list shows the properties that can be configured in a
DSP/BIOS TextConf script, along with their types and default values. For
details, see the GIO Manager Properties heading. For descriptions of
data types, see Section 1.4, DSP/BIOS TextConf Overview, page 1-4.
2-78

GIO Module
Module Configuration Parameters.

Description The GIO module provides a standard interface to mini-drivers for devices
such as UARTs, codecs, and video capture/display devices. The creation
of such mini-drivers is not covered in this manual; it is described in
DSP/BIOS Device Driver Developer's Guide (SPRU616).

The GIO module is independent of the actual mini-driver being used. It
allows the application to use a common interface for I/O requests. It also
handles response synchronization. It is intended as common "glue" to
bind applications to device drivers.

The following figure shows how modules are related in an application that
uses the GIO module and an IOM mini-driver:

The GIO module is the basis of communication between applications and
mini-drivers. The DEV module is responsible for maintaining the table of
device drivers that are present in the system. The GIO module obtains
device information by using functions such as DEV_match.

Name Type Default

ENABLEGIO Bool false

CREATEFXN Extern prog.extern("FXN_F_nop")

DELETEFXN Extern prog.extern("FXN_F_nop")

PENDFXN Extern prog.extern("FXN_F_nop"

POSTFXN Extern prog.extern("FXN_F_nop")

Application
typically TSK threads;

SW I threads possible with customization

GIO Module API DEV module
(device driver table)

IOM mini-driver
(IOM_Fxns function table)
Application Program Interface 2-79

GIO Module
GIO Manager
Properties

The following global properties can be set for the GIO module in the GIO
Manager Properties dialog of the Configuration Tool or in a DSP/BIOS
TextConf script:

❏ Enable General Input/Output Manager. Check this box to enable
use of the GIO module.
TextConf Name: ENABLEGIO Type: Bool

Example: GIO.ENABLEGIO = false;
❏ Create Function.The function the GIO module should use to create

a synchronization object. This function is typically SEM_create. If you
use another function, that function should a prototype that matches
that of SEM_create: Ptr CREATEFXN(Int count, Ptr attrs);
TextConf Name: CREATEFXN Type: Extern

Example: GIO.CREATEFXN =
prog.extern("SEM_create");

❏ Delete Function.The function the GIO module should use to delete
a synchronization object. This function is typically SEM_delete. If you
use another function, that function should a prototype that matches
that of SEM_delete: Void DELETEFXN(Ptr semHandle);
TextConf Name: DELETEFXN Type: Extern

Example: GIO.DELETEFXN =
prog.extern("SEM_delete");

❏ Pend Function.The function the GIO module should use to pend on
a synchronization object. This function is typically SEM_pend. If you
use another function, that function should a prototype that matches
that of SEM_pend: Bool PENDFXN(Ptr semHandle, Uns timeout);
TextConf Name: PENDFXN Type: Extern

Example: GIO.PENDFXN =
prog.extern("SEM_pend");

❏ Post Function.The function the GIO module should use to post a
synchronization object. This function is typically SEM_post. If you
use another function, that function should a prototype that matches
that of SEM_post: Void POSTFXN(Ptr semHandle);
TextConf Name: POSTFXN Type: Extern

Example: GIO.POSTFXN =
prog.extern("SEM_create");

GIO Object Properties GIO objects cannot be created statically. In order to create a GIO object,
the application should call GIO_create.
2-80

GIO_abort
C Interface

Syntax status = GIO_abort(gioChan);

Parameters GIO_handle gioChan; /* handle to an instance of the device */

Return Value Int status; /* returns IOM_COMPLETED if successful */

Assembly Interface none

Description An application calls GIO_abort to abort all input and output from the
device. When this call is made, all pending calls are completed with a
status of GIO_ABORTED. An application uses this call to return the
device to its initial state. Usually this is done in response to an
unrecoverable error at the device level.

GIO_abort returns IOM_COMPLETED upon successfully aborting all
input and output requests. If an error occurs, the device returns a
negative value. For a list of error values, see “Constants, Types, and
Structures” on page 77.

A call to GIO_abort results in a call to the mdSubmit function of the
associated mini-driver. The GIO_ABORT command is passed to the
mdSubmit function. The mdSubmit call is typically a blocking call, so
calling GIO_abort can result in blocking.

Constraints and
Calling Context

❏ This function can be called only after the device has been loaded and
initialized. The handle supplied should have been obtained with a
prior call to GIO_create.

❏ GIO_abort cannot be called from a SWI or HWI unless the underlying
mini-driver is a non-blocking driver and the GIO Manager properties
are set to use non-blocking synchronization methods.

Example /* abort all I/O requests given to the device*/
gioStatus = GIO_abort(gioChan);

GIO_abort Abort all pending input and output
Application Program Interface 2-81

GIO_control
C Interface
Syntax status = GIO_control(gioChan, cmd, args);

Parameters GIO_handle gioChan; /* handle to an instance of the device */
Int cmd; /* control functionality to perform */
Ptr args; /* data structure to pass control information */

Return Value Int status; /* returns IOM_COMPLETED if successful */

Assembly Interface none

Description An application calls GIO_control to configure or perform control
functionality on the communication channel.

The cmd parameter may be one of the command code constants listed
in “Constants, Types, and Structures” on page 77. A mini-driver may add
command codes for additional functionality.

The args parameter points to a data structure defined by the device to
allow control information to be passed between the device and the
application. This structure can be generic across a domain or specific to
a mini-driver. In some cases, this argument may point directly to a buffer
holding control data. In other cases, there may be a level of indirection if
the mini-driver expects a data structure to package many components of
data required for the control operation. In the simple case where no data
is required, this parameter may just be a predefined command value.

GIO_control returns IOM_COMPLETED upon success. If an error
occurs, the device returns a negative value. For a list of error values, see
“Constants, Types, and Structures” on page 77.

A call to GIO_control results in a call to the mdControl function of the
associated mini-driver. The mdControl call is typically a blocking call, so
calling GIO_control can result in blocking.

Constraints and
Calling Context

❏ This function can be called only after the device has been loaded and
initialized. The handle supplied should have been obtained with a
prior call to GIO_create.

❏ GIO_control cannot be called from a SWI or HWI unless the
underlying mini-driver is a non-blocking driver and the GIO Manager
properties are set to use non-blocking synchronization methods.

Example /* Carry out control/configuration on the device*/
gioStatus = GIO_control(gioChan, XXX_RESET, &args);

GIO_control Device specific control call
2-82

GIO_create
C Interface

Syntax gioChan = GIO_create(name, mode, *status, optArgs, *attrs)

Parameters String name /* name of the device to open */
Int mode /* mode in which the device is to be opened */
Int *status /* address location to place driver return status */
Ptr optArgs /* optional domain/device-specific arguments */
GIO_Attrs *attrs /* pointer to an GIO_Attrs structure */

Return Value GIO_handle gioChan; /* handle to an instance of the device */

Assembly Interface none

Description An application calls GIO_create to create an GIO_Obj object and open a
communication channel. This function initializes the I/O channel and
opens the lower-level device driver channel. The GIO_create call also
creates the synchronization objects it uses and stores them in the
GIO_Obj object.

The name argument is the name specified for the device when it was
created in the configuration or at runtime.

The mode argument specifies the mode in which the device is to be
opened. This may be IOM_INPUT, IOM_OUTPUT, or IOM_INOUT.

If the status returned by the device is non-NULL, a status value is placed
at the address specified by the status parameter.

The optArgs parameter is a pointer that may be used to pass device or
domain-specific arguments to the mini-driver. The contents at the
specified address are interpreted by the mini-driver in a device-specific
manner.

The attrs parameter is a pointer to a structure of type GIO_Attrs.

typedef struct GIO_Attrs {
 Int nPackets; /* number of asynch I/O packets */
 Uns timeout; /* for blocking calls (SYS_FOREVER) */
} GIO_Attrs;
The GIO_create call allocates a list of GIO_Packet items as specified by
the nPackets member of the GIO_Attrs structure and stores them in the
GIO_Obj object is creates.

GIO_create Allocate and initialize an GIO object
Application Program Interface 2-83

GIO_create
GIO_create returns a handle to the GIO_Obj object created upon a
successful open. The handle returned by this call should be used by the
application in subsequent calls to GIO functions. This function returns a
NULL handle if the device could not be opened. For example, if a device
is opened in a mode not supported by the device, this call returns a NULL
handle.

A call to GIO_create results in a call to the mdCreate function of the
associated mini-driver.

Constraints and
Calling Context

❏ This function can be called only after the device has been loaded and
initialized.

Example /* Create a device instance */
GioAttrs = GIO_ATTRS;
gioChan = GIO_create("\Codec0", IOM_INPUT, NULL, NULL,
 &IopAttrs);
2-84

GIO_delete
C Interface

Syntax status = GIO_delete(gioChan);

Parameters GIO_handle gioChan; /* handle to device instance to be closed */

Return Value Int status; /* returns IOM_COMPLETED if successful */

Assembly Interface none

Description An application calls GIO_delete to close a communication channel
opened prior to this call with GIO_create. This function deallocates all
memory allocated for this channel and closes the underlying device. All
pending input and output are cancelled and the corresponding interrupts
are disabled.

The gioChan parameter is the handle returned by GIO_create.

This function returns IOM_COMPLETED if the channel is successfully
closed. If an error occurs, the device returns a negative value. For a list
of error values, see “Constants, Types, and Structures” on page 77.

A call to GIO_delete results in a call to the mdDelete function of the
associated mini-driver.

Constraints and
Calling Context

❏ This function can be called only after the device has been loaded and
initialized. The handle supplied should have been obtained with a
prior call to GIO_create.

Example /* close the device instance */
GIO_delete(gioChan);

GIO_delete Delete underlying mini-drivers and free GIO object and its structures
Application Program Interface 2-85

GIO_flush
C Interface

Syntax status = GIO_flush(gioChan);

Parameters GIO_handle gioChan; /* handle to an instance of the device */

Return Value Int status; /* returns IOM_COMPLETED if successful */

Assembly Interface none

Description An application calls GIO_flush to flush the input and output channels of
the device. All input data is discarded; all pending output requests are
completed. When this call is made, all pending input calls are completed
with a status of GIO_FLUSHED, and all output calls are completed
routinely.

The gioChan parameter is the handle returned by GIO_create.

This call returns IOM_COMPLETED upon successfully flushing all input
and output. If an error occurs, the device returns a negative value. For a
list of error values, see “Constants, Types, and Structures” on page 77.

A call to GIO_flush results in a call to the mdSubmit function of the
associated mini-driver. The GIO_FLUSH command is passed to the
mdSubmit function. The mdSubmit call is typically a blocking call, so
calling GIO_flush can result in blocking while waiting for output calls to be
completed.

Constraints and
Calling Context

❏ This function can be called only after the device has been loaded and
initialized. The handle supplied should have been obtained with a
prior call to GIO_create.

❏ GIO_flush cannot be called from a SWI or HWI unless the underlying
mini-driver is a non-blocking driver and the GIO Manager properties
are set to use non-blocking synchronization methods.

Example /* Flush all I/O given to the device*/
GIO_flush(gioChan);

GIO_flush Drain output buffers and discard any pending input
2-86

GIO_init
C Interface

Syntax GIO_init();

Parameters Void

Return Value Void

Assembly Interface none

Description The application calls GIO_init to initialize the GIO module, which
manages the GIO objects. Mini-drivers used via the GIO module have
their own separate initialization functions.

Constraints and
Calling Context

❏ This function should be called with interrupts disabled.

Example /* initialize GIO module */
GIO_init();

GIO_init Initialize GIO module
Application Program Interface 2-87

GIO_read
C Interface

Syntax status = GIO_read(gioChan, bufp, *pSize);

Parameters GIO_handle gioChan; /* handle to an instance of the device */
Ptr bufp /* pointer to data structure for buffer data */
LgUns *pSize /* pointer to size of bufp structure */

Return Value Int status; /* returns IOM_COMPLETED if successful */

Assembly Interface none

Description An application calls GIO_read to read a specified number of MADUs
(minimum addressable data units) from the communication channel.

The gioChan parameter is the handle returned by GIO_create.

The bufp parameter points to a device-defined data structure for passing
buffer data between the device and the application. This structure may be
generic across a domain or specific to a single mini-driver. In some
cases, this parameter may point directly to a buffer that holds the read
data. In other cases, this parameter may point to a structure that
packages buffer information, size, offset to be read from, and other
device-dependent data. For example, for video capture devices this
structure may contain pointers to R, G, B buffers, their sizes, video
format, and a host of data required for reading a frame from a video
capture device. Upon a successful read, this argument points to the
returned data.

The pSize parameter points to the size of the buffer or data structure
pointed to by the bufp parameter. When the function returns, this
parameter points to the number of MADUs read from the device. This
parameter relevant only if the bufp parameter points to a raw data buffer.
In cases where it points to a device-defined structure it is redundant—the
size of the structure is known to the mini-driver and the application. At
most, it can be used for error checking.

GIO_read returns IOM_COMPLETED upon successfully reading the
requested number of MADUs from the device. If an error occurs, the
device returns a negative value. For a list of error values, see “Constants,
Types, and Structures” on page 77.

GIO_read Synchronous read command
2-88

GIO_read
A call to GIO_read results in a call to the mdSubmit function of the
associated mini-driver. The GIO_READ command is passed to the
mdSubmit function. The mdSubmit call is typically a blocking call, so
calling GIO_read can result in blocking.

Constraints and
Calling Context

❏ This function can be called only after the device has been loaded and
initialized. The handle supplied should have been obtained with a
prior call to GIO_create.

❏ GIO_read cannot be called from a SWI or HWI unless the underlying
mini-driver is a non-blocking driver and the GIO Manager properties
are set to use non-blocking synchronization methods.

Example /* Read from the device*/
GIO_read(gioChan, &ReadStruct, sizeof (ReadStruct));
Application Program Interface 2-89

GIO_submit
C Interface

Syntax status = GIO_submit(gioChan, cmd, bufp, *pSize, *appCallback);

Parameters GIO_handle gioChan; /* handle to an instance of the device */
Uns cmd /* specified mini-driver command */
Ptr bufp /* pointer to data structure for buffer data */
LgUns *pSize /* pointer to size of bufp structure */
GIO_AppCallback *appCallback /* pointer to callback structure */

Return Value Int status; /* returns IOM_COMPLETED if successful */

Assembly Interface none

Description GIO_submit is not typically called by applications. Instead, it is used
internally and for user-defined extensions to the GIO module.

GIO_read and GIO_write are macros that call GIO_submit with
appCallback set to NULL. This causes GIO to complete the I/O request
synchronously using its internal synchronization object (by default, a
semaphore). If appCallback is non-NULL, the specified callback is called
without blocking. This API is provided to extend GIO functionality for use
with SWI threads without changing the GIO implementation.

The gioChan parameter is the handle returned by GIO_create.

The cmd parameter is one of the command code constants listed in
“Constants, Types, and Structures” on page 77. A mini-driver may add
command codes for additional functionality.

The bufp parameter points to a device-defined data structure for passing
buffer data between the device and the application. This structure may be
generic across a domain or specific to a single mini-driver. In some
cases, this parameter may point directly to a buffer that holds the data. In
other cases, this parameter may point to a structure that packages buffer
information, size, offset to be read from, and other device-dependent
data.

The pSize parameter points to the size of the buffer or data structure
pointed to by the bufp parameter. When the function returns, this
parameter points to the number of MADUs transferred to or from the
device. This parameter relevant only if the bufp parameter points to a raw
data buffer. In cases where it points to a device-defined structure it is
redundant—the size of the structure is known to the mini-driver and the
application. At most, it can be used for error checking.

GIO_submit Submit an GIO packet to the mini-driver
2-90

GIO_submit
The appCallback parameter points to either a callback structure that
contains the callback function to be called when the request completes is
passed, or NULL which causes the call to be synchronous. When a
queued request is completed, the callback routine is invoked, if specified.

GIO_submit returns IOM_COMPLETED upon successfully carrying out
the requested functionality. If the request is queued then a status of
IOM_PENDING is returned. If an error occurs, the device returns a
negative value. For a list of error values, see “Constants, Types, and
Structures” on page 77.

A call to GIO_submit results in a call to the mdSubmit function of the
associated mini-driver. The specified command is passed to the
mdSubmit function.

Constraints and
Calling Context

❏ This function can be called only after the device has been loaded and
initialized. The handle supplied should have been obtained with a
prior call to GIO_create.

Example /* write asynchronously to the device*/
GIO_submit(gioChan, &userStruct, sizeof(userStruct),
&callbackStruct);

/* write synchronously to the device */
GIO_submit(gioChan, &userStruct, sizeof(userStruct),
NULL);
Application Program Interface 2-91

GIO_write
C Interface

Syntax status = GIO_write(gioChan, bufp, *pSize);

Parameters GIO_handle gioChan; /* handle to an instance of the device */
Ptr bufp /* pointer to data structure for buffer data */
LgUns *pSize /* pointer to size of bufp structure */

Return Value Int status; /* returns IOM_COMPLETED if successful */

Assembly Interface none

Description The application uses this function to write a specified number of MADUs
to the communication channel.

The gioChan parameter is the handle returned by GIO_create.

The bufp parameter points to a device-defined data structure for passing
buffer data between the device and the application. This structure may be
generic across a domain or specific to a single mini-driver. In some
cases, this parameter may point directly to a buffer that holds the write
data. In other cases, this parameter may point to a structure that
packages buffer information, size, offset to be written to, and other
device-dependent data. For example, for video capture devices this
structure may contain pointers to R, G, B buffers, their sizes, video
format, and a host of data required for reading a frame from a video
capture device. Upon a successful read, this argument points to the
returned data.

The pSize parameter points to the size of the buffer or data structure
pointed to by the bufp parameter. When the function returns, this
parameter points to the number of MADUs written to the device. This
parameter relevant only if the bufp parameter points to a raw data buffer.
In cases where it points to a device-defined structure it is redundant—the
size of the structure is known to the mini-driver and the application. At
most, it can be used for error checking.

GIO_write returns IOM_COMPLETED upon successfully writing the
requested number of MADUs to the device. If an error occurs, the device
returns a negative value. For a list of error values, see “Constants, Types,
and Structures” on page 77.

GIO_write Synchronous write command
2-92

GIO_write
A call to GIO_write results in a call to the mdSubmit function of the
associated mini-driver. The GIO_WRITE command is passed to the
mdSubmit function. The mdSubmit call is typically a blocking call, so
calling GIO_write can result in blocking.

Constraints and
Calling Context

❏ This function can be called only after the device has been loaded and
initialized. The handle supplied should have been obtained with a
prior call to GIO_create.

❏ GIO_write cannot be called from a SWI or HWI unless the underlying
mini-driver is a non-blocking driver and the GIO Manager properties
are set to use non-blocking synchronization methods.

Example /* write synchronously to the device*/
GIO_write(gioChan, &WriteStrct, sizeof(WriteStrct));
Application Program Interface 2-93

Global Settings
2.6 Global Settings

This module is the global settings manager.

Functions None

Configuration
Properties

The following list shows the properties for this module that can be
configured in a DSP/BIOS TextConf script, along with their types and
default values. For details, see the Global Settings Properties heading.
For descriptions of data types, see Section 1.4, DSP/BIOS TextConf
Overview, page 1-4.

Module Configuration Parameters

Name Type Default (Enum Options)

BOARDNAME String "c6xxx"

CLKOUT Int16 133.0000

DSPTYPE Int16 62

CHIPTYPE EnumString "6201" ("6201", "6202",
"6203", "6204", "6205", "6211",
"6701", "6711", "6712",
"other")

ENDIANMODE EnumString "little" ("big")

ALLUSERINITFXN Bool false

USERINITFXN Extern prog.extern("FXN_F_nop")

ENABLEINST Bool true

ENABLEALLTRC Bool true

CDBRELATIVEPATH String ""

CSRPCC EnumString "mapped" ("cache enable",
"cache freeze", "cache
bypass")

C621XCONFIGUREL2 Bool false

 C641XCONFIGUREL2 Bool false

C621XCCFGL2MODE EnumString "SRAM" ("1-way cache", "2-
way cache", "3-way cache",
"4-way cache")

C641XCCFGL2MODE EnumString "SRAM" ("1-way cache", "2-
way cache", "3-way cache",
"4-way cache")

C621XMAR Numeric 0x0000

C641XMAREMIFB Numeric 0x0000
2-94

Global Settings
Description This module does not manage any individual objects, but rather allows
you to control global or system-wide settings used by other modules.

Global Settings
Properties

The following Global Settings can be made:

❏ Target Board Name. The type of board on which your target device
is mounted.
TextConf Name: BOARDNAME Type: String

Example: GBL.BOARDNAME = "c6xxx";
❏ DSP Speed In MHz (CLKOUT). This number, times 1000000, is the

number of instructions the processor can execute in 1 second. This
value is used by the CLK manager to calculate register settings for
the on-device timers.
TextConf Name: CLKOUT Type: Int

Example: GBL.CLKOUT = 133.0000
❏ DSP Type. Target CPU family. Specifies which family of DSP is being

used. It is normally unwritable, and is controlled by the Chip Support
Library (CSL) property. When the CSL is specified as other, this field
becomes writable. This value determines which DSP family tab in the
Properties dialog contains writable fields.
TextConf Name: DSPTYPE Type: Int

Example: GBL.DSPTYPE = 62;

C641XMARCE0 Numeric 0x0000

C641XMARCE1 Numeric 0x0000

C641XMARCE2 Numeric 0x0000

C641XMARCE3 Numeric 0x0000

C641XCCFGP EnumString "urgent" ("high", "medium",
"low")

C641XSETL2ALLOC Bool false

C641XL2ALLOC0 EnumInt 6

C641XL2ALLOC1 EnumInt 2 (0 to 7)

C641XL2ALLOC2 EnumInt 2 (0 to 7)

C641XL2ALLOC3 EnumInt 2 (0 to 7)

Name Type Default (Enum Options)
Application Program Interface 2-95

Global Settings
❏ Chip Support Library (CSL). Specifies the specific chip type, such
as 6201, 6711, 6400, etc. This controls which CSL library is linked
with the application and also controls the DSP Type property. Select
other to remove support for the CSL and to allow you to select a DSP
family in the DSP Type field.
TextConf Name: CHIPTYPE Type: EnumString

Options: "6201", "6202", "6203", "6204", "6205", "6211",
"6701", "6711", "6712", "other"

Example: GBL.CHIPTYPE = "6201";
❏ Chip Support Library Name. Specifies the name of the CSL library

to be linked with the application. This property is informational only.
It is not writable.
TextConf Name: N/A

❏ DSP Endian Mode. This setting controls which libraries are used to
link the application. If you change this setting, you must set the
compiler and linker options to correspond. This field must match the
setting in the DSP’s CSR register.
TextConf Name: ENDIANMODE Type: EnumString

Options: "little", "big"
Example: GBL.ENDIANMODE = "little";

❏ Call User Init Function. Put a checkmark in this box if you want an
initialization function to be called early during program initialization,
after .cinit processing and before the main function.
TextConf Name: CALLUSERINITFXN Type: Bool

Example: GBL.CALLUSERINITFXN = false;
❏ User Init Function. Type the name of the initialization function. This

function runs early in the initialization process and is intended to be
used to perform hardware setup that needs to run before DSP/BIOS
is initialized. The code in this function should not use any DSP/BIOS
API calls, since a number of DSP/BIOS modules have not been
initialized when this function runs. In contrast, the Initialization
function that may be specified for HOOK Module objects runs later
and is intended for use in setting up data structures used by other
functions of the same HOOK object.
TextConf Name: USERINITFXN Type: Extern

Example: GBL.USERINITFXN =
prog.extern("FXN_F_nop");
2-96

Global Settings
❏ Enable Real Time Analysis. Remove the checkmark from this box
if you want to remove support for DSP/BIOS implicit instrumentation
from the program. This optimizes a program by reducing code size,
but removes support for the analysis tools and the LOG, STS, and
TRC module APIs.
TextConf Name: ENABLEINST Type: Bool

Example: GBL.ENABLEINST = true;
❏ Enable All TRC Trace Event Classes. Remove the checkmark from

this box if you want all types of tracing to be initially disabled when
the program is loaded. If you disable tracing, you can still use the
RTA Control Panel or the TRC_enable function to enable tracing at
run-time.
TextConf Name: ENABLEALLTRC Type: Bool

Example: GBL.ENABLEALLTRC = true;
❏ CDB path relative to .out. Type the relative path from the target

executable on the host to the directory containing the application’s
CDB file. Use a single backslash (\) or slash (/) character as a
directory separator, and do not end the path with a backslash. For
example, ..\..\configs or ../../configs could be the path. If specified, the
CDB path is stored in the .vers section of the COFF file. This path
allows the DSP/BIOS Real-Time Analysis Tools to locate the CDB
file, which they use to obtain host-based information about static
objects. If this path is not specified, the analysis tools look for the
CDB file in the . and .. directories relative to the executable.
TextConf Name: CDBRELATIVEPATH Type: String

Example: GBL.CDBRELATIVEPATH = "../config";
or
GBL.CDBRELATIVEPATH = "..\\config";

❏ Program Cache Control - CSR(PCC). This field in the DSP family
tabs specifies the cache mode for the DSP at program initiation.
TextConf Name: CSRPCC Type: EnumString

Options: "mapped", "cache enable", "cache freeze",
"cache bypass"

Example: GBL.CSRPCC = "mapped";
❏ Configure L2 Memory Settings. (621x/671x and 641x tabs) You

can check this box for DSPs that have a L1/L2 cache (for example,
the c6211). The following fields are available if this box is checked.
TextConf Name: C621XCONFIGUREL2 Type: Bool
TextConf Name: C641XCONFIGUREL2 Type: Bool

Example: GBL.C621XCONFIGUREL2 = false;
Application Program Interface 2-97

Global Settings
❏ L2 Mode - CCFG(L2MODE). (621x/671x and 641x tabs) Sets the L2
cache mode. See the c6000 Peripherals Manual for details.
TextConf Name: C621XCCFGL2MODE Type: EnumString
TextConf Name: C641XCCFGL2MODE Type: EnumString

Options: "SRAM", "1-way cache", "2-way cache", "3-way
cache", "4-way cache"

Example: GBL.C621XCCFGL2MODE = "SRAM";
❏ L2 MAR 0-15 - bitmask used to initialize MARs. (621x/671x tab)

Only bit 0 of each of these 32-bit registers is modifiable by the user.
All other bits are reserved. Specify a bitmask for the 16 modifiable
bits in registers MAR0 through MAR15.
TextConf Name: C621XMAR Type: Numeric

Example: GBL.C621XMAR = 0x0000;
❏ MAR96-101 - bitmask controls EMIFB CE space. (641x tab) Only

bit 0 of each of these 32-bit registers is modifiable by the user. All
other bits are reserved. Specify a bitmask for the modifiable bits in
registers MAR96 through MAR101.
TextConf Name: C641XMAREMIFB Type: Numeric

Example: GBL.C641XMAREMIFB = 0x0000;
❏ MAR128-143 - bitmask controls EMIFA CE0 space. (641x tab)

Only bit 0 of each of these 32-bit registers is modifiable by the user.
All other bits are reserved. Specify a bitmask for the modifiable bits
in registers MAR128 through MAR143.
TextConf Name: C641XMARCE0 Type: Numeric

Example: GBL.C641XMARCE0 = 0x0000;
❏ MAR144-159 - bitmask controls EMIFA CE1 space. (641x tab)

Only bit 0 of each of these 32-bit registers is modifiable by the user.
All other bits are reserved. Specify a bitmask for the modifiable bits
in registers MAR144 through MAR159.
TextConf Name: C641XMARCE1 Type: Numeric

Example: GBL.C641XMARCE1 = 0x0000;
❏ MAR160-175 - bitmask controls EMIFA CE2 space. (641x tab)

Only bit 0 of each of these 32-bit registers is modifiable by the user.
All other bits are reserved. Specify a bitmask for the modifiable bits
in registers MAR160 through MAR175.
TextConf Name: C641XMARCE2 Type: Numeric

Example: GBL.C641XMARCE2 = 0x0000;
2-98

Global Settings
❏ MAR176-191 - bitmask controls EMIFA CE3 space. (641x tab)
Only bit 0 of each of these 32-bit registers is modifiable by the user.
All other bits are reserved. Specify a bitmask for the modifiable bits
in registers MAR176 through MAR191.
TextConf Name: C641XMARCE3 Type: Numeric

Example: GBL.C641XMARCE3 = 0x0000;
❏ L2 Requestor Priority - CCFG(P). (641x tab) Specifies the

CPU/DMA cache priority. See the c6000 Peripherals Manual for
details.
TextConf Name: C641XCCFGP Type: EnumString

Options: "urgent", "high", "medium", "low"
Example: GBL.C641XCCFGP = "urgent";

❏ Configure Priority Queues. (641x tab) Put a checkmark in this box
if you want to configure the maximum number of transfer requests on
the L2 priority queues.
TextConf Name: C641XSETL2ALLOC Type: Bool

Example: GBL.C641XSETL2ALLOC = false;
❏ Max L2 Transfer Requests on URGENT Queue (L2ALLOC0).

(641x tab) Select a number from 0 to 7 for the maximum number of
L2 transfer requests permitted on the URGENT queue.
TextConf Name: C641XL2ALLOC0 Type: EnumInt

Options: 0 to 7
Example: GBL.C641XL2ALLOC0 = 6;

❏ Max L2 Transfer Requests on HIGH Queue (L2ALLOC1). (641x
tab) Select a number from 0 to 7 for the maximum number of L2
transfer requests permitted on the HIGH priority queue.
TextConf Name: C641XL2ALLOC1 Type: EnumInt

Options: 0 to 7
Example: GBL.C641XL2ALLOC1 = 2;

❏ Max L2 Transfer Requests on MEDIUM Queue (L2ALLOC2).
(641x tab) Select a number from 0 to 7 for the maximum number of
L2 transfer requests permitted on the MEDIUM priority queue.
TextConf Name: C641XL2ALLOC2 Type: EnumInt

Options: 0 to 7
Example: GBL.C641XL2ALLOC2 = 2;
Application Program Interface 2-99

Global Settings
❏ Max L2 Transfer Requests on LOW Queue (L2ALLOC3). (641x
tab) Select a number from 0 to 7 for the maximum number of L2
transfer requests permitted on the LOW priority queue.
TextConf Name: C641XL2ALLOC3 Type: EnumInt

Options: 0 to 7
Example: GBL.C641XL2ALLOC3 = 2;
2-100

HOOK Module
2.7 HOOK Module

The HOOK module is the Hook Function manager.

Functions ❏ HOOK_getenv. Get environment pointer for a given HOOK and TSK
combination.

❏ HOOK_setenv. Set environment pointer for a given HOOK and TSK
combination.

Constants, Types,
and Structures

typedef Int HOOK_Id; /* HOOK instance id */

typedef Void (*HOOK_InitFxn)(HOOK_Id id);
typedef Void (*HOOK_CreateFxn)(TSK_Handle task);
typedef Void (*HOOK_DeleteFxn)(TSK_Handle task);
typedef Void (*HOOK_ExitFxn)(Void);
typedef Void (*HOOK_ReadyFxn)(TSK_Handle task);
typedef Void (*HOOK_SwitchFxn)(TSK_Handle prev,
 TSK_Handle next);

Configuration
Properties

The following list shows the properties that can be configured in a
DSP/BIOS TextConf script, along with their types and default values. For
details, see the HOOK Object Properties heading. For descriptions of
data types, see Section 1.4, DSP/BIOS TextConf Overview, page 1-4.

Instance Configuration Parameters.

 Description The HOOK module is an extension to the TSK function hooks defined in
the TSK Manager Properties. It allows multiple sets of hook functions to
be performed at key execution points. For example, an application that
integrates third-party software may need to perform both its own hook
functions and the hook functions required by the third-party software.

Name Type Default

comment String "<add comments here>"

initFxn Extern prog.extern("FXN_F_nop")

createFxn Extern prog.extern("FXN_F_nop")

deleteFxn Extern prog.extern("FXN_F_nop")

exitFxn Extern prog.extern("FXN_F_nop")

callSwitchFxn Bool false

switchFxn Extern prog.extern("FXN_F_nop")

callReadyFxn Bool false

readyFxn Extern prog.extern("FXN_F_nop")
Application Program Interface 2-101

HOOK Module
In addition, each HOOK object can maintain private data environments
for each task for use by its hook functions.

The key execution points at which hook functions can be executed are
during program initialization and at several TSK execution points.

The HOOK module manages objects that reference a set of hook
functions. Each HOOK object is assigned a numeric identifier during
DSP/BIOS initialization. If your program needs to call the HOOK API
functions, you must implement an initialization function for the HOOK
instance that records the identifier in a variable of type HOOK_Id.
DSP/BIOS passes the HOOK object’s ID to the initialization function as
the lone parameter.

The following function, myInit, could be configured as the Initialization
function for a HOOK object using the DSP/BIOS Configuration Tool.

#include <hook.h>
HOOK_Id myId;

Void myInit(HOOK_Id id)
{
 myId = id;
}
The HOOK_setenv function allows you to associate an environment
pointer to any data structure with a particular HOOK object and TSK
object combination.

There is no limit to the number of HOOK objects that can be created.
However, each object requires a small amount of memory in the .bss
section to contain the object.

A HOOK object initially has all of its functions set to FXN_F_nop. You can
set a few of the hook functions and use this no-op function for the
remaining events. Since the switch and ready events occur frequently
during real-time processing, a checkbox controls whether any function is
called.

When you create a HOOK object, any TSK module hook functions you
have specified are automatically placed in a HOOK object called
HOOK_KNL. To set any properties of this object other than the
Initialization function, use the TSK module. To set the Initialization
function property of the HOOK_KNL object, use the HOOK module.

When an event occurs, all HOOK functions for that event are called in the
order they are listed in the DSP/BIOS Configuration Tool. When you
select the HOOK manager in the DSP/BIOS Configuration Tool, you can
change the execution order by dragging objects within the ordered list.
2-102

HOOK Module
HOOK Manager
Properties

There are no global properties for the HOOK manager. HOOK objects are
placed in the C Variables Section (.bss).

HOOK Object
Properties

The following properties can be set for a HOOK object in the DPI Object
Properties dialog on the Configuration Tool or in a DSP/BIOS TextConf
script. To create a HOOK object in a configuration script, use the following
syntax:

var myHook = HOOK.create("myHook");
The DSP/BIOS TextConf examples that follow assume the object has
been created as shown.

❏ comment. A comment to identify this HOOK object.
TextConf Name: comment Type: String

Example: myHook.comment = "HOOK funcs";
❏ Initialization function. The name of a function to call during

program initialization. Such functions run during the BIOS_init portion
of application startup, which runs before the program’s main function.
Initialization functions can call most functions that can be called from
the main() function. However, they should not call TSK module
functions, because the TSK module is initialized after initialization
functions run. In addition to code specific to the module hook, this
function should be used to record the object’s ID, if it is needed in a
subsequent hook function. This initialization function is intended for
use in setting up data structures used by other functions of the same
HOOK object. In contrast, the User Init Function property of the
Global Settings Properties runs early in the initialization process and
is intended to be used to perform hardware setup that needs to run
before DSP/BIOS is initialized.
TextConf Name: initFxn Type: Extern

Example: myHook.initFxn =
prog.extern("_myInit");

❏ Create function. The name of a function to call when any task is
created. This includes tasks that are created statically in the
Configuration Tool, or created dynamically using TSK_create. If this
function is written in C, use a leading underscore before the C
function name. (The Configuration Tool generates assembly code
which must use the leading underscore when referencing C functions
or labels.) The TSK_create topic describes the Create function.
TextConf Name: createFxn Type: Extern

Example: myHook.createFxn =
prog.extern("_myCreate");
Application Program Interface 2-103

HOOK Module
❏ Delete function. The name of a function to call when any task is
deleted at run-time with TSK_delete. If this function is written in C,
use a leading underscore before the C function name. The
TSK_delete topic describes the Delete function.
TextConf Name: deleteFxn Type: Extern

Example: myHook.deleteFxn =
prog.extern("_myDelete");

❏ Exit function. The name of a function to call when any task exits. If
this function is written in C, use a leading underscore before the C
function name. The TSK_exit topic describes the Exit function.
TextConf Name: exitFxn Type: Extern

Example: myHook.exitFxn =
prog.extern("_myExit");

❏ Call switch function. Check this box if you want a function to be
called when any task switch occurs.
TextConf Name: callSwitchFxn Type: Bool

Example: myHook.callSwitchFxn = false;
❏ Switch function. The name of a function to call when any task switch

occurs. This function can give the application access to both the
current and next task handles. If this function is written in C, use a
leading underscore before the C function name. The TSK Module
topic describes the Switch function.
TextConf Name: switchFxn Type: Extern

Example: myHook.switchFxn =
prog.extern("_mySwitch");

❏ Call ready function. Check this box if you want a function to be
called when any task becomes ready to run.
TextConf Name: callReadyFxn Type: Bool

Example: myHook.callReadyFxn = false;
❏ Ready function. The name of a function to call when any task

becomes ready to run. If this function is written in C, use a leading
underscore before the C function name. The TSK Module topic
describes the Ready function.
TextConf Name: readyFxn Type: Extern

Example: myHook.readyFxn =
prog.extern("_myReady");
2-104

HOOK_getenv
C Interface

Syntax environ = HOOK_getenv(task, id);

Parameters TSK_Handle task; /* task object handle */
HOOK_Id id; /* HOOK instance id */

Return Value Ptr environ; /* environment pointer */

Assembly Interface none

Reentrant yes

Description HOOK_getenv returns the environment pointer associated with the
specified HOOK and TSK objects. The environment pointer, environ,
references the data structure specified in a previous call to
HOOK_setenv.

See Also HOOK_setenv
TSK_getenv

HOOK_getenv Get environment pointer for a given HOOK and TSK combination
Application Program Interface 2-105

HOOK_setenv
C Interface

Syntax HOOK_setenv(task, id, environ);

Parameters TSK_Handle task; /* task object handle */
HOOK_Id id; /* HOOK instance id */
Ptr environ; /* environment pointer */

Return Value Void

Assembly Interface none

Reentrant yes

Description HOOK_setenv sets the environment pointer associated with the specified
HOOK and TSK objects to environ. The environment pointer, environ,
should reference an data structure to be used by the hook functions for a
task or tasks.

Each HOOK object may have a separate environment pointer for each
task. A HOOK object may also point to the same data structure for all
tasks, depending on its data sharing needs.

The HOOK_getenv function can be used to get the environ pointer for a
particular HOOK and TSK object combination.

See Also HOOK_getenv
TSK_setenv

HOOK_setenv Set environment pointer for a given HOOK and TSK combination
2-106

HST Module
2.8 HST Module

The HST module is the host channel manager.

Functions ❏ HST_getpipe. Get corresponding pipe object

Configuration
Properties

The following list shows the properties that can be configured in a
DSP/BIOS TextConf script, along with their types and default values. For
details, see the HST Manager Properties and HST Object Properties
headings. For descriptions of data types, see Section 1.4, DSP/BIOS
TextConf Overview, page 1-4.

Module Configuration Parameters.

Instance Configuration Parameters.

 Description The HST module manages host channel objects, which allow an
application to stream data between the target and the host. Host
channels are statically configured for input or output. Input channels (also
called the source) read data from the host to the target. Output channels
(also called the sink) transfer data from the target to the host.

Note:

HST channel names cannot begin with a leading underscore (_).

Name Type Default (Enum Options)

OBJMEMSEG Reference prog.get("IDRAM")

HOSTLINKTYPE EnumString "RTDX" ("NONE")

Name Type Default (Enum Options)

comment String "<add comments here>"

mode EnumString "output" ("input")

bufSeg Reference prog.get("IDRAM")

bufAlign Int16 4

frameSize Int16 128

numFrames Int16 2

statistics Bool false

availableForDHL Bool false

notifyFxn Extern prog.extern("FXN_F_NOP")

arg0 Arg 3
Application Program Interface 2-107

HST Module
Each host channel is internally implemented using a data pipe (PIP)
object. To use a particular host channel, the program uses HST_getpipe
to get the corresponding pipe object and then transfers data by calling the
PIP_get and PIP_free operations (for input) or PIP_alloc and PIP_put
operations (for output).

During early development, especially when testing software interrupt
processing algorithms, programs can use host channels to input canned
data sets and to output the results. Once the algorithm appears sound,
you can replace these host channel objects with I/O drivers for production
hardware built around DSP/BIOS pipe objects. By attaching host
channels as probes to these pipes, you can selectively capture the I/O
channels in real time for off-line and field-testing analysis.

The notify function is called in the context of the code that calls PIP_free
or PIP_put. This function can be written in C or assembly. The code that
calls PIP_free or PIP_put should preserve any necessary registers.

The other end of the host channel is managed by the LNK_dataPump IDL
object. Thus, a channel can only be used when some CPU capacity is
available for IDL thread execution.

HST Manager
Properties

The following global properties can be set for the HST module in the HST
Manager Properties dialog of the Configuration Tool or in a DSP/BIOS
TextConf script:

❏ Object Memory. The memory segment containing HST objects.
TextConf Name: OBJMEMSEG Type: Ref

Example: HST.OBJMEMSEG = prog.get("myMEM");
❏ Host Link Type. The underlying physical link to be used for host-

target data transfer. If None is selected, no instrumentation or host
channel data is transferred between the target and host in real time.
The Analysis Tool windows are updated only when the target is
halted (for example, at a breakpoint). The program code size is
smaller when the Host Link Type is set to None because RTDX code
is not included in the program.
TextConf Name: HOSTLINKTYPE Type: EnumString

Options: "RTDX", "NONE"
Example: HST.HOSTLINKTYPE = "RTDX";

HST Object Properties A host channel maintains a buffer partitioned into a fixed number of fixed
length frames. All I/O operations on these channels deal with one frame
at a time; although each frame has a fixed length, the application can put
a variable amount of data in each frame.
2-108

HST Module
The following properties can be set for a host file object in the HST Object
Properties dialog on the Configuration Tool or in a DSP/BIOS TextConf
script. To create an HST object in a configuration script, use the following
syntax:

var myHst = HST.create("myHst");
The DSP/BIOS TextConf examples that follow assume the object has
been created as shown.

❏ comment. A comment to identify this HST object.
TextConf Name: comment Type: String

Example: myHst.comment = "my HST";
❏ mode. The type of channel: input or output. Input channels are used

by the target to read data from the host; output channels are used by
the target to transfer data from the target to the host.
TextConf Name: mode Type: EnumString

Options: "output", "input"
Example: myHst.mode = "output";

❏ bufseg. The memory segment from which the buffer is allocated; all
frames are allocated from a single contiguous buffer (of size
framesize x numframes).
TextConf Name: bufSeg Type: Ref

Example: myHst.bufSeg = prog.get("myMEM");
❏ bufalign. The alignment (in words) of the buffer allocated within the

specified memory segment.
TextConf Name: bufAlign Type: Int

Options: must be >= 4 and a power of 2
Example: myHst.bufAlign = 4;

❏ framesize. The length of each frame (in words)
TextConf Name: frameSize Type: Int

Example: myHst.frameSize = 128;
❏ numframes. The number of frames

TextConf Name: numFrames Type: Int
Example: myHst.numFrames = 2;
Application Program Interface 2-109

HST Module
❏ statistics. Check this box if you want to monitor this channel with an
STS object. You can display the STS object for this channel to see a
count of the number of frames transferred with the Statistics View
Analysis Tool.
TextConf Name: statistics Type: Bool

Example: myHst.statistics = false;
❏ Make this channel available for a new DHL device. Check this box

if you want to use this HST object with a DHL device. DHL devices
allow you to manage data I/O between the host and target using the
SIO module, rather than the PIP module. See the DHL Driver topic
for more details.
TextConf Name: availableForDHL Type: Bool

Example: myHst.availableForDHL = false;
❏ notify. The function to execute when a frame of data for an input

channel (or free space for an output channel) is available. To avoid
problems with recursion, this function should not directly call any of
the PIP module functions for this HST object.
TextConf Name: notifyFxn Type: Extern

Example: myHst.notifyFxn =
prog.extern("hstNotify");

❏ arg0, arg1. Two 32-bit arguments passed to the notify function. They
can be either unsigned 32-bit constants or symbolic labels.
TextConf Name: arg0 Type: Arg
TextConf Name: arg1 Type: Arg

Example: myHst.arg0 = 3;
2-110

HST Module
HST - Host Channel
Control Interface

If you are using host channels, use the Host Channel Control to bind each
channel to a file on your host computer and start the channels.

1) Choose the DSP/BIOS→Host Channel Control menu item. You see
a window that lists your host input and output channels.

2) Right-click on a channel and choose Bind from the pop-up menu.

3) Select the file to which you want to bind this channel. For an input
channel, select the file that contains the input data. For an output
channel, you can type the name of a file that does not exist or choose
any file that you want to overwrite.

4) Right-click on a channel and choose Start from the pop-up menu. For
an input channel, this causes the host to transfer the first frame of
data and causes the target to run the function for this HST object (see
HST Object Properties). For an output channel, this causes the target
to run the function for this HST object.
Application Program Interface 2-111

HST_getpipe
C Interface

Syntax pipe = HST_getpipe(hst);

Parameters HST_Handle hst /* host object handle */

Return Value PIP_Handle pip /* pipe object handle*/

Assembly Interface

Syntax HST_getpipe

Preconditions a4 = HST channel object pointer
amr = 0

Postconditions a4 = address of the pipe object

Modifies a4

Reentrant yes

Description HST_getpipe gets the address of the pipe object for the specified host
channel object.

Example Void copy(HST_Obj *input, HST_Obj *output)
{
 PIP_Obj *in, *out;
 Uns *src, *dst;
 Uns size;

 in = HST_getpipe(input);
 out = HST_getpipe(output);

 if (PIP_getReaderNumFrames == 0 ||
 PIP_getWriterNumFrames == 0) {
 error;
 }
 /* get input data and allocate output frame */
 PIP_get(in);
 PIP_alloc(out);

 /* copy input data to output frame */
 src = PIP_getReaderAddr(in);
 dst = PIP_getWriterAddr(out);

 size = PIP_getReaderSize();
 out->writerSize = size;

HST_getpipe Get corresponding pipe object
2-112

HST_getpipe
 for (; size > 0; size--) {
 *dst++ = *src++;
 }

 /* output copied data and free input frame */
 PIP_put(out);
 PIP_free(in);
}

See Also PIP_alloc
PIP_free
PIP_get
PIP_put
Application Program Interface 2-113

HWI Module
2.9 HWI Module

The HWI module is the hardware interrupt manager.

Functions ❏ HWI_disable. Disable hardware interrupts
❏ HWI_dispatchPlug. Plug the HWI dispatcher
❏ HWI_enable. Enable hardware interrupts
❏ HWI_enter. Hardware ISR prolog
❏ HWI_exit. Hardware ISR epilog
❏ HWI_restore. Restore hardware interrupt state

Configuration
Properties

The following list shows the properties that can be configured in a
DSP/BIOS TextConf script, along with their types and default values. For
details, see the HWI Manager Properties and HWI Object Properties
headings. For descriptions of data types, see Section 1.4, DSP/BIOS
TextConf Overview, page 1-4.

Module Configuration Parameters.

Instance Configuration Parameters

HWI instances are provided as a default part of the configuration and
cannot be created. In the items that follow, HWI_INT* may be any
provided instance. Default values for many HWI properties are different
for each instance.

Name Type Default (Enum Options)

RESETVECTOR Bool false

EXTPIN4POLARITY EnumString "low-to-high" ("high-to-low")

EXTPIN5POLARITY EnumString "low-to-high" ("high-to-low")

EXTPIN6POLARITY EnumString "low-to-high" ("high-to-low")

EXTPIN7POLARITY EnumString "low-to-high" ("high-to-low")

Name Type Default (Enum Options)

comment String "<add comments here>"
2-114

HWI Module
Description The HWI module manages hardware interrupts. Using the Configuration
Tool, you can assign routines that run when specific hardware interrupts
occur. Some routines are assigned to interrupts automatically by the HWI
module. For example, the interrupt for the timer that you select for the
CLK global properties is automatically configured to run a function that
increments the low-resolution time. See the CLK Module for more details.

interruptSource EnumString "Reset" (Non_Maskable", "Reserved",
"Timer 0", "Timer 1",
"Host_Port_Host_to_DSP",
"EMIF_SDRAM_Timer",
"PCI_WAKEUP", "AUX_DMA_HALT",
"External_Pin_4", "External_Pin_5",
"External_Pin_6", "External_Pin_7",
"DMA_Channel_0", "DMA_Channel_1",
"DMA_Channel_2", "DMA_Channel_3",
"MCSP_0_Transmit",
"MCSP_0_Receive",
"MCSP_1_Transmit",
"MCSP_2_Receive",
"MCSP_2_Transmit",
"MCSP_2_Receive")

fxn Extern prog.extern("HWI_unused,"asm")

monitor EnumString "Nothing" ("Data Value", "Stack Pointer",
"Top of SW Stack", "A0" ... "A15", "B0"
..."B15")

addr Arg 0x00000000

dataType EnumString "signed" ("unsigned")

operation EnumString "STS_add(*addr)" ("STS_delta(*addr)",
"STS_add(-*addr)", "STS_delta(-*addr)",
"STS_add(|*addr|)",
"STS_delta(|*addr|)")

useDispatcher Bool false

arg Arg 3

interruptMask EnumString "self" ("all", "none", "bitmask")

interruptBitMask Numeric 0x0010

cacheControl Bool true

progCacheMask EnumString "mapped" ("cache enable", "cache
freeze", "cache bypass")

dataCacheMask EnumString "mapped" ("cache enable", "cache
freeze", "cache bypass")

Name Type Default (Enum Options)
Application Program Interface 2-115

HWI Module
You can also dynamically assign routines to interrupts at run-time using
the HWI_dispatchPlug function or the C62_plug or C64_plug functions.

Interrupt routines can be written completely in assembly, completely in C,
or in a mix of assembly and C. In order to support interrupt routines
written completely in C, an HWI dispatcher is provided that performs the
requisite prolog and epilog for an interrupt routine.

The HWI dispatcher is the preferred method for handling an interrupt.
When enabled, the HWI objects that run functions for the CLK and RTDX
modules use the dispatcher.

When an HWI object does not use the dispatcher, the HWI_enter
assembly macro must be called prior to any DSP/BIOS API calls that
affect other DSP/BIOS objects, such as posting a SWI or a semaphore,
and the HWI_exit assembly macro must be called at the very end of the
function’s code.

When an HWI object is configured to use the dispatcher, the dispatcher
handles the HWI_enter prolog and the HWI_exit epilog, and the HWI
function can be completely written in C. It would, in fact, cause a system
crash were the dispatcher to call a function that contains the
HWI_enter/HWI_exit macro pair. Using the dispatcher allows you to save
code space by including only one instance of the HWI_enter/HWI_exit
code.

Note:

CLK functions should not call HWI_enter and HWI_exit as these are
called internally by the HWI dispatcher when it runs CLK_F_isr.
Additionally, CLK functions should not use the interrupt keyword or the
INTERRUPT pragma in C functions.

Whether a hardware interrupt is dispatched by the HWI dispatcher or
handled with the HWI_enter/HWI_exit macros, a common interrupt stack
(called the system stack) is used for the duration of the HWI. This same
stack is also used by all SWI routines.

In the following notes, references to the usage of HWI_enter/HWI_exit
also apply to usage of the HWI dispatcher since, in effect, the dispatcher
calls HWI_enter/HWI_exit.

Note:

Do not call SWI_disable or SWI_enable within an HWI function.
2-116

HWI Module
Note:

Do not call HWI_enter, HWI_exit, or any other DSP/BIOS functions
from a non-maskable interrupt (NMI) service routine. In addition, the
HWI dispatcher cannot be used with the NMI service routine.

Note:

Do not call HWI_enter/HWI_exit from a HWI function that is invoked by
the dispatcher.

The DSP/BIOS API calls that require an HWI function to use HWI_enter
and HWI_exit are:
❏ SWI_andn
❏ SWI_andnHook
❏ SWI_dec
❏ SWI_inc
❏ SWI_or
❏ SWI_orHook
❏ SWI_post
❏ PIP_alloc
❏ PIP_free
❏ PIP_get
❏ PIP_put
❏ PRD_tick
❏ SEM_post
❏ MBX_post
❏ TSK_yield
❏ TSK_tick

Note:

Any PIP API call can cause the pipe’s notifyReader or notifyWriter
function to run. If an HWI function calls a PIP function, the notification
functions run as part of the HWI function.

Note:

An HWI function must use HWI_enter and HWI_exit or must be
dispatched by the HWI dispatcher if it indirectly runs a function
containing any of the API calls listed above.
Application Program Interface 2-117

HWI Module
If your HWI function and the functions it calls do not call any of these API
operations, you do not need to disable software interrupt scheduling by
calling HWI_enter and HWI_exit.

The register mask argument to HWI_enter and HWI_exit allows you to
save and restore registers used within the function. Other arguments
allow the HWI to control the settings of the IEMASK and the cache control
field.

Hardware interrupts always interrupt software interrupts unless hardware
interrupts have been disabled with HWI_disable.

Note:

By using HWI_enter and HWI_exit as an HWI function’s prolog and
epilog, an HWI function can be interrupted; that is, a hardware interrupt
can interrupt another interrupt. You can use the IEMASK parameter for
the HWI_enter API to prevent this from occurring.

HWI Manager
Properties

DSP/BIOS manages the hardware interrupt vector table and provides
basic hardware interrupt control functions; for example, enabling and
disabling the execution of hardware interrupts.

The following global properties can be set for the HWI module in the HWI
Manager Properties dialog of the Configuration Tool or in a DSP/BIOS
TextConf script:

❏ Generate RESET vector at address 0. Check this box in order to
place the interrupt vector table at address 0. This option is available
only if address 0 currently exists within the memory configuration.
TextConf Name: RESETVECTOR Type: Bool

Example: HWI.RESETVECTOR = false;
❏ External Interrupt Pin 4-7 Polarity. Choose whether the device

connected to this pin causes an interrupt when a high-to-low
transition occurs, or when a low-to-high transition occurs.
TextConf Name: EXTPIN4POLARITY Type: EnumString
TextConf Name: EXTPIN5POLARITY Type: EnumString
TextConf Name: EXTPIN6POLARITY Type: EnumString
TextConf Name: EXTPIN7POLARITY Type: EnumString

Options: "low-to-high", "high-to-low"
Example: HWI.EXTPIN4POLARITY =

"low-to-high";
2-118

HWI Module
HWI Object Properties The following properties can be set for a hardware interrupt service
routine object in the HWI Object Properties dialog of the Configuration
Tool or in a DSP/BIOS TextConf script.

The HWI objects for the platform are provided in the default configuration
and cannot be created.

❏ comment. A comment is provided to identify each HWI object.
TextConf Name: comment Type: String

Example: HWI_INT4.comment = "myISR";
❏ interrupt source. Select the pin, DMA channel, timer, or other

source of the interrupt.
TextConf Name: interruptSource Type: EnumString

Options: "Reset", "Non_Maskable", "Reserved", "Timer 0",
"Timer 1", "Host_Port_Host_to_DSP",
"EMIF_SDRAM_Timer", "PCI_WAKEUP",
"AUX_DMA_HALT", "External_Pin_4",
"External_Pin_5", "External_Pin_6",
"External_Pin_7", "DMA_Channel_0",
"DMA_Channel_1", "DMA_Channel_2",
"DMA_Channel_3", "MCSP_0_Transmit",
"MCSP_0_Receive", "MCSP_1_Transmit",
"MCSP_2_Receive", "MCSP_2_Transmit",
"MCSP_2_Receive"

Example: HWI_INT4.interruptSource =
"External_Pin_4";

❏ function. The function to execute. Interrupt routines that use the
dispatcher can be written completely in C or any combination of
assembly and C but must not call the HWI_enter/HWI_exit macro
pair. Interrupt routines that don’t use the dispatcher must be written
at least partially in assembly language. Within an HWI function that
does not use the dispatcher, the HWI_enter assembly macro must be
called prior to any DSP/BIOS API calls that affect other DSP/BIOS
objects, such as posting a SWI or a semaphore. HWI functions can
post software interrupts, but they do not run until your HWI function
(or the dispatcher) calls the HWI_exit assembly macro, which must
be the last statement in any HWI function that calls HWI_enter.
TextConf Name: fxn Type: Extern

Example: HWI_INT4.fxn = prog.extern("myHWI",
"asm");
Application Program Interface 2-119

HWI Module
❏ monitor. If set to anything other than Nothing, an STS object is
created for this HWI that is passed the specified value on every
invocation of the interrupt service routine. The STS update occurs
just before entering the HWI routine.

Be aware that when the monitor property is enabled for a particular
HWI object, a code preamble is inserted into the HWI routine to make
this monitoring possible. The overhead for monitoring is 20 to 30
instructions per interrupt, per HWI object monitored. Leaving this
instrumentation turned on after debugging is not recommended,
since HWI processing is the most time-critical part of the system.
Options:
"Nothing", "Data Value", "Stack Pointer", "Top of SW Stack", "A0" ...
"A15", "B0" ..."B15"
Example: HWI_INT4.monitor = "Nothing";

❏ addr. If the monitor field above is set to Data Address, this field lets
you specify a data memory address to be read; the word-sized value
is read and passed to the STS object associated with this HWI object.
TextConf Name: addr Type: Arg

Example: HWI_INT4.addr = 0x00000000;
❏ type. The type of the value to be monitored: unsigned or signed.

Signed quantities are sign extended when loaded into the
accumulator; unsigned quantities are treated as word-sized positive
values.
TextConf Name: dataType Type: EnumString

Options: "signed", "unsigned"
Example: HWI_INT4.dataType = "signed";

❏ operation. The operation to be performed on the value monitored.
You can choose one of several STS operations.
TextConf Name: operation Type: EnumString

Options: "STS_add(*addr)", "STS_delta(*addr)",
"STS_add(-*addr)", "STS_delta(-*addr)",
"STS_add(|*addr|)", "STS_delta(|*addr|)"

Example: HWI_INT4.operation =
"STS_add(*addr)";

❏ Use Dispatcher. A check box that controls whether the HWI
dispatcher is used. The HWI dispatcher cannot be used for the non-
maskable interrupt (NMI) service routine.
TextConf Name: useDispatcher Type: Bool

Example: HWI_INT4.useDispatcher = false;
2-120

HWI Module
❏ Arg. This argument is passed to the function as its only parameter.
You can use either a literal integer or a symbol defined by the
application. This property is available only when using the HWI
dispatcher.
TextConf Name: arg Type: Arg

Example: HWI_INT4.arg = 3;
❏ Interrupt Mask. A drop-down menu that specifies which interrupts

the dispatcher should disable before calling the function. This
property is available only when using the HWI dispatcher.
TextConf Name: interruptMask Type: EnumString

Options: "self", "all", "none", "bitmask"
Example: HWI_INT4.interruptMask = "self";

❏ Interrupt Bit Mask. An integer field that is writable when the interrupt
mask is set as bitmask. This should be a hexadecimal integer
bitmask specifying the interrupts to disable.
TextConf Name: interruptBitMask Type: Numeric

Example: HWI_INT4.interruptBitMask = 0x0010;
❏ Don’t modify cache control. A check box that chooses between not

modifying the cache at all or enabling the individual drop-down
menus for program and data cache control masks. This property is
available only when using the HWI dispatcher.
TextConf Name: cacheControl Type: Bool

Example: HWI_INT4.cacheControl = true;
❏ Program Cache Control Mask. A drop-down menu that becomes

writable when the “don’t modify cache control” box is not checked.
The choices (mapped, cache enable, cache bypass, cache freeze)
are the same choices available from the GBL properties.
TextConf Name: progCacheMask Type: EnumString

Options: "mapped", "cache enable", "cache freeze",
"cache bypass"

Example: HWI_INT4.progCacheMask = "mapped";
❏ Data Cache Control Mask. A drop-down menu that becomes

writable when the “don’t modify cache control” box is not checked.
The choices (mapped, cache enable, cache bypass, cache freeze)
are the same choices available from the “program cache control
mask” menu.
TextConf Name: dataCacheMask Type: EnumString

Options: "mapped", "cache enable", "cache freeze",
"cache bypass"

Example: HWI_INT4.dataCacheMask = "mapped";
Application Program Interface 2-121

HWI Module
Although it is not possible to create new HWI objects, most interrupts
supported by the device architecture have a precreated HWI object. Your
application can require that you select interrupt sources other than the
default values in order to rearrange interrupt priorities or to select
previously unused interrupt sources.

In addition to the precreated HWI objects, some HWI objects are
preconfigured for use by certain DSP/BIOS modules. For example, the
CLK module configures an HWI object that uses the dispatcher. As a
result, you can modify the dispatcher’s parameters for the CLK HWI,
such as the cache setting or the interrupt mask. However, you cannot
disable use of the dispatcher for the CLK HWI.

Table 2-1 lists these precreated objects and their default interrupt
sources. The HWI object names are the same as the interrupt names.

Table 2-1. HWI interrupts for the TMS320C6000

HWI - Execution Graph
Interface

Time spent performing HWI functions is not directly traced for
performance reasons. However, if you configure the HWI Object
Properties to perform any STS operations on a register, address, or
pointer, you can track time spent performing HWI functions in the
Statistics View window, which you can open by choosing
DSP/BIOS→Statistics View.

Name Default Interrupt Source

HWI_RESET Reset

HWI_NMI NMI

HWI_INT4 INT4

HWI_INT5 INT5

HWI_INT6 INT6

HWI_INT7 INT7

HWI_INT8 INT8

HWI_INT9 INT9

HWI_INT10 INT10

HWI_INT11 INT11

HWI_INT12 INT12

HWI_INT13 INT13

HWI_INT14 INT14

HWI_INT15 INT15
2-122

HWI_disable
C Interface

Syntax oldCSR = HWI_disable();

Parameters Void

Return Value Uns oldCSR;

Assembly Interface

Syntax HWI_disable

Preconditions amr = 0

Postconditions GIE = 0
a4 = csr when HWI_disable was invoked

Modifies a4, b0, csr

Reentrant yes

Description HWI_disable disables hardware interrupts by clearing the GIE bit in the
Control Status Register (CSR). Call HWI_disable before a portion of a
function that needs to run without interruption. When critical processing
is complete, call HWI_restore or HWI_enable to reenable hardware
interrupts.

Interrupts that occur while interrupts are disabled are postponed until
interrupts are reenabled. However, if the same type of interrupt occurs
several times while interrupts are disabled, the interrupt’s function is
executed only once when interrupts are reenabled.

A context switch can occur when calling HWI_enable or HWI_restore if
an enabled interrupt occurred while interrupts are disabled.

Constraints and
Calling Context

❏ HWI_disable cannot be called from the program’s main function.

Example old = HWI_disable();
 'do some critical operation'
HWI_restore(old);

See Also HWI_enable
HWI_restore
SWI_disable
SWI_enable

HWI_disable Disable hardware interrupts
Application Program Interface 2-123

HWI_dispatchPlug
C Interface

Syntax HWI_dispatchPlug(vecid, fxn, dmachan, attrs);

Parameters Int vecid; /* interrupt id */
Fxn fxn; /* pointer to HWI function */
Int dmachan; /* DMA channel to use for performing plug */
HWI_Attrs *attrs /*pointer to HWI dispatcher attributes */

Return Value Void

Assembly Interface none

Reentrant yes

Description HWI_dispatchPlug writes an Interrupt Service Fetch Packet (ISFP) into
the Interrupt Service Table (IST), at the address corresponding to vecid.
The op-codes written in the ISFP create a branch to the HWI dispatcher.

The HWI dispatcher table gets filled with the function specified by the fxn
parameter and the attributes specified by the attrs parameter.

For ’C6x0x devices, if the IST is stored in external RAM, a DMA (Direct
Memory Access) channel is not necessary and the dmachan parameter
can be set to -1 to cause a CPU copy instead. A DMA channel can still
be used to plug a vector in external RAM. A DMA channel must be used
to plug a vector in internal program RAM.

For ’C6x11 devices, the dmachan should be set to -1, regardless of
where the IST is stored.

If a DMA channel is specified by the dmachan parameter,
HWI_dispatchPlug assumes that the DMA channel is available for use,
and stops the DMA channel before programming it. If the DMA channel
is shared with other code, a semaphore or other DSP/BIOS signaling
method should be used to provide mutual exclusion before calling
C62_plug, C64_plug or HWI_dispatchPlug.

HWI_dispatchPlug does not enable the interrupt. Use C62_enableIER or
C64_enableIER to enable specific interrupts.

If attrs is NULL, the HWI’s dispatcher properties are assigned a default
set of attributes. Otherwise, the HWI’s dispatcher properties are specified
by a structure of type HWI_Attrs defined as follows:

HWI_dispatchPlug Plug the HWI dispatcher
2-124

HWI_dispatchPlug
typedef struct HWI_Attrs {
 Uns intrMask; /* IER bitmask, 1="self" (default) */
 Uns ccMask /* CSR CC bitmask, 1="leave alone" */
 Arg arg; /* fxn arg (default = 0)*/
} HWI_Attrs;
The intrMask element is a bitmask that specifies which interrupts to mask
off while executing the HWI. Bit positions correspond to those of the IER.
A value of 1 indicates an interrupt is being plugged. The default value is 1.

The ccMask element is a bitfield that corresponds to the cache control
bitfield in the CSR. A value of 1 indicates that the HWI dispatcher should
not modify the cache control settings at all. The default value is 1.

The arg element is a generic argument that is passed to the plugged
function as its only parameter. The default value is 0.

Constraints and
Calling Context

❏ vecid must be a valid interrupt ID in the range of 0-15.

❏ dmachan must be 0, 1, 2, or 3 if the IST is in internal program
memory and the device is a ’C6x0x.

See Also HWI_enable
HWI_restore
SWI_disable
SWI_enable
Application Program Interface 2-125

HWI_enable
C Interface

Syntax HWI_enable();

Parameters Void

Return Value Void

Assembly Interface

Syntax HWI_enable

Preconditions amr = 0

Postconditions GIE = 1

Modifies b0, csr

Reentrant yes

Description HWI_enable enables hardware interrupts by setting the GIE bit in the
Control Status Register (CSR).

Hardware interrupts are enabled unless a call to HWI_disable disables
them. DSP/BIOS enables hardware interrupts after the program’s main()
function runs. Your main function can enable individual interrupt mask
bits, but it should not call HWI_enable to globally enable interrupts.

Interrupts that occur while interrupts are disabled are postponed until
interrupts are reenabled. However, if the same type of interrupt occurs
several times while interrupts are disabled, the interrupt’s function is
executed only once when interrupts are reenabled. A context switch can
occur when calling HWI_enable/HWI_restore if an enabled interrupt
occurs while interrupts are disabled.

Any call to HWI_enable enables interrupts, even if HWI_disable has been
called several times.

Constraints and
Calling Context

❏ HWI_enable cannot be called from the program’s main() function.

Example HWI_disable();
"critical processing takes place"
HWI_enable();
"non-critical processing"

See Also HWI_disable
HWI_restore
SWI_disable
SWI_enable

HWI_enable Enable interrupts
2-126

HWI_enter
C Interface

Syntax none

Parameters none

Return Value none

Assembly Interface

Syntax HWI_enter ABMASK, CMASK, IEMASK, CCMASK

Preconditions interrupts are globally disabled (that is, GIE == 0)

Postconditions amr = 0
GIE = 1
dp (b14) = .bss

Modifies a0, a1, a2, a3, amr, b0, b1, b2, b3, b14, b15, csr, ier

Reentrant yes

Description HWI_enter is an API (assembly macro) used to save the appropriate
context for a DSP/BIOS interrupt service routine (ISR).

HWI_enter is used by ISRs that are user-dispatched, as opposed to ISRs
that are handled by the HWI dispatcher. HWI_enter must not be issued
by ISRs that are handled by the HWI dispatcher.

If the HWI dispatcher is not used by an HWI object, HWI_enter must be
used in the ISR before any DSP/BIOS API calls that could trigger other
DSP/BIOS objects, such as posting a SWI or semaphore. HWI_enter is
used in tandem with HWI_exit to ensure that the DSP/BIOS SWI or TSK
manager is called at the appropriate time. Normally, HWI_enter and
HWI_exit must surround all statements in any DSP/BIOS assembly
language ISRs that call C functions.

Note:

For the C64 device, substitute 64 in each instance where 62 appears
below unless otherwise specified.

HWI_enter Hardware ISR prolog
Application Program Interface 2-127

HWI_enter
Common masks are defined in the device-specific assembly macro files,
c62.h62 and c64.h64. The c62.h62 file defines C62_ABTEMPS and
C62_CTEMPS. The c64.h64 file defines C64_ATEMPS, C64_BTEMPS,
and C64_CTEMPS. These masks specify the C temporary registers and
should be used when saving the context for an ISR that is written in C.

The input parameter CCMASK specifies the program cache control
(PCC) and data cache control (DCC) codes you need to use in the
context of the ISR. Some typical values for this mask are defined in
c62.h62 (or c64.h64). The PCC code and DCC code can be ORed
together (for example, C62_PCC_ENABLE | C62_PCC_DISABLE) to
generate CCMASK. If you use 0 as CCMASK, C62_CCDEFAULT is
used. C62_CCDEFAULT is defined in c62.h62 as C62_PCC_DISABLE |
C62_PCC_DISABLE. You set this value in the Global Settings Properties
in the Configuration Tool. The following parameters and constants are
available for HWI_enter:

❏ ABMASK. Register mask specifying A, B registers to save

� C62_ABTEMPS. Mask to use if calling C function from within
ISR; defined in c62.h62

� C62_A0 - C62_A15, C62_B0 - C62_B15. Individual register
constants; can be ORed together for more precise control than
using C62_ABTEMPS

� C64_A0 - C64_A31, C64_B0 - C64_B31. Individual register
constants; can be ORed together for more precise control than
using C64_ATEMPS and C64_BTEMPS

❏ CMASK. Register mask specifying control registers to save

� C62_CTEMPS. Mask to use if calling C function from within ISR;
defined in c62.h62

� C62_AMR, C62_CSR, C62_IER, C62_IST, C62_IRP, C62_NRP.
Individual register constants; can be ORed together for more
precise control than using C62_CTEMPS

❏ IEMASK. Bit mask specifying IER bits to disable. Any bit mask can
be specified, with bits having a one-to-one correspondence with the
assigned values in the IER. The following convenience macros can
be ORed together to specify the mask of interrupts to disable

� C62_NMIE

� C62_IE4 - C62_IE15
2-128

HWI_enter
❏ CCMASK. Bit mask specifying cache control bits in the CSR. The
following macros directly correspond to the possible modes of the
program cache specified in the CSR.

� C62_PCC_DISABLE

� C62_PCC_ENABLE

� C62_PCC_FREEZE

� C62_PCC_BYPASS

Note that if HWI_enter modifies CSR bits, those changes are lost when
interrupt processing is complete. HWI_exit restores the CSR to its value
when interrupt processing began no matter what the value of CCMASK.

Constraints and
Calling Context

❏ This API should not be used in the NMI HWI function.

❏ This API must not be called if the HWI object that runs this function
uses the HWI dispatcher.

❏ This API cannot be called from the program’s main function.

❏ This API cannot be called from a SWI, TSK, or IDL function.

❏ This API cannot be called from a CLK function.

❏ Unless the HWI dispatcher is used, this API must be called within any
hardware interrupt function (except NMI’s HWI function) before the
first operation in an ISR that uses any DSP/BIOS API calls that might
post or affect a software interrupt or semaphore. Such functions must
be written in assembly language. Alternatively, the HWI dispatcher
can be used instead of this API, allowing the function to be written
completely in C and allowing you to reduce code size.

❏ If an interrupt function calls HWI_enter, it must end by calling
HWI_exit.

❏ Do not use the interrupt keyword or the INTERRUPT pragma in C
functions that run in the context of an HWI.

Example CLK_isr:

HWI_enter C62_ABTEMPS, C62_CTEMPS, 0XF0,
C62_PCC_ENABLE|C62_PCC_DISABLE
PRD_tick
HWI_exit C62_ABTEMPS, C62_CTEMPS, 0XF0,
C62_PCC_ENABLE|C62_PCC_DISABLE

See Also HWI_exit
Application Program Interface 2-129

HWI_exit
C Interface
Syntax none

Parameters none

Return Value none

Assembly Interface

Syntax HWI_exit ABMASK CMASK IERRESTOREMASK CCMASK

Preconditions b14 = pointer to the start of .bss
amr = 0

Postconditions none

Modifies a0, a1, amr, b0, b1, b2, b3, b14, b15, csr, ier, irp

Reentrant yes

Description HWI_exit is an API (assembly macro) which is used to restore the context
that existed before a DSP/BIOS interrupt service routine (ISR) was
invoked.

HWI_exit is used by ISRs that are user-dispatched, as opposed to ISRs
that are handled by the HWI dispatcher. HWI_exit must not be issued by
ISRs that are handled by the HWI dispatcher.

If the HWI dispatcher is not used by an HWI object, HWI_exit must be the
last statement in an ISR that uses DSP/BIOS API calls which could
trigger other DSP/BIOS objects, such as posting a SWI or semaphore.

HWI_exit restores the registers specified by ABMASK and CMASK.
These masks are used to specify the set of registers that were saved by
HWI_enter.

HWI_enter and HWI_exit must surround all statements in any DSP/BIOS
assembly language ISRs that call C functions only for ISRs that are not
dispatched by the HWI dispatcher.

HWI_exit calls the DSP/BIOS Software Interrupt manager if DSP/BIOS
itself is not in the middle of updating critical data structures, or if no
currently interrupted ISR is also in a HWI_enter/ HWI_exit region. The
DSP/BIOS SWI manager services all pending SWI handlers (functions).

HWI_exit Hardware ISR epilog
2-130

HWI_exit
Of the interrupts in IERRESTOREMASK, HWI_exit only restores those
enabled upon entering the ISR. HWI_exit does not affect the status of
interrupt bits that are not in IERRESTOREMASK. If upon exiting an ISR
you do not wish to restore an interrupt that was disabled with HWI_enter,
do not set that interrupt bit in the IERRESTOREMASK in HWI_exit.

If upon exiting an ISR you wish to enable an interrupt that was disabled
upon entering the ISR, set the corresponding bit in IER register.
(Including a bit in IER in the IERRESTOREMASK of HWI_exit does not
enable the interrupt if it was disabled when the ISR was entered.)

Note:

For the C64 device, substitute 64 in each instance where 62 appears
below unless otherwise specified.

The following parameters and constants are available for HWI_exit:

❏ ABMASK. Register mask specifying A, B registers to restore.

� C62_ABTEMPS. Mask to use if calling C function from within
ISR; defined in c62.h62.

� C62_A0 - C62_A15, C62_B0 - C62_B15. Individual register
constants; can be ORed together for more precise control than
using C62_ABTEMPS.

� C64_A0 - C64_A31, C64_B0 - C64_B31. Individual register
constants; can be ORed together for more precise control than
using C64_ATEMPS and C64_BTEMPS

❏ CMASK. Register mask specifying control registers to restore.

� C62_CTEMPS. Mask to use if calling C function from within ISR;
defined in c62.h62.

� C62_AMR, C62_CSR, C62_IER, C62_IST, C62_IRP, C62_NRP.
Individual register constants; can be ORed together for more
precise control than using C62_CTEMPS.

❏ IERRESTOREMASK. Bit mask specifying IER bits to restore. Any bit
mask can be specified, with bits having a one-to-one
correspondence with the assigned values in the IER. The following
convenience macros can be ORed together to specify the mask of
interrupts to restore.

� C62_NMIE

� C62_IE4 - C62_IE15
Application Program Interface 2-131

HWI_exit
❏ CCMASK. Bit mask specifying cache control bits in CSR. The
following macros directly correspond to the possible modes of the
program cache specified in the CSR.

� C62_PCC_DISABLE

� C62_PCC_ENABLE

� C62_PCC_FREEZE

� C62_PCC_BYPASS

To be symmetrical, even though CCMASK has no effect on HWI_exit, you
should use the same CCMASK that is used in HWI_enter for HWI_exit.
HWI_exit restores the CSR to its value when interrupt processing began
no matter what the value of CCMASK.

Constraints and
Calling Context

❏ This API should not be used for the NMI HWI function.

❏ This API must not be called if the HWI object that runs the ISR uses
the HWI dispatcher.

❏ If the HWI dispatcher is not used, this API must be the last operation
in an ISR that uses any DSP/BIOS API calls that might post or affect
a software interrupt or semaphore. The HWI dispatcher can be used
instead of this API, allowing the function to be written completely in C
and allowing you to reduce code size.

❏ The ABMASK and CMASK parameters must match the
corresponding parameters used for HWI_enter.

❏ This API cannot be called from the program’s main function.

❏ This API cannot be called from a SWI, TSK, or IDL function.

❏ This API cannot be called from a CLK function.

Example CLK_isr:

HWI_enter C62_ABTEMPS, C62_CTEMPS, 0XF0,
C62_PCC_ENABLE|C62_PCC_DISABLE
PRD_tick
HWI_exit C62_ABTEMPS, C62_CTEMPS, 0XF0,
C62_PCC_ENABLE|C62_PCC_DISABLE

See Also HWI_enter
2-132

HWI_restore
C Interface

Syntax HWI_restore(oldCSR);

Parameters Uns oldCSR;

Returns Void

Assembly Interface

Syntax HWI_restore

Preconditions a4 = mask (GIE is set to the value of bit 0)
GIE = 0
amr = 0

Postconditions none

Modifies a1, b0, csr

Reentrant yes

Description HWI_restore sets the global interrupt enable (GIE) bit in the Control
Status Register (CSR) using the least significant bit of the oldCSR
parameter. If bit 0 is 0, the GIE bit is not modified. If bit 0 is 1, the GIE bit
is set to 1, which enables interrupts.

When you call HWI_disable, the previous contents of the register are
returned. You can use this returned value with HWI_restore.

A context switch may occur when calling HWI_restore if HWI_restore
reenables interrupts and if a higher-priority HWI occurred while interrupts
were disabled.

Constraints and
Calling Context

❏ HWI_restore cannot be called from the program’s main function.

❏ HWI_restore must be called with interrupts disabled. The parameter
passed to HWI_restore must be the value returned by HWI_disable.

Example oldCSR = HWI_disable(); /* disable interrupts */
 'do some critical operation'
HWI_restore(oldCSR);
 /* re-enable interrupts if they
 were enabled at the start of the
 critical section */

See Also HWI_enable
HWI_disable

HWI_restore Restore global interrupt enable state
Application Program Interface 2-133

IDL Module
2.10 IDL Module

The IDL module is the idle thread manager.

Functions ❏ IDL_run. Make one pass through idle functions.

Configuration
Properties

The following list shows the properties that can be configured in a
DSP/BIOS TextConf script, along with their types and default values. For
details, see the IDL Manager Properties and IDL Object Properties
headings. For descriptions of data types, see Section 1.4, DSP/BIOS
TextConf Overview, page 1-4.
Module Configuration Parameters.

Instance Configuration Parameters.

Description The IDL module manages the lowest-level threads in the application. In
addition to user-created functions, the IDL module executes DSP/BIOS
functions that handle host communication and CPU load calculation.

There are four kinds of threads that can be executed by DSP/BIOS
programs: hardware interrupts (HWI Module), software interrupts (SWI
Module), tasks (TSK Module), and background threads (IDL module).
Background threads have the lowest priority, and execute only if no
hardware interrupts, software interrupts, or tasks need to run.

An application’s main function must return before any DSP/BIOS threads
can run. After the return, DSP/BIOS runs the idle loop. Once an
application is in this loop, HWI hardware interrupts, SWI software
interrupts, PRD periodic functions, TSK task functions, and IDL
background threads are all enabled.

The functions for IDL objects registered with the Configuration Tool are
run in sequence each time the idle loop runs. IDL functions are called
from the IDL context. IDL functions can be written in C or assembly and
must follow the C calling conventions described in the compiler manual.

Name Type Default

OBJMEMSEG Reference prog.get("IDRAM")

AUTOCALCULATE Bool true

LOOPINSTCOUNT Int32 1000

Name Type Default

comment String "<add comments here>"

fxn Extern prog.extern("FXN_F_nop")

calibration Bool true
2-134

IDL Module
When RTA is enabled (see page 2–97), an application contains an
IDL_cpuLoad object, which runs a function that provides data about the
CPU utilization of the application. In addition, the LNK_dataPump
function handles host I/O in the background, and the RTA_dispatch
function handles run-time analysis communication.

The IDL Function Manager allows you to insert additional functions that
are executed in a loop whenever no other processing (such as hardware
ISRs or higher-priority tasks) is required.

IDL Manager
Properties

The following global properties can be set for the IDL module in the IDL
Manager Properties dialog of the Configuration Tool or in a DSP/BIOS
TextConf script:

❏ Object Memory. The memory segment that contains the IDL objects.
TextConf Name: OBJMEMSEG Type: Ref

Example: IDL.OBJMEMSEG = prog.get("myMEM");
❏ Auto calculate idle loop instruction count. When this box is

checked, the program runs the IDL functions one or more times at
system startup to get an approximate value for the idle loop
instruction count. This value, saved in the global variable
CLK_D_idletime, is read by the host and used in the CPU load
calculation. By default, the instruction count includes all IDL
functions, not just LNK_dataPump, RTA_dispatcher, and
IDL_cpuLoad. You can remove an IDL function from the calculation
by removing the checkmark from the Include in CPU load calibration
box in an IDL object’s Properties dialog.

Remember that functions included in the calibration are run before
the main function runs. These functions should not access data
structures that are not initialized before the main function runs. In
particular, functions that perform any of the following actions should
not be included in the idle loop calibration:

� enabling hardware interrupts or the SWI or TSK schedulers
� using CLK APIs to get the time
� accessing PIP objects
� blocking tasks
� creating dynamic objects
TextConf Name: AUTOCALCULATE Type: Bool

Example: IDL.AUTOCALCULATE = true;
❏ Idle Loop Instruction Count. This is the number of instruction

cycles required to perform the IDL loop and the default IDL functions
(LNK_dataPump, RTA_dispatcher, and IDL_cpuLoad) that
Application Program Interface 2-135

IDL Module
communicate with the host. Since these functions are performed
whenever no other processing is needed, background processing is
subtracted from the CPU load before it is displayed.
TextConf Name: LOOPINSTCOUNT Type: Int32

Example: IDL.LOOPINSTCOUNT = 1000;
IDL Object Properties Each idle function runs to completion before another idle function can

run. It is important, therefore, to ensure that each idle function completes
(that is, returns) in a timely manner.

To create an IDL object in a configuration script, use the following syntax.
The DSP/BIOS TextConf examples that follow assume the object has
been created as shown here.

var myIdl = IDL.create("myIdl");
The following properties can be set for an IDL object:

❏ comment. Type a comment to identify this IDL object.
TextConf Name: comment Type: String

Example: myIdl.comment = "IDL function";
❏ function. The function to be executed. If this function is written in C,

use a leading underscore before the C function name. (The
Configuration Tool generates assembly code which must use the
leading underscore when referencing C functions or labels.)
TextConf Name: fxn Type: Extern

Example: myIdl.fxn = prog.extern("myIDL");
❏ Include in CPU load calibration. You can remove an individual IDL

function from the CPU load calculation by removing the checkmark
from this box. The CPU load calibration is performed only if the Auto
calculate idle loop instruction count box is checked in the IDL
Manager Properties. You should remove a function from the
calculation if it blocks or depends on variables or structures that are
not initialized until the main function runs.
TextConf Name: calibration Type: Bool

Example: myIdl.calibration = true;
IDL- Execution Graph
Interface

Time spent performing IDL functions is not directly traced. However, the
Other Threads row in the Execution Graph, which you can open by
choosing DSP/BIOS→Execution Graph, includes time spent performing
both HWI and IDL functions.
2-136

IDL_run
C Interface

Syntax IDL_run();

Parameters Void

Return Value Void

Assembly Interface none

Description IDL_run makes one pass through the list of configured IDL objects,
calling one function after the next. IDL_run returns after all IDL functions
have been executed one time. IDL_run is not used by most DSP/BIOS
applications since the IDL functions are executed in a loop when the
application returns from main. IDL_run is provided to allow easy
integration of the real-time analysis features of DSP/BIOS (for example,
LOG and STS) into existing applications.

IDL_run must be called to transfer the real-time analysis data to and from
the host computer. Though not required, this is usually done during idle
time when no HWI or SWI threads are running.

Note:

BIOS_init and BIOS_start must be called before IDL_run to ensure that
DSP/BIOS has been initialized. For example, the DSP/BIOS boot file
contains the following system calls around the call to main:

BIOS_init(); /* initialize DSP/BIOS */
main();
BIOS_start() /* start DSP/BIOS */
IDL_loop(); /* call IDL_run in an infinite loop */

Constraints and
Calling Context

❏ IDL_run cannot be called by an HWI or SWI function.

IDL_run Make one pass through idle functions
Application Program Interface 2-137

LCK Module
2.11 LCK Module

The LCK module is the resource lock manager.

Functions ❏ LCK_create. Create a resource lock

❏ LCK_delete. Delete a resource lock

❏ LCK_pend. Acquire ownership of a resource lock

❏ LCK_post. Relinquish ownership of a resource lock

Constants, Types,
and Structures

typedef struct LCK_Obj *LCK_Handle; /* resource handle */

/* lock object */
typedef struct LCK_Attrs LCK_Attrs;

struct LCK_Attrs {
 Int dummy;
};

LCK_Attrs LCK_ATTRS = {0}; /* default attribute values */

Configuration
Properties

The following list shows the properties that can be configured in a
DSP/BIOS TextConf script, along with their types and default values. For
details, see the LCK Manager Properties and LCK Object Properties
headings. For descriptions of data types, see Section 1.4, DSP/BIOS
TextConf Overview, page 1-4.

Module Configuration Parameter.

Description The lock module makes available a set of functions that manipulate lock
objects accessed through handles of type LCK_Handle. Each lock
implicitly corresponds to a shared global resource, and is used to
arbitrate access to this resource among several competing tasks.

The LCK module contains a pair of functions for acquiring and
relinquishing ownership of resource locks on a per-task basis. These
functions are used to bracket sections of code requiring mutually
exclusive access to a particular resource.

LCK lock objects are semaphores that potentially cause the current task
to suspend execution when acquiring a lock.

LCK Manager
Properties

The following global property can be set for the LCK module on the LCK
Manager Properties dialog in the Configuration Tool or in a DSP/BIOS
TextConf script:

Name Type Default

OBJMEMSEG Reference prog.get("IDRAM")
2-138

LCK Module
❏ Object Memory. The memory segment that contains the LCK
objects.
TextConf Name: OBJMEMSEG Type: Ref

Example: LCK.OBJMEMSEG = prog.get("myMEM");
LCK Object Properties To create a LCK object in a configuration script, use the following syntax.

The DSP/BIOS TextConf examples that follow assume the object has
been created as shown here.

var myLck = LCK.create("myLck");
The following property can be set for a LCK object in the LCK Object
Properties dialog of the Configuration Tool or in a DSP/BIOS TextConf
script:

❏ comment. Type a comment to identify this LCK object.
TextConf Name: comment Type: String

Example: myLck.comment = "LCK object";
Application Program Interface 2-139

LCK_create
C Interface

Syntax lock = LCK_create(attrs);

Parameters LCK_Attrs attrs; /* pointer to lock attributes */

Return Value LCK_Handle lock; /* handle for new lock object */

Assembly Interface none

Description LCK_create creates a new lock object and returns its handle. The lock
has no current owner and its corresponding resource is available for
acquisition through LCK_pend.

If attrs is NULL, the new lock is assigned a default set of attributes.
Otherwise the lock’s attributes are specified through a structure of type
LCK_Attrs.

Note:

At present, no attributes are supported for lock objects.

All default attribute values are contained in the constant LCK_ATTRS,
which can be assigned to a variable of type LCK_Attrs prior to calling
LCK_create.

LCK_create calls MEM_alloc to dynamically create the object’s data
structure. MEM_alloc must acquire a lock to the memory before
proceeding. If another thread already holds a lock to the memory, then
there is a context switch. The segment from which the object is allocated
is described by the DSP/BIOS objects property in the MEM Module, page
2–170.

Constraints and
Calling Context

❏ LCK_create cannot be called from a SWI or HWI.

❏ You can reduce the size of your application program by creating
objects with the Configuration Tool rather than using the XXX_create
functions.

See Also LCK_delete
LCK_pend
LCK_post

LCK_create Create a resource lock
2-140

LCK_delete
C Interface

Syntax LCK_delete(lock);

Parameters LCK_Handle lock; /* lock handle */

Return Value Void

Assembly Interface none

Description LCK_delete uses MEM_free to free the lock referenced by lock.

LCK_delete calls MEM_free to delete the LCK object. MEM_free must
acquire a lock to the memory before proceeding. If another task already
holds a lock to the memory, then there is a context switch.

Constraints and
Calling Context

❏ LCK_delete cannot be called from a SWI or HWI.

❏ No task should be awaiting ownership of the lock.

❏ No check is performed to prevent LCK_delete from being used on a
statically-created object. If a program attempts to delete a lock object
that was created using the Configuration Tool, SYS_error is called.

See Also LCK_create
LCK_pend
LCK_post

LCK_delete Delete a resource lock
Application Program Interface 2-141

LCK_pend
C Interface

Syntax status = LCK_pend(lock, timeout);

Parameters LCK_Handle lock; /* lock handle */
Uns timeout; /* return after this many system clock ticks */

Return Value Bool status; /* TRUE if successful, FALSE if timeout */

Assembly Interface none

Description LCK_pend acquires ownership of lock, which grants the current task
exclusive access to the corresponding resource. If lock is already owned
by another task, LCK_pend suspends execution of the current task until
the resource becomes available.

The task owning lock can call LCK_pend any number of times without risk
of blocking, although relinquishing ownership of the lock requires a
balancing number of calls to LCK_post.

LCK_pend results in a context switch if this LCK timeout is greater than
0 and the lock is already held by another thread.

LCK_pend returns TRUE if it successfully acquires ownership of lock,
returns FALSE if timeout.

Many runtime support (RTS) functions use lock and unlock functions to
prevent reentrancy. However, DSP/BIOS SWI and HWI threads cannot
call LCK_pend and LCK_post. As a result, RTS functions that call
LCK_pend or LCK_post must only be used outside the context of SWI
and HWI threads.

To determine whether a particular RTS function uses LCK_pend or
LCK_post, refer to the source code for that function shipped with
CCStudio. The following table shows some of the RTS functions that call
LCK_pend and LCK_post in certain versions of CCStudio:

LCK_pend Acquire ownership of a resource lock

fprintf printf vfprintf sprintf

vprintf vsprintf clock strftime

minit malloc realloc free

calloc rand srand getenv
2-142

LCK_pend
Constraints and
Calling Context

❏ The lock must be a handle for a resource lock object created through
a prior call to LCK_create.

❏ LCK_pend should not be called from a SWI or HWI thread.

See Also LCK_create
LCK_delete
LCK_post
Application Program Interface 2-143

LCK_post
C Interface

Syntax LCK_post(lock);

Parameters LCK_Handle lock; /* lock handle */

Return Value Void

Assembly Interface none

Description LCK_post relinquishes ownership of lock, and resumes execution of the
first task (if any) awaiting availability of the corresponding resource. If the
current task calls LCK_pend more than once with lock, ownership
remains with the current task until LCK_post is called an equal number of
times.

LCK_post results in a context switch if a higher priority thread is currently
pending on the lock.

Constraints and
Calling Context

❏ lock must be a handle for a resource lock object created through a
prior call to LCK_create.

❏ LCK_post should not be called from a SWI or HWI thread.

See Also LCK_create
LCK_delete
LCK_pend

LCK_post Relinquish ownership of a resource LCK
2-144

LOG Module
2.12 LOG Module

The LOG module captures events in real time.

Functions ❏ LOG_disable. Disable the system log.

❏ LOG_enable. Enable the system log.

❏ LOG_error. Write a user error event to the system log.

❏ LOG_event. Append unformatted message to message log.

❏ LOG_message. Write a user message event to the system log.

❏ LOG_printf. Append formatted message to message log.

❏ LOG_reset. Reset the system log.

Configuration
Properties

The following list shows the properties that can be configured in a
DSP/BIOS TextConf script, along with their types and default values. For
details, see the LOG Manager Properties and LOG Object Properties
headings. For descriptions of data types, see Section 1.4, DSP/BIOS
TextConf Overview, page 1-4.

Module Configuration Parameters.

Instance Configuration Parameters.

Description The Event Log is used to capture events in real time while the target
program executes. You can use the system log, or create user-defined
logs. If the logtype is circular, the log buffer of size buflen contains the last
buflen elements. If the logtype is fixed, the log buffer contains the first
buflen elements.

Name Type Default

OBJMEMSEG Reference prog.get("IDRAM")

Name Type Default (Enum Options)

comment String "<add comments here>"

bufSeg Reference prog.get("IDRAM")

bufLen EnumInt 64 (0, 8, 16, 32, 64, ..., 32768)

logType EnumString "circular" ("fixed)

dataType EnumString "printf" ("raw data")

format String "0x%x, 0x%x, 0x%x"
Application Program Interface 2-145

LOG Module
The system log stores messages about system events for the types of log
tracing you have enabled. See the TRC Module, page 2–349, for a list of
events that can be traced in the system log.

You can add messages to user logs or the system log by using
LOG_printf or LOG_event. To reduce execution time, log data is always
formatted on the host.

LOG_error writes a user error event to the system log. This operation is
not affected by any TRC trace bits; an error event is always written to the
system log. LOG_message writes a user message event to the system
log, provided that both TRC_GBLHOST and TRC_GBLTARG (the host
and target trace bits, respectively) traces are enabled.

When a problem is detected on the target, it is valuable to put a message
in the system log. This allows you to correlate the occurrence of the
detected event with the other system events in time. LOG_error and
LOG_message can be used for this purpose.

Log buffers are of a fixed size and reside in data memory. Individual
messages use four words of storage in the log’s buffer. The first word
holds a sequence number that allows the Event Log to display logs in the
correct order. The remaining three words contain data specified by the
call that wrote the message to the log.

See the Code Composer Studio online tutorialfor examples of how to use
the LOG Manager.

LOG Manager
Properties

The following global property can be set for the LOG module in the LOG
Manager Properties dialog of the Configuration Tool or in a DSP/BIOS
TextConf script:

❏ Object Memory. The memory segment that contains the LOG
objects.
TextConf Name: OBJMEMSEG Type: Ref

Example: LOG.OBJMEMSEG = prog.get("myMEM");
LOG Object Properties To create a LOG object in a configuration script, use the following syntax.

The DSP/BIOS TextConf examples that follow assume the object has
been created as shown here.

var myLog = LOG.create("myLog");
The following properties can be set for a log object on the LOG Object
Properties dialog in the Configuration Tool or in a DSP/BIOS TextConf
script:
2-146

LOG Module
❏ comment. Type a comment to identify this LOG object.
TextConf Name: comment Type: String

Example: myLog.comment = "trace LOG";
❏ bufseg. The name of a memory segment to contain the log buffer.

TextConf Name: bufSeg Type: Ref
Example: myLog.bufSeg = prog.get("myMEM");

❏ buflen. The length of the log buffer (in words).
TextConf Name: bufLen Type: EnumInt

Options: 0, 8, 16, 32, 64, ..., 32768
Example: myLog.bufLen = 64;

❏ logtype. The type of the log: circular or fixed. Events added to a full
circular log overwrite the oldest event in the buffer, whereas events
added to a full fixed log are dropped.

� Fixed. The log stores the first messages it receives and stops
accepting messages when its message buffer is full.

� Circular. The log automatically overwrites earlier messages
when its buffer is full. As a result, a circular log stores the last
events that occur.

TextConf Name: logType Type: EnumString
Options: "circular", "fixed"

Example: myLog.logType = "circular";
❏ datatype. Choose printf if you use LOG_printf to write to this log and

provide a format string.

Choose raw data if you want to use LOG_event to write to this log
and have the Event Log apply a printf-style format string to all records
in the log.
TextConf Name: dataType Type: EnumString

Options: "printf", "raw data"
Example: myLog.dataType = "printf";

❏ format. If you choose raw data as the datatype, type a printf-style
format string in this field. Provide up to three (3) conversion
characters (such as %d) to format words two, three, and four in all
records in the log. Do not put quotes around the format string. The
format string can use %d, %x, %o, %s, %r, and %p conversion
Application Program Interface 2-147

LOG Module
characters; it cannot use other types of conversion characters. See
LOG_printf, page 2–155, and LOG_event, page 2–152, for
information about the structure of a log record.
TextConf Name: format Type: String

Example: myLog.format = "0x%x, 0x%x, 0x%x";
LOG - Code Composer
Studio Interface

You can view log messages in real time while your program is running
with the Event Log. A pull-down menu provides a list of the logs you can
view. To see the system log as a graph, choose DSP/BIOS→ Execution
Graph Details. To see a user log, choose DSP/BIOS→Event Log and
select the log or logs you want to see. The Property Page for the
Message Log allows you to select a file to which the log messages are
written. Right-click on the Message Log and select Property Page to
name this file. You cannot open the named log file until you close the
Message Log window.

You can also control how frequently the host polls the target for log
information. Right-click on the RTA Control Panel and choose the
Property Page to set the refresh rate as shown in Figure 2-1. If you set
the refresh rate to 0, the host does not poll the target unless you right-
click on the log window and choose Refresh Window from the pop-up
menu.

Figure 2-1. RTA Control Panel Properties Page
2-148

LOG_disable
C Interface

Syntax LOG_disable(log);

Parameters LOG_Handle log; /* log object handle */

Return Value Void

Assembly Interface

Syntax LOG_disable

Preconditions a4 = address of the LOG object
amr = 0

Postconditions none

Modifies a0

Reentrant no

Description LOG_disable disables the logging mechanism and prevents the log
buffer from being modified.

Example LOG_disable(&trace);
See Also LOG_enable

LOG_reset

LOG_disable Disable a message log
Application Program Interface 2-149

LOG_enable
C Interface

Syntax LOG_enable(log);

Parameters LOG_Handle log; /* log object handle */

Return Value Void

Assembly Interface

Syntax LOG_enable

Preconditions a4 = address of the LOG object
amr = 0

Postconditions none

Modifies a0

Reentrant no

Description LOG_enable enables the logging mechanism and allows the log buffer to
be modified.

Example LOG_enable(&trace);
See Also LOG_disable

LOG_reset

LOG_enable Enable a message log
2-150

LOG_error
C Interface

Syntax LOG_error(format, arg0);

Parameters String format; /* printf-style format string */
Arg arg0; /* copied to second word of log record */

Return Value Void

Assembly Interface

Syntax LOG_error format [section]

Preconditions a4 = format
b4 = arg0
b14 = address of the start of .bss
amr = 0

Postconditions none (see the description of the section argument below)

Modifies a0, a1, a2, a3, a4, a6, a7, b0, b2, b3, b5, b6, b7

Reentrant yes

Description LOG_error writes a program-supplied error message to the system log,
which is defined in the default configuration by the LOG_system object.
LOG_error is not affected by any TRC bits; an error event is always
written to the system log.

The format argument can contain any of the conversion characters
supported for LOG_printf. See LOG_printf for details.

The LOG_error assembly macro takes an optional section argument. If
you omit this argument, assembly code following the macro is assembled
into the .text section. If you want your program to be assembled into
another section, specify another section name when calling the macro.

Example Void UTL_doError(String s, Int errno)
{
 LOG_error("SYS_error called: error id = 0x%x", errno);
 LOG_error("SYS_error called: string = '%s'", s);
}

See Also LOG_event
LOG_message
LOG_printf
TRC_disable
TRC_enable

LOG_error Write an error message to the system log
Application Program Interface 2-151

LOG_event
C Interface

Syntax LOG_event(log, arg0, arg1, arg2);

Parameters LOG_Handle log; /* log objecthandle */
Arg arg0; /* copied to second word of log record */
Arg arg1; /* copied to third word of log record */
Arg arg2; /* copied to fourth word of log record */

Return Value Void

Assembly Interface

Syntax LOG_event

Preconditions a4 = address of the LOG object
b4 = val1
a6 = val2
b6 = val3
amr = 0

Postconditions none

Modifies a0, a1, a2, a3, a7, b0, b2, b3, b5, b7

Reentrant yes

Description LOG_event copies a sequence number and three arguments to the
specified log buffer. Each log message uses four words. The contents of
the four words written by LOG_event are shown here:

You can format the log by using LOG_printf instead of LOG_event.

If you want the Event Log to apply the same printf-style format string to
all records in the log, use the Configuration Tool to choose raw data for
the datatype property of this LOG object and typing a format string for the
format property.

LOG_event Append an unformatted message to a message log

Sequence # arg0 arg1 arg2LOG_event
2-152

LOG_event
If the logtype is circular, the log buffer of size buflen contains the last
buflen elements. If the logtype is fixed, the log buffer contains the first
buflen elements.

Any combination of threads can write to the same log. Internally,
hardware interrupts are temporarily disabled during a call to LOG_event.
Log messages are never lost due to thread preemption.

Example LOG_event(&trace, (Arg)value1, (Arg)value2,
 (Arg)CLK gethtime());

See Also LOG_error
LOG_printf
TRC_disable
TRC_enable
Application Program Interface 2-153

LOG_message
C Interface

Syntax LOG_message(format, arg0);

Parameters String format; /* printf-style format string */
Arg arg0; /* copied to second word of log record */

Return Value Void

Assembly Interface

Syntax LOG_message format [section]

Preconditions a4 = format
b4 = arg0
b14 = address of the start of .bss
amr = 0

Postconditions none (see the description of the section argument below)

Modifies a0, a1, a2, a3, a4, a6, a7, b0, b2, b3, b5, b6, b7

 Reentrant yes

Description LOG_message writes a program-supplied message to the system log,
provided that both the host and target trace bits are enabled.

The format argument passed to LOG_message can contain any of the
conversion characters supported for LOG_printf. See LOG_printf, page
2–155, for details.

The LOG_message assembly macro takes an optional section argument.
If you do not specify a section argument, assembly code following the
macro is assembled into the .text section by default. If you do not want
your program to be assembled into the .text section, you should specify
the desired section name when calling the macro.

Example Void UTL_doMessage(String s, Int errno)
{
 LOG_message("SYS_error called: error id = 0x%x", errno);
 LOG_message("SYS_error called: string = '%s'", s);
}

See Also LOG_error
LOG_event
LOG_printf
TRC_disable
TRC_enable

LOG_message Write a program-supplied message to the system log
2-154

LOG_printf
C Interface

Syntax LOG_printf(log, format);
 or
LOG_printf(log, format,arg0);
 or
LOG_printf(log, format, arg0, arg1);

Parameters LOG_Handle log; /* log object handle */
String format; /* printf format string */
Arg arg0; /* value for first format string token */
Arg arg1; /* value for second format string token */

Return Value Void

Assembly Interface

Syntax LOG_printf format [section]

Preconditions a4 = address of the LOG object
b4 = arg0
a6 = arg1
amr = 0

Postconditions none (see the description of the section parameter below)

Modifies a0, a1, a2, a3, a7, b0, b2, b3, b5, b6, b7

Reentrant yes

Description As a convenience for C (as well as assembly language) programmers,
the LOG module provides a variation of the ever-popular printf.
LOG_printf copies a sequence number, the format address, and two
arguments to the specified log buffer.

To reduce execution time, log data is always formatted on the host. The
format string is stored on the host and accessed by the Event Log.

The arguments passed to LOG_printf must be integers, strings, or a
pointer (if the special %r or %p conversion character is used).

The format string can use any of the conversion characters found in Table
2-2.

LOG_printf Append a formatted message to a message log
Application Program Interface 2-155

LOG_printf
Table 2-2. Conversion Characters for LOG_printf

Conversion
Character Description

%d Signed integer

%x Unsigned hexadecimal integer

%o Unsigned octal integer

%s Character string
This character can only be used with constant string pointers.
That is, the string must appear in the source and be passed
to LOG_printf. For example, the following is supported:

char *msg = "Hello world!";
LOG_printf(&trace, "%s", msg);
However, the following example is not supported:
char msg[100];
strcpy(msg, "Hello world!");
LOG_printf(&trace, "%s", msg);
If the string appears in the COFF file and a pointer to the
string is passed to LOG_printf, then the string in the COFF
file is used by the Event Log to generate the output.
If the string can not be found in the COFF file, the format
string is replaced with *** ERROR: 0x%x 0x%x ***\n,
which displays all arguments in hexadecimal.

%r Symbol from symbol table
This is an extension of the standard printf format tokens. This
character treats its parameter as a pointer to be looked up in
the symbol table of the executable and displayed. That is, %r
displays the symbol (defined in the executable) whose value
matches the value passed to %r. For example:

Int testval = 17;
LOG_printf("%r = %d", &testval, testval);
displays:
testval = 17
If no symbol is found for the value passed to %r, the Event
Log uses the string <unknown symbol>.

%p pointer
2-156

LOG_printf
If you want the Event Log to apply the same printf-style format string to
all records in the log, use the Configuration Tool to choose raw data for
the datatype property of this LOG object and typing a format string for the
format property.

The LOG_printf assembly macro takes an optional section parameter. If
you do not specify a section parameter, assembly code following the
LOG_printf macro is assembled into the .text section by default. If you do
not want your program to be assembled into the .text section, you should
specify the desired section name as the second parameter to the
LOG_printf call.

Each log message uses four words. The contents of the four words
written by LOG_printf are shown here:

You configure the characteristics of a log in the Configuration Tool. If the
logtype is circular, the log buffer of size buflen contains the last buflen
elements. If the logtype is fixed, the log buffer contains the first buflen
elements.

Any combination of threads can write to the same log. Internally,
hardware interrupts are temporarily disabled during a call to LOG_printf.
Log messages are never lost due to thread preemption.

Constraints and
Calling Context

❏ LOG_printf (even the C version) supports 0, 1, or 2 arguments after
the format string.

❏ The format string address is put in b6 as the third value for
LOG_event.

Example LOG_printf(&trace, "hello world");
LOG_printf(&trace, "Size of Int is: %d", sizeof(Int));

See Also LOG_error
LOG_event
TRC_disable
TRC_enable

Sequence # Format
addressarg0 arg1LOG_printf
Application Program Interface 2-157

LOG_reset
C Interface

Syntax LOG_reset(log);

Parameters LOG_Handle log /* log object handle */

Return Value Void

Assembly Interface

Syntax LOG_reset

Preconditions a4 = address of the LOG object
amr = 0

Postconditions none

Modifies a0, a1

Reentrant no

Description LOG_reset enables the logging mechanism and allows the log buffer to
be modified starting from the beginning of the buffer, with sequence
number starting from 0.

LOG_reset does not disable interrupts or otherwise protect the log from
being modified by an HWI or other thread. It is therefore possible for the
log to contain inconsistent data if LOG_reset is preempted by an HWI or
other thread that uses the same log.

Example LOG_reset(&trace);
See Also LOG_disable

LOG_enable

LOG_reset Reset a message log
2-158

MBX Module
2.13 MBX Module

The MBX module is the mailbox manager.

Functions ❏ MBX_create. Create a mailbox

❏ MBX_delete. Delete a mailbox

❏ MBX_pend. Wait for a message from mailbox

❏ MBX_post. Post a message to mailbox

Constants, Types,
and Structures

typedef struct MBX_Obj *MBX_Handle;
 /* handle for mailbox object */

struct MBX_Attrs { /* mailbox attributes */
 Int segid;
};

MBX_Attrs MBX_ATTRS = {/* default attribute values */
 0,
};

Configuration
Properties

The following list shows the properties that can be configured in a
DSP/BIOS TextConf script, along with their types and default values. For
details, see the MBX Manager Properties and MBX Object Properties
headings. For descriptions of data types, see Section 1.4, DSP/BIOS
TextConf Overview, page 1-4.

Module Configuration Parameters.

Instance Configuration Parameters.

Description The MBX module makes available a set of functions that manipulate
mailbox objects accessed through handles of type MBX_Handle.
Mailboxes can hold up to the number of messages specified by the
Mailbox Length property in the Configuration Tool.

Name Type Default

OBJMEMSEG Reference prog.get("IDRAM")

Name Type Default

comment String "<add comments here>"

messageSize Int16 1

length Int16 1

elementSeg Reference prog.get("IDRAM")
Application Program Interface 2-159

MBX Module
MBX_pend is used to wait for a message from a mailbox. The timeout
parameter to MBX_pend allows the task to wait until a timeout. A timeout
value of SYS_FOREVER causes the calling task to wait indefinitely for a
message. A timeout value of zero (0) causes MBX_pend to return
immediately. MBX_pend’s return value indicates whether the mailbox
was signaled successfully.

MBX_post is used to send a message to a mailbox. The timeout
parameter to MBX_post specifies the amount of time the calling task
waits if the mailbox is full. If a task is waiting at the mailbox, MBX_post
removes the task from the queue and puts it on the ready queue. If no
task is waiting and the mailbox is not full, MBX_post simply deposits the
message and returns.

MBX Manager
Properties

The following global property can be set for the MBX module on the MBX
Manager Properties dialog in the Configuration Tool or in a DSP/BIOS
TextConf script:

❏ Object Memory. The memory segment that contains the MBX
objects created with the Configuration Tool.
TextConf Name: OBJMEMSEG Type: Ref

Example: MBX.OBJMEMSEG = prog.get("myMEM");
MBX Object Properties To create an MBX object in a configuration script, use the following

syntax. The DSP/BIOS TextConf examples that follow assume the object
has been created as shown here.

var myMbx = MBX.create("myMbx");
The following properties can be set for an MBX object in the MBX Object
Properties dialog of the Configuration Tool or in a DSP/BIOS TextConf
script:

❏ comment. Type a comment to identify this MBX object.
TextConf Name: comment Type: String

Example: myMbx.comment = "my MBX";
❏ Message Size. The size (in MADUs, 8-bit bytes) of the messages

this mailbox can contain.
TextConf Name: messageSize Type: Int16

Example: myMbx.messageSize = 1;
❏ Mailbox Length. The number of messages this mailbox can contain.

TextConf Name: length Type: Int16
Example: myMbx.length = 1;
2-160

MBX Module
❏ Element memory segment. The memory segment to contain the
mailbox data buffers.
TextConf Name: elementSeg Type: Ref

Example: myMbx.elementSeg =
prog.get("myMEM");

MBX Code Composer
Studio Interface

The MBX tab of the Kernel/Object View shows information about mailbox
objects.
Application Program Interface 2-161

MBX_create
C Interface

Syntax mbx = MBX_create(msgsize, mbxlength, attrs);

Parameters Uns msgsize; /* size of message */
Uns mbxlength;/* length of mailbox */
MBX_Attrs *attrs; /* pointer to mailbox attributes */

Return Value MBX_Handle mbx; /* mailbox object handle */

Assembly Interface none

Description MBX_create creates a mailbox object which is initialized to contain up to
mbxlength messages of size msgsize. If successful, MBX_create returns
the handle of the new mailbox object. If unsuccessful, MBX_create
returns NULL unless it aborts (for example, because it directly or
indirectly calls SYS_error, and SYS_error causes an abort).

If attrs is NULL, the new mailbox is assigned a default set of attributes.
Otherwise, the mailbox’s attributes are specified through a structure of
type MBX_Attrs.

All default attribute values are contained in the constant MBX_ATTRS,
which can be assigned to a variable of type MBX_Attrs prior to calling
MBX_create.

MBX_create calls MEM_alloc to dynamically create the object’s data
structure. MEM_alloc must acquire a lock to the memory before
proceeding. If another thread already holds a lock to the memory, then
there is a context switch. The segment from which the object is allocated
is described by the DSP/BIOS objects property in the MEM Module, page
2–170.

Constraints and
Calling Context

❏ MBX_create cannot be called from a SWI or HWI.

❏ You can reduce the size of your application program by creating
objects with the Configuration Tool rather than using the XXX_create
functions.

See Also MBX_delete
SYS_error

MBX_create Create a mailbox
2-162

MBX_delete
C Interface

Syntax MBX_delete(mbx);

Parameters MBX_Handle mbx; /* mailbox object handle */

Return Value Void

Assembly Interface none

Description MBX_delete frees the mailbox object referenced by mbx.

MBX_delete calls MEM_free to delete the MBX object. MEM_free must
acquire a lock to the memory before proceeding. If another task already
holds a lock to the memory, then there is a context switch.

Constraints and
Calling Context

❏ No tasks should be pending on mbx when MBX_delete is called.

❏ MBX_delete cannot be called from a SWI or HWI.

❏ No check is performed to prevent MBX_delete from being used on a
statically-created object. If a program attempts to delete a mailbox
object that was created using the Configuration Tool, SYS_error is
called.

See Also MBX_create

MBX_delete Delete a mailbox
Application Program Interface 2-163

MBX_pend
C Interface

Syntax status = MBX_pend(mbx, msg, timeout);

Parameters MBX_Handle mbx; /* mailbox object handle */
Ptr msg; /* message pointer */
Uns timeout; /* return after this many system clock ticks */

Return Value Bool status; /* TRUE if successful, FALSE if timeout */

Assembly Interface none

Description If the mailbox is not empty, MBX_pend copies the first message into msg
and returns TRUE. Otherwise, MBX_pend suspends the execution of the
current task until MBX_post is called or the timeout expires. The actual
time of task suspension can be up to 1 system clock tick less than timeout
due to granularity in system timekeeping.

If timeout is SYS_FOREVER, the task remains suspended until
MBX_post is called on this mailbox. If timeout is 0, MBX_pend returns
immediately.

If timeout expires (or timeout is 0) before the mailbox is available,
MBX_pend returns FALSE. Otherwise MBX_pend returns TRUE.

A task switch occurs when calling MBX_pend if the mailbox is empty and
timeout is not 0, or if a higher priority task is blocked on MBX_post.

Constraints and
Calling Context

❏ MBX_pend can only be called from an HWI or SWI if timeout is 0.

❏ If you need to call MBX_pend within a TSK_disable/TSK_enable
block, you must use a timeout of 0.

❏ MBX_pend cannot be called from the program’s main function.

See Also MBX_post

MBX_pend Wait for a message from mailbox
2-164

MBX_post
C Interface

Syntax status = MBX_post(mbx, msg, timeout);

Parameters MBX_Handle mbx /* mailbox object handle */
Ptr msg; /* message pointer */
Uns timeout; /* return after this many system clock ticks */

Return Value Bool status; /* TRUE if successful, FALSE if timeout */

Assembly Interface none

Description MBX_post checks to see if there are any free message slots before
copying msg into the mailbox. MBX_post readies the first task (if any)
waiting on mbx.

If the mailbox is full and timeout is SYS_FOREVER, the task remains
suspended until MBX_pend is called on this mailbox. If timeout is 0,
MBX_post returns immediately. Otherwise, the task is suspended for
timeout system clock ticks. The actual time of task suspension can be up
to 1 system clock tick less than timeout due to granularity in system
timekeeping.

If timeout expires (or timeout is 0) before the mailbox is available,
MBX_post returns FALSE. Otherwise MBX_post returns TRUE.

A task switch occurs when calling MBX_post if a higher priority task is
made ready to run, or if there are no free message slots and timeout is
not 0.

Constraints and
Calling Context

❏ If you need to call MBX_post within a TSK_disable/TSK_enable
block, you must use a timeout of 0.

❏ MBX_post can only be called from an HWI or SWI if timeout is 0.

❏ MBX_post can be called from the program’s main function. However,
the number of calls should not be greater than the number of
messages the mailbox can hold. Additional calls have no effect.

See Also MBX_pend

MBX_post Post a message to mailbox
Application Program Interface 2-165

MEM Module
2.14 MEM Module

The MEM module is the memory segment manager.

Functions ❏ MEM_alloc. Allocate from a memory segment.
❏ MEM_calloc. Allocate and initialize to 0.
❏ MEM_define. Define a new memory segment.
❏ MEM_free. Free a block of memory.
❏ MEM_redefine. Redefine an existing memory segment.
❏ MEM_stat. Return the status of a memory segment.
❏ MEM_valloc. Allocate and initialize to a value.

Constants, Types,
and Structures

MEM->MALLOCSEG = 0; /* segid for malloc, free */

#define MEM_HEADERSIZE /* free block header size */
#define MEM_HEADERMASK /* mask to align on
 MEM_HEADERSIZE */
#define MEM_ILLEGAL /* illegal memory address */

MEM_Attrs MEM_ATTRS ={ /* default attribute values */
 0
};

typedef struct MEM_Segment {
 Ptr base; /* base of the segment */
 Uns length; /* size of the segment */
 Uns space; /* memory space */
} MEM_Segment;

typedef struct MEM_Stat {
 Uns size; /* original size of segment */
 Uns used; /* MADUs used in segment */
 Uns length; /* largest contiguous block length */
} MEM_Stat;

Configuration
Properties

The following list shows the properties that can be configured in a
DSP/BIOS TextConf script, along with their types and default values. The
defaults shown are for ’C62x and ’C67x. The memory segment defaults
are different for ’C64x. For details, see the MEM Manager Properties and
MEM Object Properties headings. For descriptions of data types, see
Section 1.4, DSP/BIOS TextConf Overview, page 1-4.

Module Configuration Parameters.

Name Type Default (Enum Options)

REUSECODESPACE Bool "false"
2-166

MEM Module
MAPMODE EnumString "Map 1" ("Map 0")
ARGSSIZE Numeric 0x0004
STACKSIZE Numeric 0x0100
NOMEMORYHEAPS Bool "false"
BIOSOBJSEG Reference prog.get("IDRAM")
MALLOCSEG Reference prog.get("IDRAM")
ARGSSEG Reference prog.get("IDRAM")
STACKSEG Reference prog.get("IDRAM")
GBLINITSEG Reference prog.get("IDRAM")
TRCDATASEG Reference prog.get("IDRAM")
SYSDATASEG Reference prog.get("IDRAM")
OBJSEG Reference prog.get("IDRAM")
BIOSSEG Reference prog.get("IPRAM")
SYSINITSEG Reference prog.get("IPRAM")
HWISEG Reference prog.get("IPRAM")
HWIVECSEG Reference prog.get("IPRAM")
RTDXTEXTSEG Reference prog.get("IPRAM")
USERCOMMANDFILE Bool "false"
TEXTSEG Reference prog.get("IPRAM")
SWITCHSEG Reference prog.get("IDRAM")
BSSSEG Reference prog.get("IDRAM")
FARSEG Reference prog.get("IDRAM")
CINITSEG Reference prog.get("IDRAM")
PINITSEG Reference prog.get("IDRAM")
CONSTSEG Reference prog.get("IDRAM")
DATASEG Reference prog.get("IDRAM")
CIOSEG Reference prog.get("IDRAM")
ENABLELOADADDR Bool "false"
LOADBIOSSEG Reference prog.get("IPRAM")
LOADSYSINITSEG Reference prog.get("IPRAM")
LOADGBLINITSEG Reference prog.get("IDRAM")
LOADTRCDATASEG Reference prog.get("IDRAM")
LOADTEXTSEG Reference prog.get("IPRAM")
LOADSWITCHSEG Reference prog.get("IDRAM")
LOADCINITSEG Reference prog.get("IDRAM")

Name Type Default (Enum Options)
Application Program Interface 2-167

MEM Module
Instance Configuration Parameters.

Description The MEM module provides a set of functions used to allocate storage from
one or more disjointed segments of memory. These memory segments are
specified with the Configuration Tool.

MEM always allocates an even number of MADUs and always aligns
buffers on an even boundary. This behavior is used to insure that free
buffers are always at least two MADUs in length. This behavior does not
preclude you from allocating two 512 buffers from a 1K region of on-device
memory, for example. It does, however, mean that odd allocations
consume one more MADU than expected.

If small code size is important to your application, you can reduce code size
significantly by removing the capability to dynamically allocate and free
memory. To do this, put a checkmark in the No Dynamic Memory Heaps
box in the Properties dialog for the MEM manager. If you remove this
capability, your program cannot call any of the MEM functions or any object
creation functions (such as TSK_create). You need to create all objects to
be used by your program with the Configuration Tool. You can also use the
Configuration Tool to create or remove the dynamic memory heap from an
individual memory segment.

LOADPINITSEG Reference prog.get("IDRAM")
LOADCONSTSEG Reference prog.get("IDRAM")
LOADHWISEG Reference prog.get("IPRAM")
LOADHWIVECSEG Reference prog.get("IPRAM")
LOADRTDXTEXTSEG Reference prog.get("IPRAM")

Name Type Default (Enum Options)

comment String "<add comments here>"

base Numeric 0x00000000

len Numeric 0x00000000

createHeap Bool "true"

heapSize Numeric 0x08000

enableHeapLabel Bool "false"

heapLabel Extern prog.extern("segment_name","asm")

space EnumString "data" ("code", "code/data")

Name Type Default (Enum Options)
2-168

MEM Module
Software modules in DSP/BIOS that allocate storage at run-time use
MEM functions; DSP/BIOS does not use the standard C function malloc.
DSP/BIOS modules use MEM to allocate storage in the segment
selected for that module with the Configuration Tool.

The MEM Manager property, Segment for malloc()/free(), is used to
implement the standard C malloc, free, and calloc functions. These
functions actually use the MEM functions (with segid = Segment for
malloc/free) to allocate and free memory.

Note:

The MEM module does not set or configure hardware registers
associated with a DSP’s memory subsystem. Such configuration is the
responsibility of the user and is typically handled by software loading
programs, or in the case of Code Composer Studio, the startup or
menu options. For example, to access external memory on a c6000
platform, the External Memory Interface (EMIF) registers must first be
set appropriately before any access. The earliest opportunity for EMIF
initialization within DSP/BIOS would be during the user initialization
hook (see Global Settings in the API Reference Guide).

MEM Manager
Properties

The DSP/BIOS Memory Section Manager allows you to specify the
memory segments required to locate the various code and data sections
of a DSP/BIOS application.

Note that settings you specify in the Visual Linker normally override
settings you specify in the DSP/BIOS Configuration Tool. See the Visual
Linker help for details on using the Visual Linker with DSP/BIOS.

The following global properties can be set for the MEM module in the
MEM Manager Properties dialog of the Configuration Tool or in a
DSP/BIOS TextConf script:

General tab ❏ Reuse Startup Code Space. If this box is checked, the startup code
section (.sysinit) can be reused after startup is complete.
TextConf Name: REUSECODESPACE Type: Bool

Example: MEM.REUSECODESPACE = "false";
❏ Map Mode. Select c6000 Memory Map 0 or Memory Map 1.

Changing this property affects the base address for some pre-
defined memory segments.
TextConf Name: MAPMODE Type: EnumString

Options: "Map 0", "Map 1"
Example: MEM.MAPMODE = "Map 1";
Application Program Interface 2-169

MEM Module
❏ Argument Buffer Size. The size of the .args section. The .args
section contains the argc, argv, and envp arguments to the program's
main function. Code Composer loads arguments for the main
function into the .args section. The .args section is parsed by the boot
file.
TextConf Name: ARGSSIZE Type: Numeric

Example: MEM.ARGSSIZE = 0x0004;
❏ Stack Size. The size of the global stack in MADUs. The upper-left

corner of the Configuration Tool window shows the estimated
minimum global stack size required for this application (as a decimal
number).

This size is shown as a hex value in Minimum Addressable Data
Units (MADUs). An MADU is the smallest unit of data storage that
can be read or written by the CPU. For the c6000 this is an 8-bit byte.
TextConf Name: STACKSIZE Type: Numeric

Example: MEM.STACKSIZE = 0x0400;
❏ No Dynamic Memory Heaps. Put a checkmark in this box to

completely disable the ability to dynamically allocate memory and the
ability to dynamically create and delete objects. If this box is checked,
the program may not call the MEM_alloc, MEM_valloc, MEM_calloc,
and malloc or the XXX_create function for any DSP/BIOS module. If
this box is checked, the Segment For DSP/BIOS Objects, Segment
for malloc()/free(), and Stack segment for dynamic tasks properties
are set to MEM_NULL.

When you check this box, heaps already specified in MEM segments
are removed from the configuration. If you later uncheck this box,
recreate heaps by configuring properties for individual MEM objects
as needed.
TextConf Name: NOMEMORYHEAPS Type: Bool

Example: MEM.NOMEMORYHEAPS = "false";
❏ Segment For DSP/BIOS Objects. The default memory segment to

contain objects created at run-time with an XXX_create function. The
XXX_Attrs structure passed to the XXX_create function can override
this default. If you select MEM_NULL for this property, creation of
DSP/BIOS objects at run-time via the XXX_create functions is
disabled.
TextConf Name: BIOSOBJSEG Type: Ref

Example: MEM.BIOSOBJSEG = prog.get("myMEM");
2-170

MEM Module
❏ Segment For malloc() / free(). The memory segment from which
space is allocated when a program calls malloc and from which
space is freed when a program calls free. If you select MEM_NULL
for this property, dynamic memory allocation at run-time is disabled.
TextConf Name: MALLOCSEG Type: Ref

Example: MEM.MALLOCSEG = prog.get("myMEM");
BIOS Data tab ❏ Argument Buffer Section (.args). The memory segment containing

the .args section.
TextConf Name: ARGSSEG Type: Ref

Example: MEM.ARGSSEG = prog.get("myMEM");
❏ Stack Section (.stack). The memory segment containing the global

stack. This segment should be located in RAM.
TextConf Name: STACKSEG Type: Ref

Example: MEM.STACKSEG = prog.get("myMEM");
❏ DSP/BIOS Init Tables (.gblinit). The memory segment containing

the DSP/BIOS global initialization tables.
TextConf Name: GBLINITSEG Type: Ref

Example: MEM.GBLINITSEG = prog.get("myMEM");
❏ TRC Initial Value (.trcdata). The memory segment containing the

TRC mask variable and its initial value. This segment must be placed
in RAM.
TextConf Name: TRCDATASEG Type: Ref

Example: MEM.TRCDATASEG = prog.get("myMEM");
❏ DSP/BIOS Kernel State (.sysdata). The memory segment

containing system data about the DSP/BIOS kernel state.
TextConf Name: SYSDATASEG Type: Ref

Example: MEM.SYSDATASEG = prog.get("myMEM");
❏ DSP/BIOS Conf Sections (.obj). The memory segment containing

configuration properties that can be read by the target program.
TextConf Name: OBJSEG Type: Ref

Example: MEM.OBJSEG = prog.get("myMEM");
BIOS Code tab ❏ BIOS Code Section (.bios). The memory segment containing the

DSP/BIOS code.
TextConf Name: BIOSSEG Type: Ref

Example: MEM.BIOSSEG = prog.get("myMEM");
Application Program Interface 2-171

MEM Module
❏ Startup Code Section (.sysinit). The memory segment containing
DSP/BIOS startup initialization code; this memory can be reused
after main starts executing.
TextConf Name: SYSINITSEG Type: Ref

Example: MEM.SYSINITSEG = prog.get("myMEM");
❏ Function Stub Memory (.hwi). The memory segment containing

dispatch code for interrupt service routines that are configured to be
monitored in the HWI Object Properties.
TextConf Name: HWISEG Type: Ref

Example: MEM.HWISEG = prog.get("myMEM");
❏ Interrupt Service Table Memory (.hwi_vec). The memory segment

containing the Interrupt Service Table (IST). The IST can be placed
anywhere on the memory map, but a copy of the RESET vector
always remains at address 0x00000000.
TextConf Name: HWIVECSEG Type: Ref

Example: MEM.HWIVECSEG = prog.get("myMEM");
❏ RTDX Text Segment (.rtdx_text). The memory segment containing

the code sections for the RTDX module.
TextConf Name: RTDXTEXTSEG Type: Ref

Example: MEM.RTDXTEXTSEG = prog.get("myMEM");
Compiler Sections tab ❏ User .cmd File For Non-DSP/BIOS Sections. Put a checkmark in

this box if you want to have full control over the memory used for the
sections that follow. You must then create a linker command file that
begins by including the linker command file created by the
Configuration Tool. Your linker command file should then assign
memory for the items normally handled by the following properties.
See the TMS320C6000 Optimizing Compiler User’s Guide for more
details.
TextConf Name: USERCOMMANDFILE Type: Bool

Example: MEM.USERCOMMANDFILE = "false";
❏ Text Section (.text). The memory segment containing the

executable code, string literals, and compiler-generated constants.
This segment can be located in ROM or RAM.
TextConf Name: TEXTSEG Type: Ref

Example: MEM.TEXTSEG = prog.get("myMEM");
2-172

MEM Module
❏ Switch Jump Tables (.switch). The memory segment containing
the jump tables for switch statements. This segment can be located
in ROM or RAM.
TextConf Name: SWITCHSEG Type: Ref

Example: MEM.SWITCHSEG = prog.get("myMEM");
❏ C Variables Section (.bss). The memory segment containing global

and static C variables. At boot or load time, the data in the .cinit
section is copied to this segment. This segment should be located in
RAM.
TextConf Name: BSSSEG Type: Ref

Example: MEM.BSSSEG = prog.get("myMEM");
❏ C Variables Section (.far). The memory segment containing global

and static variables declared as far variables.
TextConf Name: FARSEG Type: Ref

Example: MEM.FARSEG = prog.get("myMEM");
❏ Data Initialization Section (.cinit). The memory segment

containing tables for explicitly initialized global and static variables
and constants. This segment can be located in ROM or RAM.
TextConf Name: CINITSEG Type: Ref

Example: MEM.CINITSEG = prog.get("myMEM");
❏ C Function Initialization Table (.pinit). The memory segment

containing the table of global object constructors. Global constructors
must be called during program initialization. The C/C++ compiler
produces a table of constructors to be called at startup. The table is
contained in a named section called .pinit. The constructors are
invoked in the order that they occur in the table. This segment can be
located in ROM or RAM.
TextConf Name: PINITSEG Type: Ref

Example: MEM.PINITSEG = prog.get("myMEM");
❏ Constant Section (.const). The memory segment containing string

constants and data defined with the const C qualifier. If the C
compiler is not used, this parameter is unused. This segment can be
located in ROM or RAM.
TextConf Name: CONSTSEG Type: Ref

Example: MEM.CONSTSEG = prog.get("myMEM");
❏ Data Section (.data). This memory segment contains program data.

This segment can be located in ROM or RAM.
TextConf Name: DATASEG Type: Ref

Example: MEM.DATASEG = prog.get("myMEM");
Application Program Interface 2-173

MEM Module
❏ Data Section (.cio). This memory segment contains C standard I/O
buffers.
TextConf Name: CIOSEG Type: Ref

Example: MEM.CIOSEG = prog.get("myMEM");
Load Address tab ❏ Specify Separate Load Addresses. If you put a checkmark in this

box, you can select separate load addresses for the sections listed
on this tab.

Load addresses are useful when, for example, your code must be
loaded into ROM, but would run faster in RAM. The linker allows you
to allocate sections twice: once to set a load address and again to set
a run address.

If you do not select a separate load address for a section, the section
loads and runs at the same address.

If you do select a separate load address, the section is allocated as
if it were two separate sections of the same size. The load address is
where raw data for the section is placed. References to items in the
section refer to the run address. The application must copy the
section from its load address to its run address. For details, see the
topics on Runtime Relocation and the .label Directive in the Code
Generation Tools help or manual.
TextConf Name: ENABLELOADADDR Type: Bool

Example: MEM.ENABLELOADADDR = "false";
❏ Load Address - BIOS Code Section (.bios). The memory segment

containing the load allocation of the section that contains DSP/BIOS
code.
TextConf Name: LOADBIOSSEG Type: Ref

Example: MEM.LOADBIOSSEG = prog.get("myMEM");
❏ Load Address - Startup Code Section (.sysinit). The memory

segment containing the load allocation of the section that contains
DSP/BIOS startup initialization code.
TextConf Name: LOADSYSINITSEG Type: Ref

Example: MEM.LOADSYSINITSEG =
prog.get("myMEM");

❏ Load Address - DSP/BIOS Init Tables (.gblinit). The memory
segment containing the load allocation of the section that contains
the DSP/BIOS global initialization tables.
TextConf Name: LOADGBLINITSEG Type: Ref

Example: MEM.LOADGBLINITSEG =
prog.get("myMEM");
2-174

MEM Module
❏ Load Address - TRC Initial Value (.trcdata). The memory segment
containing the load allocation of the section that contains the TRC
mask variable and its initial value.
TextConf Name: LOADTRCDATASEG Type: Ref

Example: MEM.LOADTRCDATASEG =
prog.get("myMEM");

❏ Load Address - Text Section (.text). The memory segment
containing the load allocation of the section that contains the
executable code, string literals, and compiler-generated constants.
TextConf Name: LOADTEXTSEG Type: Ref

Example: MEM.LOADTEXTSEG = prog.get("myMEM");
❏ Load Address - Switch Jump Tables (.switch). The memory

segment containing the load allocation of the section that contains
the jump tables for switch statements.
TextConf Name: LOADSWITCHSEG Type: Ref

Example: MEM.LOADSWITCHSEG =
prog.get("myMEM");

❏ Load Address - Data Initialization Section (.cinit). The memory
segment containing the load allocation of the section that contains
tables for explicitly initialized global and static variables and
constants.
TextConf Name: LOADCINITSEG Type: Ref

Example: MEM.LOADCINITSEG =
prog.get("myMEM");

❏ Load Address - C Function Initialization Table (.pinit). The
memory segment containing the load allocation of the section that
contains the table of global object constructors.
TextConf Name: LOADPINITSEG Type: Ref

Example: MEM.LOADPINITSEG =
prog.get("myMEM");

❏ Load Address - Constant Section (.const). The memory segment
containing the load allocation of the section that contains string
constants and data defined with the const C qualifier.
TextConf Name: LOADCONSTSEG Type: Ref

Example: MEM.LOADCONSTSEG =
prog.get("myMEM");
Application Program Interface 2-175

MEM Module
❏ Load Address - Function Stub Memory (.hwi). The memory
segment containing the load allocation of the section that contains
dispatch code for interrupt service routines configured to be
monitored.
TextConf Name: LOADHWISEG Type: Ref

Example: MEM.LOADHWISEG = prog.get("myMEM");
❏ Load Address - Interrupt Service Table Memory (.hwi_vec). The

memory segment containing the load allocation of the section that
contains the Interrupt Service Table (IST).
TextConf Name: LOADHWIVECSEG Type: Ref

Example: MEM.LOADHWIVECSEG =
prog.get("myMEM");

❏ Load Address - RTDX Text Segment (.rtdx_text). The memory
segment containing the load allocation of the section that contains
the code sections for the RTDX module.
TextConf Name: LOADRTDXTEXTSEG Type: Ref

Example: MEM.LOADRTDXTEXTSEG =
prog.get("myMEM");

MEM Object
Properties

A memory segment represents a contiguous length of code or data
memory in the address space of the processor.

Note that settings you specify in the Visual Linker normally override
settings you specify in the DSP/BIOS Configuration Tool. See the Visual
Linker help for details on using the Visual Linker with DSP/BIOS.

To create a MEM object in a configuration script, use the following syntax.
The DSP/BIOS TextConf examples that follow assume the object has
been created as shown here.

var myMem = MEM.create("myMem");
The following properties can be set for a MEM object in the MEM Object
Properties dialog of the Configuration Tool or in a DSP/BIOS TextConf
script:

❏ comment. Type a comment to identify this MEM object.
TextConf Name: comment Type: String

Example: myMem.comment = "my MEM";
❏ base. The address at which this memory segment begins. This value

is shown in hex.
TextConf Name: base Type: Numeric

Example: myMem.base = 0x00000000;
2-176

MEM Module
❏ len. The length of this memory segment in MADUs. This value is
shown in hex.
TextConf Name: len Type: Numeric

Example: myMem.len = 0x00000000;
❏ create a heap in this memory. If this box is checked, a heap is

created in this memory segment. Memory can by allocated
dynamically from a heap. In order to remove the heap from a memory
segment, you can select another memory segment that contains a
heap for properties that dynamically allocate memory in this memory
segment. The properties you should check are in the Memory
Section Manager (the Segment for DSP/BIOS objects and Segment
for malloc/free properties) and the Task Manager (the Default stack
segment for dynamic tasks property). If you disable dynamic memory
allocation in the Memory Section Manager, you cannot create a heap
in any memory segment.
TextConf Name: createHeap Type: Bool

Example: myMem.createHeap = "true";
❏ heap size. The size of the heap in MADUs to be created in this

memory segment. You cannot control the location of the heap within
its memory segment except by making the segment and heap the
same sizes.
TextConf Name: heapSize Type: Numeric

Example: myMem.heapSize = 0x08000;
❏ enter a user defined heap identifier. If this box is checked, you can

define your own identifier label for this heap.
TextConf Name: enableHeapLabel Type: Bool

Example: myMem.enableHeapLabel = "false";
❏ heap identifier label. If the box above is checked, type a name for

this segment’s heap.
TextConf Name: heapLabel Type: Extern

Example: myMem.heapLabel =
prog.extern("seg_name", "asm");

❏ space. Type of memory segment. This is set to code for memory
segments that store programs, and data for memory segments that
store program data.
TextConf Name: space Type: EnumString

Options: "code", "data", "code/data"
Example: myMem.space = "data";
Application Program Interface 2-177

MEM Module
The predefined memory segments in a configuration file, particularly
those for external memory, are dependent on the board template you
select. In general, Table 2-3 and Table 2-4 list segments that can be
defined for the c6000:

Table 2-3. Typical Memory Segments for c6x EVM Boards

Table 2-4. Typical Memory Segment for c6711 DSK Boards

MEM Code Composer
Studio Interface

The MEM tab of the Kernel/Object View shows information about
memory segments.

Name Memory Segment Type

IPRAM Internal (on-device) program memory

IDRAM Internal (on-device) data memory

SBSRAM External SBSRAM on CE0

SDRAM0 External SDRAM on CE2

SDRAM1 External SDRAM on CE3

Name Memory Segment Type

SDRAM External SDRAM
2-178

MEM_alloc
C Interface

Syntax addr = MEM_alloc(segid, size, align);

Parameters Int segid; /* memory segment identifier */
Uns size; /* block size in MADUs */
Uns align; /* block alignment */

Return Value Void *addr; /* address of allocated block of memory */

Assembly Interface none

Description MEM_alloc allocates a contiguous block of storage from the memory
segment identified by segid and returns the address of this block.

The segid parameter identifies the memory segment from which memory
is to be allocated. This identifier can be an integer or a memory segment
name defined in the Configuration Tool. The files created by the
Configuration Tool define each configured segment name as a variable
with an integer value.

The block contains size MADUs and starts at an address that is a multiple
of align. If align is 0 or 1, there is no alignment constraint.

MEM_alloc does not initialize the allocated memory locations.

If the memory request cannot be satisfied, MEM_alloc calls SYS_error
with SYS_EALLOC and returns MEM_ILLEGAL.

Memory management functions require that the caller obtain a lock to the
memory before proceeding. If another task already holds a lock to the
memory, then there is a context switch.

Constraints and
Calling Context

❏ segid must identify a valid memory segment.

❏ MEM_alloc cannot be called from a SWI or HWI.

❏ align must be 0, or a power of 2 (for example, 1, 2, 4, 8).

See Also MEM_calloc
MEM_free
MEM_valloc
SYS_error
std.h and stdlib.h functions

MEM_alloc Allocate from a memory segment
Application Program Interface 2-179

MEM_calloc
C Interface

Syntax addr = MEM_calloc(segid, size, align)

Parameters Int segid; /* memory segment identifier */
Uns size; /* block size in MADUs */
Uns align; /* block alignment */

Return Value Void *addr; /* address of allocated block of memory */

Assembly Interface none

Description MEM_calloc is functionally equivalent to calling MEM_valloc with value
set to 0.

MEM_calloc allocates a contiguous block of storage from the memory
segment identified by segid and returns the address of this block.

The segid parameter identifies the memory segment from which memory
is to be allocated. This identifier can be an integer or a memory segment
name defined in the Configuration Tool. The files created by the
Configuration Tool define each configured segment name as a variable
with an integer value.

The block contains size MADUs and starts at an address that is a multiple
of align. If align is 0 or 1, there is no alignment constraint.

If the memory request cannot be satisfied, MEM_calloc calls SYS_error
with SYS_EALLOC and returns MEM_ILLEGAL.

Memory management functions require that the caller obtain a lock to the
memory before proceeding. If another task already holds a lock to the
memory, then there is a context switch.

Constraints and
Calling Context

❏ segid must identify a valid memory segment.

❏ MEM_calloc cannot be called from a SWI or HWI.

❏ align must be 0, or a power of 2 (for example, 1, 2, 4, 8).

See Also MEM_alloc
MEM_free
MEM_valloc
SYS_error
std.h and stdlib.h functions

MEM_calloc Allocate from a memory segment and set value to 0
2-180

MEM_define
C Interface

Syntax segid = MEM_define(base, length, attrs);

Parameters Ptr base; /* base address of new segment */
Uns length; /* length (in MADUs) of new segment */
MEM_Attrs *attrs; /* segment attributes */

Return Value Int segid; /* ID of new segment */

Assembly Interface none

Description MEM_define defines a new memory segment for use by the DSP/BIOS
MEM Module.

The new segment contains length MADUs starting at base. A new table
entry is allocated to define the segment, and the entry’s index into this
table is returned as the segid.

The new block should be aligned on a MEM_HEADERSIZE boundary,
and the length should be a multiple of MEM_HEADERSIZE, otherwise
the entire block is not available for allocation.

If attrs is NULL, the new segment is assigned a default set of attributes.
Otherwise, the segment’s attributes are specified through a structure of
type MEM_Attrs.

Note:

No attributes are supported for segments, and the type MEM_Attrs is
defined as a dummy structure.

Constraints and
Calling Context

❏ At least one segment must exist at the time MEM_define is called.

❏ MEM_define and MEM_redefine must not be called when a context
switch is possible. To guard against a context switch, these functions
should only be called in the main function.

❏ MEM_define should not be called from the function specified by the
User Init Function property of the Global Settings module. The MEM
module has not been initialized at the time the User Init Function
runs.

See Also MEM_redefine

MEM_define Define a new memory segment
Application Program Interface 2-181

MEM_free
C Interface

Syntax status = MEM_free(segid, addr, size);

Parameters Int segid; /* memory segment identifier */
Ptr addr; /* block address pointer */
Uns size; /* block length in MADUs*/

Return Value Bool status; /* TRUE if successful */

Assembly Interface none

Description MEM_free places the memory block specified by addr and size back into
the free pool of the segment specified by segid. The newly freed block is
combined with any adjacent free blocks. This space is then available for
further allocation by MEM_alloc. The segid can be an integer or a
memory segment name defined in the Configuration Tool

Memory management functions require that the caller obtain a lock to the
memory before proceeding. If another task already holds a lock to the
memory, then there is a context switch.

Constraints and
Calling Context

❏ addr must be a valid pointer returned from a call to MEM_alloc.

❏ segid and size are those values used in a previous call to MEM_alloc.

❏ MEM_free cannot be called by HWI or SWI functions.

See Also MEM_alloc
std.h and stdlib.h functions

MEM_free Free a block of memory
2-182

MEM_redefine
C Interface

Syntax MEM_redefine(segid, base, length);

Parameters Int segid; /* segment to redefine */
Ptr base; /* base address of new block */
Uns length; /* length (in MADUs) of new block */

Return Value Void

Assembly Interface none

Reentrant no

Description MEM_redefine redefines an existing memory segment managed by the
DSP/BIOS MEM Module. All pointers in the old segment memory block
are automatically freed, and the new segment block is completely
available for allocations.

The new block should be aligned on a MEM_HEADERSIZE boundary,
and the length should be a multiple of MEM_HEADERSIZE, otherwise
the entire block is not available for allocation.

Constraints and
Calling Context

❏ MEM_define and MEM_redefine must not be called when a context
switch is possible. To guard against a context switch, these functions
should only be called in the main function.

See Also MEM_define

MEM_redefine Redefine an existing memory segment
Application Program Interface 2-183

MEM_stat
C Interface

Syntax status = MEM_stat(segid, statbuf);

Parameters Int segid; /* memory segment identifier */
MEM_Stat *statbuf; /* pointer to stat buffer */

Return Value Bool status; /* TRUE if successful */

Assembly Interface none

Description MEM_stat returns the status of the memory segment specified by segid
in the status structure pointed to by statbuf.

struct MEM_Stat {
 Uns size; /* original size of segment */
 Uns used /* number of MADUs used in segment */
 Uns length; /* largest free contiguous block length */
}
All values are expressed in terms of minimum addressable units
(MADUs).

MEM_stat returns TRUE if segid corresponds to a valid memory
segment, and FALSE otherwise. If MEM_stat returns FALSE, the
contents of statbuf are undefined.

Memory management functions require that the caller obtain a lock to the
memory before proceeding. If another task already holds a lock to the
memory, then there is a context switch.

Constraints and
Calling Context

❏ MEM_stat cannot be called from a SWI or HWI.

MEM_stat Return the status of a memory segment
2-184

MEM_valloc
C Interface

Syntax addr = MEM_valloc(segid, size, align, value);

Parameters Int segid; /* memory segment identifier */
Uns size; /* block size in MADUs */
Uns align; /* block alignment */
Char value; /* character value */

Return Value Void *addr; /* address of allocated block of memory */

Assembly Interface none

Description MEM_valloc uses MEM_alloc to allocate the memory before initializing it
to value.

The segid parameter identifies the memory segment from which memory
is to be allocated. This identifier can be an integer or a memory segment
name defined in the Configuration Tool. The files created by the
Configuration Tool define each configured segment name as a variable
with an integer value.

The block contains size MADUs and starts at an address that is a multiple
of align. If align is 0 or 1, there is no alignment constraint.

If the memory request cannot be satisfied, MEM_valloc calls SYS_error
with SYS_EALLOC and returns MEM_ILLEGAL.

Memory management functions require that the caller obtain a lock to the
memory before proceeding. If another task already holds a lock to the
memory, then there is a context switch.

Constraints and
Calling Context

❏ segid must identify a valid memory segment.

❏ MEM_valloc cannot be called from a SWI or HWI.

❏ align must be 0, or a power of 2 (for example, 1, 2, 4, 8).

See Also MEM_alloc
MEM_calloc
MEM_free
SYS_error
std.h and stdlib.h functions

MEM_valloc Allocate from a memory segment and set value
Application Program Interface 2-185

PIP Module
2.15 PIP Module

The PIP module is the buffered pipe manager.

Functions ❏ PIP_alloc. Get an empty frame from the pipe.

❏ PIP_free. Recycle a frame back to the pipe.

❏ PIP_get. Get a full frame from the pipe.

❏ PIP_getReaderAddr. Get the value of the readerAddr pointer of the
pipe.

❏ PIP_getReaderNumFrames. Get the number of pipe frames
available for reading.

❏ PIP_getReaderSize. Get the number of words of data in a pipe
frame.

❏ PIP_getWriterAddr. Get the value of the writerAddr pointer of the
pipe.

❏ PIP_getWriterNumFrames. Get the number of pipe frames available
to write to.

❏ PIP_getWriterSize. Get the number of words that can be written to a
pipe frame.

❏ PIP_peek. Get the pipe frame size and address without actually
claiming the pipe frame.

❏ PIP_put. Put a full frame into the pipe.

❏ PIP_reset. Reset all fields of a pipe object to their original values.

❏ PIP_setWriterSize. Set the number of valid words written to a pipe
frame.

PIP_Obj Structure
Members

❏ Ptr readerAddr. Pointer to the address to begin reading from after
calling PIP_get.

❏ Uns readerSize. Number of words of data in the frame read with
PIP_get.

❏ Uns readerNumFrames. Number of frames available to be read.

❏ Ptr writerAddr. Pointer to the address to begin writing to after calling
PIP_alloc.

❏ Uns writerSize. Number of words available in the frame allocated
with PIP_alloc.

❏ Uns writerNumFrames. Number of frames available to be written to.
2-186

PIP Module
Configuration
Properties

The following list shows the properties that can be configured in a
DSP/BIOS TextConf script, along with their types and default values. For
details, see the PIP Manager Properties and PIP Object Properties
headings. For descriptions of data types, see Section 1.4, DSP/BIOS
TextConf Overview, page 1-4.

Module Configuration Parameters.

Instance Configuration Parameters.

Description The PIP module manages data pipes, which are used to buffer streams
of input and output data. These data pipes provide a consistent software
data structure you can use to drive I/O between the DSP device and all
kinds of real-time peripheral devices.

Each pipe object maintains a buffer divided into a fixed number of fixed
length frames, specified by the numframes and framesize properties. All
I/O operations on a pipe deal with one frame at a time; although each
frame has a fixed length, the application can put a variable amount of
data in each frame up to the length of the frame.

A pipe has two ends, as shown in Figure 2-2. The writer end (also called
the producer) is where your program writes frames of data. The reader
end (also called the consumer) is where your program reads frames of
data

Name Type Default

OBJMEMSEG Reference prog.get("IDRAM")

Name Type Default (Enum Options)

comment String "<add comments here>"

bufSeg Reference prog.get("IDRAM")

bufAlign Int16 1

frameSize Int16 8

numFrames Int16 2

monitor EnumString "reader" ("writer", "none")

notifyWriterFxn Extern prog.extern("FXN_F_nop")

notifyWriterArg0 Arg 0

notifyWriterArg1 Arg 0

notifyReaderFxn Extern prog.extern("FXN_F_nop")

notifyReaderArg0 Arg 0

notifyReaderArg1 Arg 0
Application Program Interface 2-187

PIP Module
Figure 2-2. Pipe Schematic

Internally, pipes are implemented as a circular list; frames are reused at
the writer end of the pipe after PIP_free releases them.

The notifyReader and notifyWriter functions are called from the context
of the code that calls PIP_put or PIP_free. These functions can be written
in C or assembly. To avoid problems with recursion, the notifyReader and
notifyWriter functions normally should not directly call any of the PIP
module functions for the same pipe. Instead, they should post a software
interrupt that uses the PIP module functions. However, PIP calls may be
made from the notifyReader and notifyWriter functions if the functions
have been protected against re-entrancy. The audio example, located on
your distribution CD in c:\ti\examples\target\bios\audio folder,
where target matches your board, is a good example of this. (If you
installed in a path other than c:\ti, substitute your appropriate path.)

ReaderWriter

1. PIP_alloc
2. Writes data into allocated frame
3. PIP_put (runs notifyReader)

1. PIP_get
2. Reads data from frame just received

3. PIP_free (runs notifyWriter)
2-188

PIP Module
Note:

When DSP/BIOS starts up, it calls the notifyWriter function internally for
each created pipe object to initiate the pipe’s I/O.

The code that calls PIP_free or PIP_put should preserve any necessary
registers.

Often one end of a pipe is controlled by an HWI and the other end is
controlled by a SWI function, such as SWI_andnHook.

HST objects use PIP objects internally for I/O between the host and the
target. Your program only needs to act as the reader or the writer when
you use an HST object, because the host controls the other end of the
pipe.

Pipes can also be used to transfer data within the program between two
application threads.

PIP Manager
Properties

The pipe manager manages objects that allow the efficient transfer of
frames of data between a single reader and a single writer. This transfer
is often between an HWI and an application software interrupt, but pipes
can also be used to transfer data between two application threads.

The following global property can be set for the PIP module in the PIP
Manager Properties dialog of the Configuration Tool or in a DSP/BIOS
TextConf script:

❏ Object Memory. The memory segment that contains the PIP
objects.
TextConf Name: OBJMEMSEG Type: Ref

Example: PIP.OBJMEMSEG = prog.get("myMEM");
PIP Object Properties A pipe object maintains a single contiguous buffer partitioned into a fixed

number of fixed length frames. All I/O operations on a pipe deal with one
frame at a time; although each frame has a fixed length, the application
can put a variable amount of data in each frame (up to the length of the
frame).

To create a PIP object in a configuration script, use the following syntax.
The DSP/BIOS TextConf examples that follow assume the object has
been created as shown here.

var myPip = PIP.create("myPip");
Application Program Interface 2-189

PIP Module
The following properties can be set for a PIP object in the PIP Object
Properties dialog of the Configuration Tool or in a DSP/BIOS TextConf
script:

❏ comment. Type a comment to identify this PIP object.
TextConf Name: comment Type: String

Example: myPip.comment = "my PIP";
❏ bufseg. The memory segment that the buffer is allocated within; all

frames are allocated from a single contiguous buffer (of size
framesize x numframes).
TextConf Name: bufSeg Type: Ref

Example: myPip.bufSeg = prog.get("myMEM");
❏ bufalign. The alignment (in words) of the buffer allocated within the

specified memory segment.
TextConf Name: bufAlign Type: Int16

Example: myPip.bufAlign = 1;
❏ framesize. The length of each frame (in words)

TextConf Name: frameSize Type: Int16
Example: myPip.frameSize = 8;

❏ numframes. The number of frames
TextConf Name: numFrames Type: Int16

Example: myPip.numFrames = 2;
❏ monitor. The end of the pipe to be monitored by a hidden STS

object. Can be set to reader, writer, or nothing. In the Statistics View
analysis tool, your choice determines whether the STS display for
this pipe shows a count of the number of frames handled at the
reader or writer end of the pipe.
TextConf Name: monitor Type: EnumString

Options: "reader", "writer", "none"
Example: myPip.monitor = "reader";

❏ notifyWriter. The function to execute when a frame of free space is
available. This function should notify (for example, by calling
SWI_andnHook) the object that writes to this pipe that an empty
frame is available.

The notifyWriter function is performed as part of the thread that called
PIP_free or PIP_alloc. To avoid problems with recursion, the
2-190

PIP Module
notifyWriter function should not directly call any of the PIP module
functions for the same pipe.
TextConf Name: notifyWriterFxn Type: Extern

Example: myPip.notifyWriterFxn =
prog.extern("writerFxn");

❏ nwarg0, nwarg1. Two Arg type arguments for the notifyWriter
function.
TextConf Name: notifyWriterArg0 Type: Arg
TextConf Name: notifyWriterArg1 Type: Arg

Example: myPip.notifyWriterArg0 = 0;
❏ notifyReader. The function to execute when a frame of data is

available. This function should notify (for example, by calling
SWI_andnHook) the object that reads from this pipe that a full frame
is ready to be processed.

The notifyReader function is performed as part of the thread that
called PIP_put or PIP_get. To avoid problems with recursion, the
notifyReader function should not directly call any of the PIP module
functions for the same pipe.
TextConf Name: notifyReaderFxn Type: Extern

Example: myPip.notifyReaderFxn =
prog.extern("readerFxn");

❏ nrarg0, nrarg1. Two Arg type arguments for the notifyReader
function.
TextConf Name: notifyReaderArg0 Type: Arg
TextConf Name: notifyReaderArg1 Type: Arg

Example: myPip.notifyReaderArg0 = 0;
PIP - Code Composer
Studio Interface

To enable PIP accumulators, choose DSP/BIOS→RTA Control Panel and
put a check in the appropriate box. Then choose DSP/BIOS→Statistics
View, which lets you select objects for which you want to see statistics. If
you choose a PIP object, you see a count of the number of frames read
from or written to the pipe.
Application Program Interface 2-191

PIP_alloc
C Interface

Syntax PIP_alloc(pipe);

Parameters PIP_Handle pipe; /* pipe object handle */

Return Value Void

Assembly Interface

Syntax PIP_alloc

Preconditions a4 = address of the pipe object
pipe.writerNumFrames > 0
amr = 0

Postconditions none

Modifies a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9

Reentrant no

Description PIP_alloc allocates an empty frame from the pipe you specify. You can
write to this frame and then use PIP_put to put the frame into the pipe.

If empty frames are available after PIP_alloc allocates a frame, PIP_alloc
runs the function specified by the notifyWriter property of the PIP object.
This function should notify (for example, by calling SWI_andnHook) the
object that writes to this pipe that an empty frame is available. The
notifyWriter function is performed as part of the thread that calls PIP_free
or PIP_alloc. To avoid problems with recursion, the notifyWriter function
should not directly call any PIP module functions for the same pipe.

Constraints and
Calling Context

❏ Before calling PIP_alloc, a function should check the
writerNumFrames member of the PIP_Obj structure by calling
PIP_getWriterNumFrames to make sure it is greater than 0 (that is,
at least one empty frame is available).

❏ PIP_alloc can only be called one time before calling PIP_put. You
cannot operate on two frames from the same pipe simultaneously.

Note:

Registers used by notifyWriter functions might also be modified.

PIP_alloc Allocate an empty frame from a pipe
2-192

PIP_alloc
Example Void copy(HST_Obj *input, HST_Obj *output)
{
 PIP_Obj *in, *out;
 Uns *src, *dst;
 Uns size;

 in = HST_getpipe(input);
 out = HST_getpipe(output);

 if (PIP_getReaderNumFrames(in) == 0 ||
 PIP_getWriterNumFrames(out) == 0) {
 error;
 }

 /* get input data and allocate output frame */
 PIP_get(in);
 PIP_alloc(out);

 /* copy input data to output frame */
 src = PIP_getReaderAddr(in);
 dst = PIP_getWriterAddr(out);
 size = PIP_getReaderSize(in);
 PIP_setWriterSize(out, size);
 for (; size > 0; size--) {
 *dst++ = *src++;
 }

 /* output copied data and free input frame */
 PIP_put(out);
 PIP_free(in);
}
The example for HST_getpipe, page 2–112, also uses a pipe with host
channel objects.

See Also PIP_free
PIP_get
PIP_put
HST_getpipe
Application Program Interface 2-193

PIP_free
C Interface

Syntax PIP_free(pipe);

Parameters PIP_Handle pipe; /* pipe object handle */

Return Value Void

Assembly Interface

Syntax PIP_free

Preconditions a4 = address of the pipe object
amr = 0

Postconditions none

Modifies a1, a2, a3, a4, a5, b0, b1, b2, b3, b4

Reentrant no

Description PIP_free releases a frame after you have read the frame with PIP_get.
The frame is recycled so that PIP_alloc can reuse it.

After PIP_free releases the frame, it runs the function specified by the
notifyWriter property of the PIP object. This function should notify (for
example, by calling SWI_andnHook) the object that writes to this pipe
that an empty frame is available. The notifyWriter function is performed
as part of the thread that called PIP_free or PIP_alloc. To avoid problems
with recursion, the notifyWriter function should not directly call any of the
PIP module functions for the same pipe.

Constraints and
Calling Context

❏ When called within an HWI ISR, the code sequence calling PIP_free
must be either wrapped within an HWI_enter/HWI_exit pair or
invoked by the HWI dispatcher.

Note:
Registers used by notifyWriter functions might also be modified.

Example See the example for PIP_alloc, page 2–192. The example for
HST_getpipe, page 2–112, also uses a pipe with host channel objects.

See Also PIP_alloc
PIP_get
PIP_put
HST_getpipe

PIP_free Recycle a frame that has been read to a pipe
2-194

PIP_get
C Interface

Syntax PIP_get(pipe);

Parameters PIP_Handle pipe; /* pipe object handle */

Return Value Void

Assembly Interface

Syntax PIP_get

Preconditions a4 = address of the pipe object
pipe.readerNumFrames > 0
amr = 0

Postconditions none

Modifies a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9

Reentrant no

Description PIP_get gets a frame from the pipe after some other function puts the
frame into the pipe with PIP_put.

If full frames are available after PIP_get gets a frame, PIP_get runs the
function specified by the notifyReader property of the PIP object. This
function should notify (for example, by calling SWI_andnHook) the object
that reads from this pipe that a full frame is available. The notifyReader
function is performed as part of the thread that calls PIP_get or PIP_put.
To avoid problems with recursion, the notifyReader function should not
directly call any PIP module functions for the same pipe.

Constraints and
Calling Context

❏ Before calling PIP_get, a function should check the
readerNumFrames member of the PIP_Obj structure by calling
PIP_getReaderNumFrames to make sure it is greater than 0 (that is,
at least one full frame is available).

❏ PIP_get can only be called one time before calling PIP_free. You
cannot operate on two frames from the same pipe simultaneously.

Note:

Registers used by notifyReader functions might also be modified.

PIP_get Get a full frame from the pipe
Application Program Interface 2-195

PIP_get
Example See the example for PIP_alloc, page 2–192. The example for
HST_getpipe, page 2–112, also uses a pipe with host channel objects.

See Also PIP_alloc
PIP_free
PIP_put
HST_getpipe
2-196

PIP_getReaderAddr
C Interface

Syntax readerAddr = PIP_getReaderAddr(pipe);

Parameters PIP_Handle pipe; /* pipe object handle */

Return Value Ptr readerAddr

Assembly Interface

Syntax mvk pipe, a4;
mvkh pipe, a4;
ldw *+a4(PIP_READPTR), a4;
nop 4

Preconditions amr = 0

Postconditions none

Modifies none

Reentrant yes

Description PIP_getReaderAddr is a C function that returns the value of the
readerAddr pointer of a pipe object. The readerAddr pointer is normally
used following a call to PIP_get, as the address to begin reading from.

Example Void audio(PIP_Obj *in, PIP_Obj *out)
{
 Uns *src, *dst;
 Uns size;

 if (PIP_getReaderNumFrames(in) == 0 ||
 PIP_getWriterNumFrames(out) == 0) {
 error; }
 PIP_get(in); /* get input data */
 PIP_alloc(out); /* allocate output buffer */

 /* copy input data to output buffer */
 src = PIP_getReaderAddr(in);
 dst = PIP_getWriterAddr(out);
 size = PIP_getReaderSize(in);
 PIP_setWriterSize(out,size);
 for (; size > 0; size--) {
 *dst++ = *src++;
 }

 /* output copied data and free input buffer */
 PIP_put(out);
 PIP_free(in);
}

PIP_getReaderAddr Get the value of the readerAddr pointer of the pipe
Application Program Interface 2-197

PIP_getReaderNumFrames
C Interface

Syntax num = PIP_getReaderNumFrames(pipe);

Parameters PIP_Handle pipe; /* pip object handle */

Return Value Uns num; /* number of filled frames to be read */

Assembly Interface

Syntax mvk pipe, a4;
mvkh pipe, a4;
ldw *+a4(PIP_FULLBUFS), a4;
nop 4

Preconditions amr = 0

Postconditions none

Modifies none

Reentrant yes

Description PIP_getReaderNumFrames is a C function that returns the value of the
readerNumFrames element of a pipe object.

Before a function attempts to read from a pipe it should call
PIP_getReaderNumFrames to ensure at least one full frame is available.

Example See the example for PIP_getReaderAddr, page 2–197.

PIP_getReaderNumFrames Get the number of pipe frames available for reading
2-198

PIP_getReaderSize
C Interface

Syntax num = PIP_getReaderSize(pipe);

Parameters PIP_Handle pipe; /* pipe object handle*/

Return Value Uns num; /* number of words to be read from filled frame */

Assembly Interface

Syntax mvk pipe, a4;
mvkh pipe, a4;
ldw *+a4(PIP_READCNT), a4;
nop 4

Preconditions amr = 0

Postconditions none

Modifies none

Reentrant yes

Description PIP_getReaderSize is a C function that returns the value of the
readerSize element of a pipe object.

As a function reads from a pipe it should use PIP_getReaderSize to
determine the number of valid words of data in the pipe frame.

Example See the example for PIP_getReaderAddr, page 2–197.

PIP_getReaderSize Get the number of words of data in a pipe frame
Application Program Interface 2-199

PIP_getWriterAddr
C Interface

Syntax writerAddr = PIP_getWriterAddr(pipe);

Parameters PIP_Handle pipe; /* pipe object handle */

Return Value Ptr writerAddr;

Assembly Interface

Syntax mvk pipe, a4;
mvkh pipe, a4;
ldw *+a4(PIP_WRITEPTR), a4;
nop 4

Preconditions amr = 0

Postconditions none

Modifies none

Reentrant yes

Description PIP_getWriterAddr is a C function that returns the value of the writerAddr
pointer of a pipe object.

The writerAddr pointer is normally used following a call to PIP_alloc, as
the address to begin writing to.

Example See the example for PIP_getReaderAddr, page 2–197.

PIP_getWriterAddr Get the value of the writerAddr pointer of the pipe
2-200

PIP_getWriterNumFrames
C Interface

Syntax num = PIP_getWriterNumFrames(pipe);

Parameters PIP_Handle pipe; /* pipe object handle*/

Return Value Uns num; /* number of empty frames to be written */

Assembly Interface

Syntax mvk pipe, a4;
mvkh pipe, a4;
ldw *+a4(PIP_EMPTYBUFS), a4;
nop 4

Preconditions amr = 0

Postconditions none

Modifies none

Reentrant yes

Description PIP_getWriterNumFrames is a C function that returns the value of the
writerNumFrames element of a pipe object.

Before a function attempts to write to a pipe, it should call
PIP_getWriterNumFrames to ensure at least one empty frame is
available.

Example See the example for PIP_getReaderAddr, page 2–197.

PIP_getWriterNumFrames Get number of pipe frames available to be written to
Application Program Interface 2-201

PIP_getWriterSize
C Interface

Syntax num = PIP_getWriterSize(pipe);

Parameters PIP_Handle pipe; /* pipe object handle*/

Return Value Uns num; /* number of words to be written in empty frame
*/

Assembly Interface

Syntax mvk pipe, a4;
mvkh pipe, a4;
ldw *+a4(PIP_WRITECNT), a4;
nop 4

Preconditions amr = 0

Postconditions none

Modifies none

Reentrant yes

Description PIP_getWriterSize is a C function that returns the value of the writerSize
element of a pipe object.

As a function writes to a pipe, it can use PIP_getWriterSize to determine
the maximum number words that can be written to a pipe frame.

Example if (PIP_getWriterNumFrames(rxPipe) > 0) {
 PIP_alloc(rxPipe);
 DSS_rxPtr = PIP_getWriterAddr(rxPipe);
 DSS_rxCnt = PIP_getWriterSize(rxPipe);
}

PIP_getWriterSize Get the number of words that can be written to a pipe frame
2-202

PIP_peek
C Interface

Syntax framesize = PIP_peek(pipe, addr, rw);

Parameters PIP_Handle pipe; /* pipe object handle */
Ptr *addr; /* the address of the variable that keeps the
frame
 address */
Uns rw; /* the flag that indicates the reader or writer side
*/

Return Value Int framesize;/* the frame size */

Assembly Interface none

Description PIP_peek can be used before calling PIP_alloc or PIP_get to get the pipe
frame size and address without actually claiming the pipe frame.

The pipe parameter is the pipe object handle, the addr parameter is the
address of the variable that keeps the retrieved frame address, and the
rw parameter is the flag that indicates what side of the pipe PIP_peek is
to operate on. If rw is PIP_READER, then PIP_peek operates on the
reader side of the pipe. If rw is PIP_WRITER, then PIP_peek operates on
the writer side of the pipe.

PIP_getReaderNumFrames or PIP_getWriterNumFrames can be called
to ensure that a frame exists before calling PIP_peek, although PIP_peek
returns –1 if no pipe frame exists.

PIP_peek returns the frame size, or –1 if no pipe frames are available. If
the return value of PIP_peek in frame size is not –1, then *addr is the
location of the frame address.

See Also PIP_alloc
PIP_free
PIP_get
PIP_put
PIP_reset

PIP_peek Get pipe frame size and address without actually claiming pipe frame
Application Program Interface 2-203

PIP_put
C Interface

Syntax PIP_put(pipe);

Parameters PIP_Handle pipe; /* pipe object handle */

Return Value Void

Assembly Interface

Syntax PIP_put

Preconditions a4 = address of the pipe object
amr = 0

Postconditions none

Modifies a0, a1, a2, a3, a4, a5, b0, b1, b2, b3, b4

Reentrant no

Description PIP_put puts a frame into a pipe after you have allocated the frame with
PIP_alloc and written data to the frame. The reader can then use PIP_get
to get a frame from the pipe.

After PIP_put puts the frame into the pipe, it runs the function specified
by the notifyReader property of the PIP object. This function should notify
(for example, by calling SWI_andnHook) the object that reads from this
pipe that a full frame is ready to be processed. The notifyReader function
is performed as part of the thread that called PIP_get or PIP_put. To
avoid problems with recursion, the notifyReader function should not
directly call any of the PIP module functions for the same pipe.

Note:

Registers used by notifyReader functions might also be modified.

Constraints and
Calling Context

❏ When called within an HWI ISR, the code sequence calling PIP_put
must be either wrapped within an HWI_enter/HWI_exit pair or
invoked by the HWI dispatcher.

Example See the example for PIP_alloc, page 2–192. The example for
HST_getpipe, page 2–112, also uses a pipe with host channel objects.

PIP_put Put a full frame into the pipe
2-204

PIP_put
See Also PIP_alloc
PIP_free
PIP_get
HST_getpipe
Application Program Interface 2-205

PIP_reset
C Interface

Syntax PIP_reset(pipe);

Parameters PIP_Handle pipe; /* pipe object handle */

Return Value Void

Assembly Interface none

Description PIP_reset resets all fields of a pipe object to their original values.

The pipe parameter specifies the address of the pipe object that is to be
reset.

Constraints and
Calling Context

❏ PIP_reset should not be called between the PIP_alloc call and the
PIP_put call or between the PIP_get call and the PIP_free call.

❏ PIP_reset should be called when interrupts are disabled to avoid the
race condition.

See Also PIP_alloc
PIP_free
PIP_get
PIP_peek
PIP_put

PIP_reset Reset all fields of a pipe object to their original values
2-206

PIP_setWriterSize
C Interface

Syntax PIP_setWriterSize(pipe, size);

Parameters PIP_Handle pipe; /* pipe object handle */
Uns size; /* size to be set */

Return Value Void

Assembly Interface

Syntax mvk pipe, a4;
mvkh pipe, a4;
mvk SIZE, b4;
mvkh SIZE, b4;
stw b4, *+a4(PIP_WRITECNT);

Preconditions amr = 0

Postconditions none

Modifies none

Reentrant no

Description PIP_setWriterSize is a C function that sets the value of the writerSize
element of a pipe object.

As a function writes to a pipe, it can use PIP_setWriterSize to indicate the
number of valid words being written to a pipe frame.

Example See the example for PIP_getReaderAddr, page 2–197.

PIP_setWriterSize Set the number of valid words written to a pipe frame
Application Program Interface 2-207

PRD Module
2.16 PRD Module

The PRD module is the periodic function manager.

Functions ❏ PRD_getticks. Get the current tick count.

❏ PRD_start. Arm a periodic function for one-time execution.

❏ PRD_stop. Stop a periodic function from continuous execution.

❏ PRD_tick. Advance tick counter, dispatch periodic functions.

Configuration
Properties

The following list shows the properties that can be configured in a
DSP/BIOS TextConf script, along with their types and default values. For
details, see the PRD Manager Properties and PRD Object Properties
headings. For descriptions of data types, see Section 1.4, DSP/BIOS
TextConf Overview, page 1-4.

Module Configuration Parameters

Instance Configuration Parameters.

Description While some applications can schedule functions based on a real-time
clock, many applications need to schedule functions based on I/O
availability or some other programmatic event.

The PRD module allows you to create PRD objects that schedule
periodic execution of program functions. The period can be driven by the
CLK module or by calls to PRD_tick whenever a specific event occurs.
There can be several PRD objects, but all are driven by the same period
counter. Each PRD object can execute its functions at different intervals
based on the period counter.

Name Type Default

OBJMEMSEG Reference prog.get("IDRAM")

USECLK Bool "true"

MICROSECONDS Bool 1000.0

Name Type Default (Enum Options)

comment String "<add comments here>"

period Int16 65535

mode EnumString "continuous" ("one-shot")

fxn Extern prog.extern("FXN_F_nop")

arg0 Arg 0

arg1 Arg 0
2-208

PRD Module
❏ To schedule functions based on a real-time clock. Set the clock
interrupt rate you want to use in the CLK Object Properties dialog.
Put a checkmark in the Use On-chip Clock (CLK) box in the PRD
Manager Properties dialog. Set the frequency of execution (in
number of ticks) in the period field for the individual period object.

❏ To schedule functions based on I/O availability or some other
event. Remove the checkmark from the Use On-chip Clock (CLK)
property field for the Periodic Function Manager. Set the frequency of
execution (in number of ticks) in the period field for the individual
period object. Your program should call PRD_tick to increment the
tick counter.

The function executed by a PRD object is statically defined in the
Configuration Tool. PRD functions are called from the context of the
function run by the PRD_swi SWI object. PRD functions can be written in
C or assembly and must follow the C calling conventions described in the
compiler manual.

The PRD module uses a SWI object (called PRD_swi by default) which
itself is triggered on a periodic basis to manage execution of period
objects. Normally, this SWI object should have the highest software
interrupt priority to allow this software interrupt to be performed once per
tick. This software interrupt is automatically created (or deleted) by the
Configuration Tool if one or more (or no) PRD objects exist. The total time
required to perform all PRD functions must be less than the number of
microseconds between ticks. Any more lengthy processing should be
scheduled as a separate SWI, TSK, or IDL thread.

See the Code Composer Studio online tutorial for an example that
demonstrates the interaction between the PRD module and the SWI
module.

When the PRD_swi object runs its function, the following actions occur:

for ("Loop through period objects") {
 if ("time for a periodic function")
 "run that periodic function";
}

PRD Manager
Properties

The DSP/BIOS Periodic Function Manager allows the creation of an
arbitrary number of objects that encapsulate a function, two arguments,
and a period specifying the time between successive invocations of the
function. The period is expressed in ticks, and a tick is defined as a single
invocation of the PRD_tick operation. The time between successive
invocations of PRD_tick defines the period represented by a tick.
Application Program Interface 2-209

PRD Module
The following global properties can be set for the PRD module in the PRD
Manager Properties dialog of the Configuration Tool or in a DSP/BIOS
TextConf script:

❏ Object Memory. The memory segment containing the PRD objects.
TextConf Name: OBJMEMSEG Type: Ref

Example: PRD.OBJMEMSEG = prog.get("myMEM");
❏ Use CLK Manager to drive PRD. If this field is checked, the on-

device timer hardware (managed by the CLK Module) is used to
advance the tick count; otherwise, the application must invoke
PRD_tick on a periodic basis.
TextConf Name: USECLK Type: Bool

Example: PRD.USECLK = "true";
❏ Microseconds/Tick. The number of microseconds between ticks. If

the Use CLK Manager to drive PRD field above is checked, this field
is automatically set by the CLK module; otherwise, you must
explicitly set this field. The total time required to perform all PRD
functions must be less than the number of microseconds between
ticks.
TextConf Name: MICROSECONDS Type: Numeric

Example: PRD.MICROSECONDS = 1000.0;
PRD Object Properties To create a PRD object in a configuration script, use the following syntax.

The DSP/BIOS TextConf examples that follow assume the object has
been created as shown here.

var myPrd = PRD.create("myPrd");
If you cannot create a new PRD object (an error occurs or the Insert PRD
item is inactive in the Configuration Tool), increase the Stack Size
property in the MEM Manager Properties dialog before adding a PRD
object.

The following properties can be set for a PRD object in the PRD Object
Properties dialog of the Configuration Tool or in a DSP/BIOS TextConf
script:

❏ comment. Type a comment to identify this PRD object.
TextConf Name: comment Type: String

Example: myPrd.comment = "my PRD";
❏ period (ticks). The function executes after period ticks have

elapsed.
TextConf Name: period Type: Int16

Example: myPrd.period = 65535;
2-210

PRD Module
❏ mode. If continuous is selected the function executes every period
ticks; otherwise it executes just once after each call to PRD_tick.
TextConf Name: mode Type: EnumString

Options: "continuous", "one-shot"
Example: myPrd.mode = "continuous";

❏ function. The function to be executed. The total time required to
perform all PRD functions must be less than the number of
microseconds between ticks.
TextConf Name: fxn Type: Extern

Example: myPrd.fxn = prog.extern("prdFxn");
❏ arg0, arg1. Two Arg type arguments for the user-specified function

above.
TextConf Name: arg0 Type: Arg
TextConf Name: arg1 Type: Arg

Example: myPrd.arg0 = 0;
❏ period (ms). The number of milliseconds represented by the period

specified above. This is an informational field only.
TextConf Name: N/A

PRD - Code Composer
Studio Interface

To enable PRD logging, choose DSP/BIOS→RTA Control Panel and put
a check in the appropriate box. You see indicators for PRD ticks in the
PRD ticks row of the Execution Graph, which you can open by choosing
DSP/BIOS→Execution Graph. In addition, you see a graph of activity,
including PRD function execution.

You can also enable PRD accumulators in the RTA Control Panel. Then
you can choose DSP/BIOS→Statistics View, which lets you select
objects for which you want to see statistics. If you choose a PRD object,
you see statistics about the number of ticks elapsed from the time the
PRD object is ready to run until it finishes execution. It is important to
note, however, if your system is not meeting its timing constraints, the
Max value displayed by the Statistics View results in a value that reflects
the accumulation of missed deadlines for the PRD object. If Max value
becomes greater than the PRD object’s period, you can divide Max value
by the period to determine how many real-time deadlines your PRD
object has missed. While most statistical information can be cleared by
right-clicking on the Statistics View and selecting Clear from the pull-
down menu, once a periodic function has missed a real-time deadline,
the max value returns to its high point as soon as it is recomputed. This
is because the information stored about the PRD object used to compute
Max value still reflects the fact that the PRD object has missed deadlines.
Application Program Interface 2-211

PRD_getticks
C Interface

Syntax num = PRD_getticks();

Parameters Void

Return Value LgUns num /* current tick counter */

Assembly Interface

Syntax PRD_getticks

Preconditions b14 = pointer to the start of .bss
amr = 0

Postconditions a4 = PRD_D_tick

Modifies a4

Reentrant yes

Description PRD_getticks returns the current period tick count as a 32-bit value.

If the periodic functions are being driven by the on-device timer, the tick
value is the number of low resolution clock ticks that have occurred since
the program started running. When the number of ticks reaches the
maximum value that can be stored in 32 bits, the value wraps back to 0.
See the CLK Module, page 2–24, for more details.

If the periodic functions are being driven programmatically, the tick value
is the number of times PRD_tick has been called.

Example /* ======== showTicks ======== */
Void showTicks
{
 LOG_printf(&trace, "ticks = %d", PRD_getticks());
}

See Also PRD_start
PRD_tick
CLK_gethtime
CLK_getltime
STS_delta

PRD_getticks Get the current tick count
2-212

PRD_start
C Interface

Syntax PRD_start(prd);

Parameters PRD_Handle prd; /* prd object handle*/

Return Value Void

Assembly Interface

Syntax PRD_start

Preconditions a4 = address of the PRD object
amr = 0

Postconditions none

Modifies a1, b1

Reentrant no

Description PRD_start starts a period object that has its mode property set to one-
shot in the Configuration Tool.

Unlike PRD objects that are configured as continuous, one-shot PRD
objects do not automatically continue to run. A one-shot PRD object runs
its function only after the specified number of ticks have occurred after a
call to PRD_start.

For example, you might have a function that should be executed a certain
number of periodic ticks after some condition is met.

When you use PRD_start to start a period object, the exact time the
function runs can vary by nearly one tick cycle. As Figure 2-3 shows,
PRD ticks occur at a fixed rate and the call to PRD_start can occur at any
point between ticks

Figure 2-3. PRD Tick Cycles

PRD_start Arm a periodic function for one-shot execution

Tick Tick Tick

Time to first tick after PRD_start is called.
Application Program Interface 2-213

PRD_start
Due to implementation details, if a PRD function calls PRD_start for a
PRD object that is lower in the list of PRD objects, the function sometimes
runs a full tick cycle early.

Example /* ======== startPRD ======== */
Void startPrd(Int periodID)
 {
 if ("condition met") {
 PRD_start(&periodID);
 }
 }

See Also PRD_tick
PRD_getticks
2-214

PRD_stop
C Interface

Syntax PRD_stop(prd);

Parameters PRD_Handle prd; /* prd object handle*/

Return Value Void

Assembly Interface

Syntax PRD_stop

Preconditions a4 = address of the PRD object
amr = 0

Postconditions none

Modifies a1, b1

Reentrant no

Description PRD_stop stops a period object to prevent its function execution. In most
cases, PRD_stop is used to stop a period object that has its mode
property set to one-shot in the Configuration Tool.

Unlike PRD objects that are configured as continuous, one-shot PRD
objects do not automatically continue to run. A one-shot PRD object runs
its function only after the specified numbers of ticks have occurred after
a call to PRD_start.

PRD_stop is the way to stop those one-shot PRD objects once started
and before their period counters have run out.

Example PRD_stop(&prd);
See Also PRD_getticks

PRD_start
PRD_tick

PRD_stop Stop a period object to prevent its function execution
Application Program Interface 2-215

PRD_tick
C Interface

Syntax PRD_tick();

Parameters Void

Return Value Void

Assembly Interface

Syntax PRD_tick

Preconditions GIE = 0 (interrupts are disabled)
amr = 0

Postconditions none

Modifies a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, b0, b1, b2, b3, b4, b5, b6, b7, b8, csr

Reentrant no

Description PRD_tick advances the period counter by one tick. Unless you are driving
PRD functions using the on-device clock, PRD objects execute their
functions at intervals based on this counter.

For example, a hardware ISR could perform PRD_tick to notify a periodic
function when data is available for processing.

Constraints and
Calling Context

❏ All the registers that are modified by this API should be saved and
restored, before and after the API is invoked, respectively.

❏ When called within an HWI ISR, the code sequence calling PRD_tick
must be either wrapped within an HWI_enter/HWI_exit pair or
invoked by the HWI dispatcher.

❏ Interrupts need to be disabled before calling PRD_tick.

See Also PRD_start
PRD_getticks

PRD_tick Advance tick counter, enable periodic functions
2-216

QUE Module
2.17 QUE Module

The QUE module is the atomic queue manager.

Functions ❏ QUE_create. Create an empty queue.

❏ QUE_delete. Delete an empty queue.

❏ QUE_dequeue. Remove from front of queue (non-atomically).

❏ QUE_empty. Test for an empty queue.

❏ QUE_enqueue. Insert at end of queue (non-atomically).

❏ QUE_get. Remove element from front of queue (atomically)

❏ QUE_head. Return element at front of queue.

❏ QUE_insert. Insert in middle of queue (non-atomically).

❏ QUE_new. Set a queue to be empty.

❏ QUE_next. Return next element in queue (non-atomically).

❏ QUE_prev. Return previous element in queue (non-atomically).

❏ QUE_put. Put element at end of queue (atomically).

❏ QUE_remove. Remove from middle of queue (non-atomically).

Constants, Types,
and Structures

typedef struct QUE_Obj *QUE_Handle; /* queue obj handle */
struct QUE_Attrs{ /* queue attributes */
 Int dummy; /* DUMMY */
};

QUE_Attrs QUE_ATTRS = { /* default attribute values */
 0,
};

typedef QUE_Elem; /* queue element */

Configuration
Properties

The following list shows the properties that can be configured in a
DSP/BIOS TextConf script, along with their types and default values. For
details, see the QUE Manager Properties and QUE Object Properties
headings. For descriptions of data types, see Section 1.4, DSP/BIOS
TextConf Overview, page 1-4.

Module Configuration Parameters.

Name Type Default

OBJMEMSEG Reference prog.get("IDRAM")
Application Program Interface 2-217

QUE Module
Instance Configuration Parameters.

Description The QUE module makes available a set of functions that manipulate
queue objects accessed through handles of type QUE_Handle. Each
queue contains an ordered sequence of zero or more elements
referenced through variables of type QUE_Elem, which are generally
embedded as the first field within a structure. The QUE_Elem item is
used as an internal pointer.

For example, the DEV_Frame structure, which is used by the SIO Module
and DEV Module to enqueue and dequeue I/O buffers, contains a field of
type QUE_Elem:

struct DEV_Frame { /* frame object */
 QUE_Elem link; /* must be first field! */
 Ptr addr; /* buffer address */
 Uns size; /* buffer size */
 Arg misc; /* reserved for driver */
 Arg arg; /* user argument */
 Uns cmd; /* mini-driver command */
 Int status; /* status of command */
} DEV_Frame;
Many QUE module functions either are passed or return a pointer to an
element having the structure defined for QUE elements.

The functions QUE_put and QUE_get are atomic in that they manipulate
the queue with interrupts disabled. These functions can therefore be
used to safely share queues between tasks, or between tasks and SWIs
or HWIs. All other QUE functions should only be called by tasks, or by
tasks and SWIs or HWIs when they are used in conjunction with some
mutual exclusion mechanism (for example, SEM_pend / SEM_post,
TSK_disable / TSK_enable).

Once a queue has been created, use MEM_alloc to allocate elements for
the queue. You can view examples of this in the program code for quetest
and semtest located on your distribution CD in
c:\ti\examples\target\bios\semtest folder, where target matches
your board. (If you installed in a path other than c:\ti, substitute your
appropriate path.)

QUE Manager
Properties

The following global property can be set for the QUE module in the QUE
Manager Properties dialog of the Configuration Tool or in a DSP/BIOS
TextConf script:

Name Type Default

comment String "<add comments here>"
2-218

QUE Module
❏ Object Memory. The memory segment that contains the QUE
objects.
TextConf Name: OBJMEMSEG Type: Ref

Example: QUE.OBJMEMSEG = prog.get("myMEM");
QUE Object Properties To create a QUE object in a configuration script, use the following syntax.

The DSP/BIOS TextConf examples that follow assume the object has
been created as shown here.

var myQue = QUE.create("myQue");
The following property can be set for a QUE object in the PRD Object
Properties dialog of the Configuration Tool or in a DSP/BIOS TextConf
script:

❏ comment. Type a comment to identify this QUE object.
TextConf Name: comment Type: String

Example: myQue.comment = "my QUE";
Application Program Interface 2-219

QUE_create
C Interface

Syntax queue = QUE_create(attrs);

Parameters QUE_Attrs *attrs; /* pointer to queue attributes */

Return Value QUE_Handle queue; /* handle for new queue object */

Assembly Interface none

Description QUE_create creates a new queue which is initially empty. If successful,
QUE_create returns the handle of the new queue. If unsuccessful,
QUE_create returns NULL unless it aborts (for example, because it
directly or indirectly calls SYS_error, and SYS_error is configured to
abort).

If attrs is NULL, the new queue is assigned a default set of attributes.
Otherwise, the queue’s attributes are specified through a structure of type
QUE_Attrs.

Note:

At present, no attributes are supported for queue objects, and the type
QUE_Attrs is defined as a dummy structure.

All default attribute values are contained in the constant QUE_ATTRS,
which can be assigned to a variable of type QUE_Attrs prior to calling
QUE_create.

You can also create a queue by declaring a variable of type QUE_Obj and
initializing the queue with QUE_new. You can find an example of this in
the semtest code example on your distribution CD in
c:\ti\examples\target\bios\semtest folder, where target matches
your board. (If you installed in a path other than c:\ti, substitute your
appropriate path.)

QUE_create calls MEM_alloc to dynamically create the object’s data
structure. MEM_alloc must acquire a lock to the memory before
proceeding. If another thread already holds a lock to the memory, then
there is a context switch. The segment from which the object is allocated
is described by the DSP/BIOS objects property in the MEM Module, page
2–170.

QUE_create Create an empty queue
2-220

QUE_create
Constraints and
Calling Context

❏ QUE_create cannot be called from a SWI or HWI.

❏ You can reduce the size of your application program by creating
objects with the Configuration Tool rather than using the XXX_create
functions.

See Also MEM_alloc
QUE_empty
QUE_delete
SYS_error
Application Program Interface 2-221

QUE_delete
C Interface

Syntax QUE_delete(queue);

Parameters QUE_Handle queue; /* queue handle */

Return Value Void

Assembly Interface none

Description QUE_delete uses MEM_free to free the queue object referenced by
queue.

QUE_delete calls MEM_free to delete the QUE object. MEM_free must
acquire a lock to the memory before proceeding. If another task already
holds a lock to the memory, then there is a context switch.

Constraints and
Calling Context

❏ queue must be empty.

❏ QUE_delete cannot be called from a SWI or HWI.

❏ No check is performed to prevent QUE_delete from being used on a
statically-created object. If a program attempts to delete a queue
object that was created using the Configuration Tool, SYS_error is
called.

See Also QUE_create
QUE_empty

QUE_delete Delete an empty queue
2-222

QUE_dequeue
C Interface

Syntax elem = QUE_dequeue(queue);

Parameters QUE_Handle queue; /* queue object handle */

Return Value Ptr elem; /* pointer to former first element */

Assembly Interface none

Description QUE_dequeue removes the element from the front of queue and returns
elem.

The return value, elem, is a pointer to the element at the front of the QUE.
Such elements have a structure defined similarly to that in the example
in the QUE Module topic. The first field in the structure must be of type
QUE_Elem and is used as an internal pointer.

Note:

QUE_get must be used instead of QUE_dequeue if queue is shared by
multiple tasks, or tasks and SWIs or HWIs (unless another mutual
exclusion mechanism is used). QUE_get runs atomically and is never
interrupted; QUE_dequeue performs the same action but runs non-
atomically. While QUE_dequeue is somewhat faster than QUE_get,
you should not use it unless you know your QUE operation cannot be
preempted by another thread that operates on the same queue.

See Also QUE_get

QUE_dequeue Remove from front of queue (non-atomically)
Application Program Interface 2-223

QUE_empty
C Interface

Syntax empty = QUE_empty(queue);

Parameters QUE_Handle queue; /* queue object handle */

Return Value Bool empty; /* TRUE if queue is empty */

Assembly Interface none

Description QUE_empty returns TRUE if there are no elements in queue, and FALSE
otherwise.

See Also QUE_get

QUE_empty Test for an empty queue
2-224

QUE_enqueue
C Interface

Syntax QUE_enqueue(queue, elem);

Parameters QUE_Handle queue; /* queue object handle */
Ptr elem; /* pointer to queue element */

Return Value Void

Assembly Interface none

Description QUE_enqueue inserts elem at the end of queue.

The elem parameter must be a pointer to an element to be placed in the
QUE. Such elements have a structure defined similarly to that in the
example in the QUE Module topic. The first field in the structure must be
of type QUE_Elem and is used as an internal pointer.

Note:

QUE_put must be used instead of QUE_enqueue if queue is shared by
multiple tasks, or tasks and SWIs or HWIs (unless another mutual
exclusion mechanism is used). QUE_put runs atomically and is never
interrupted; QUE_enqueue performs the same action but runs non-
atomically. While QUE_enqueue is somewhat faster than QUE_put,
you should not use it unless you know your QUE operation cannot be
preempted by another thread that operates on the same queue.

See Also QUE_put

QUE_enqueue Insert at end of queue (non-atomically)
Application Program Interface 2-225

QUE_get
C Interface

Syntax elem = QUE_get(queue);

Parameters QUE_Handle queue; /* queue object handle */

Return Value Void *elem; /* pointer to former first element */

Assembly Interface none

Description QUE_get removes the element from the front of queue and returns elem.

The return value, elem, is a pointer to the element at the front of the QUE.
Such elements have a structure defined similarly to that in the example
in the QUE Module topic. The first field in the structure must be of type
QUE_Elem and is used as an internal pointer.

Since QUE_get manipulates the queue with interrupts disabled, the
queue can be shared by multiple tasks, or by tasks and SWIs or HWIs.

Calling QUE_get with an empty queue returns the queue itself. This
provides a means for using a single atomic action to check if a queue is
empty, and to remove and return the first element if it is not empty:

if ((QUE_Handle)(elem = QUE_get(q)) != q)
 ` process elem `

See Also QUE_create
QUE_empty
QUE_put

QUE_get Get element from front of queue (atomically)
2-226

QUE_head
C Interface

Syntax elem = QUE_head(queue);

Parameters QUE_Handle queue; /* queue object handle */

Return Value QUE_Elem *elem; /* pointer to first element */

Assembly Interface none

Description QUE_head returns a pointer to the element at the front of queue. The
element is not removed from the queue.

The return value, elem, is a pointer to the element at the front of the QUE.
Such elements have a structure defined similarly to that in the example
in the QUE Module topic. The first field in the structure must be of type
QUE_Elem and is used as an internal pointer.

Calling QUE_head with an empty queue returns the queue itself.

See Also QUE_create
QUE_empty
QUE_put

QUE_head Return element at front of queue
Application Program Interface 2-227

QUE_insert
C Interface

Syntax QUE_insert(qelem, elem);

Parameters Ptr qelem; /* element already in queue */
Ptr elem; /* element to be inserted in queue */

Return Value Void

Assembly Interface none

Description QUE_insert inserts elem in the queue in front of qelem.

The qelem parameter is a pointer to an existing element of the QUE. The
elem parameter is a pointer to an element to be placed in the QUE. Such
elements have a structure defined similarly to that in the example in the
QUE Module topic. The first field in the structure must be of type
QUE_Elem and is used as an internal pointer.

Note:

If the queue is shared by multiple tasks, or tasks and SWIs or HWIs,
QUE_insert should be used in conjunction with some mutual exclusion
mechanism (for example, SEM_pend/SEM_post, TSK_disable/
TSK_enable).

See Also QUE_head
QUE_next
QUE_prev
QUE_remove

QUE_insert Insert in middle of queue (non-atomically)
2-228

QUE_new
C Interface

Syntax QUE_new(queue);

Parameters QUE_Handle queue; /* pointer to queue object */

Return Value Void

Assembly Interface none

Description QUE_new adjusts a queue object to make the queue empty. This
operation is not atomic. A typical use of QUE_new is to initialize a queue
object that has been statically declared instead of being created with
QUE_create. Note that if the queue is not empty, the element(s) in the
queue are not freed or otherwise handled, but are simply abandoned.

If you created a queue by declaring a variable of type QUE_Obj, you can
initialize the queue with QUE_new. You can find an example of this in the
semtest code example on your distribution CD in
c:\ti\examples\target\bios\semtest folder, where target matches
your board. (If you installed in a path other than c:\ti, substitute your
appropriate path.)

 See Also QUE_create
QUE_delete
QUE_empty

QUE_new Set a queue to be empty
Application Program Interface 2-229

QUE_next
C Interface

Syntax elem = QUE_next(qelem);

Parameters Ptr qelem; /* element in queue */

Return Value Ptr elem; /* next element in queue */

Assembly Interface none

Description QUE_next returns elem which points to the element in the queue after
qelem.

The qelem parameter is a pointer to an existing element of the QUE. The
return value, elem, is a pointer to the next element in the QUE. Such
elements have a structure defined similarly to that in the example in the
QUE Module topic. The first field in the structure must be of type
QUE_Elem and is used as an internal pointer.

Since QUE queues are implemented as doubly linked lists with a dummy
node at the head, it is possible for QUE_next to return a pointer to the
queue itself. Be careful not to call QUE_remove(elem) in this case.

Note:

If the queue is shared by multiple tasks, or tasks and SWIs or HWIs,
QUE_next should be used in conjunction with some mutual exclusion
mechanism (for example, SEM_pend/SEM_post, TSK_disable/
TSK_enable).

See Also QUE_get
QUE_insert
QUE_prev
QUE_remove

QUE_next Return next element in queue (non-atomically)
2-230

QUE_prev
C Interface

Syntax elem = QUE_prev(qelem);

Parameters Ptr qelem; /* element in queue */

Return Value Ptr elem; /* previous element in queue */

Assembly Interface none

Description QUE_prev returns elem which points to the element in the queue before
qelem.

The qelem parameter is a pointer to an existing element of the QUE. The
return value, elem, is a pointer to the previous element in the QUE. Such
elements have a structure defined similarly to that in the example in the
QUE Module topic. The first field in the structure must be of type
QUE_Elem and is used as an internal pointer.

Since QUE queues are implemented as doubly linked lists with a dummy
node at the head, it is possible for QUE_prev to return a pointer to the
queue itself. Be careful not to call QUE_remove(elem) in this case.

Note:

If the queue is shared by multiple tasks, or tasks and SWIs or HWIs,
QUE_prev should be used in conjunction with some mutual exclusion
mechanism (for example, SEM_pend/SEM_post, TSK_disable/
TSK_enable).

See Also QUE_head
QUE_insert
QUE_next
QUE_remove

QUE_prev Return previous element in queue (non-atomically)
Application Program Interface 2-231

QUE_put
C Interface

Syntax QUE_put(queue, elem);

Parameters QUE_Handle queue; /* queue object handle */
Void *elem; /* pointer to new queue element */

Return Value Void

Assembly Interface none

Description QUE_put puts elem at the end of queue.

The elem parameter is a pointer to an element to be placed at the end of
the QUE. Such elements have a structure defined similarly to that in the
example in the QUE Module topic. The first field in the structure must be
of type QUE_Elem and is used as an internal pointer.

Since QUE_put manipulates queues with interrupts disabled, queues can
be shared by multiple tasks, or by tasks and SWIs or HWIs.

See Also QUE_get
QUE_head

QUE_put Put element at end of queue (atomically)
2-232

QUE_remove
C Interface

Syntax QUE_remove(qelem);

Parameters Ptr qelem; /* element in queue */

Return Value Void

Assembly Interface none

Description QUE_remove removes qelem from the queue.

The qelem parameter is a pointer to an existing element to be removed
from the QUE. Such elements have a structure defined similarly to that in
the example in the QUE Module topic. The first field in the structure must
be of type QUE_Elem and is used as an internal pointer.

Since QUE queues are implemented as doubly linked lists with a dummy
node at the head, be careful not to remove the header node. This can
happen when qelem is the return value of QUE_next or QUE_prev. The
following code sample shows how qelem should be verified before calling
QUE_remove.

QUE_Elem *qelem;.

/* get pointer to first element in the queue */
qelem = QUE_head(queue);

/* scan entire queue for desired element */
while (qelem != queue) {
 if(‘ qelem is the elem we’re looking for ‘) {
 break;
 }
 qelem = QUE_next(queue);
}

/* make sure qelem is not the queue itself */
if (qelem != queue) {
 QUE_remove(qelem);
}

QUE_remove Remove from middle of queue (non-atomically)
Application Program Interface 2-233

QUE_remove
Note:

If the queue is shared by multiple tasks, or tasks and SWIs or HWIs,
QUE_remove should be used in conjunction with some mutual
exclusion mechanism (for example, SEM_pend/SEM_post,
TSK_disable/ TSK_enable).

Constraints and
Calling Context

QUE_remove should not be called when qelem is equal to the queue
itself.

See Also QUE_head
QUE_insert
QUE_next
QUE_prev
2-234

RTDX Module
2.18 RTDX Module

The RTDX modules manage the real-time data exchange settings.

RTDX Data Declaration
Macros

❏ RTDX_CreateInputChannel
❏ RTDX_CreateOutputChannel

Function Macros ❏ RTDX_disableInput
❏ RTDX_disableOutput
❏ RTDX_enableInput
❏ RTDX_enableOutput
❏ RTDX_read
❏ RTDX_readNB
❏ RTDX_sizeofInput
❏ RTDX_write

Channel Test Macros ❏ RTDX_channelBusy
❏ RTDX_isInputEnabled
❏ RTDX_isOutputEnabled

Configuration
Properties

The following list shows the properties that can be configured in a
DSP/BIOS TextConf script, along with their types and default values. For
details, see the RTDX Manager Properties and RTDX Object Properties
headings. For descriptions of data types, see Section 1.4, DSP/BIOS
TextConf Overview, page 1-4.

Module Configuration Parameters.

Instance Configuration Parameters.

Description The RTDX module provides the data types and functions for:
❏ Sending data from the target to the host.
❏ Sending data from the host to the target.

Name Type Default (Enum Options)

ENABLERTDX Bool true

MODE EnumString "JTAG" ("HSRTDX", "Simulator")

RTDXDATASEG Reference prog.get("IDRAM")

BUFSIZE Int16 1032

INTERRUPTMASK Int16 0x00000000

Name Type Default (Enum Options)

comment String "<add comments here>"

channelMode EnumString "output" ("input")
Application Program Interface 2-235

RTDX Module
Data channels are represented by global structures. A data channel can
be used for input or output, but not both. The contents of an input or
output structure are not known to the user. A channel structure has two
states: enabled and disabled. When a channel is enabled, any data
written to the channel is sent to the host. Channels are initially disabled.

The RTDX assembly interface, rtdx.i, is a macro interface file that can be
used to interface to RTDX at the assembly level.

RTDX Manager
Properties

The following target configuration properties can be set for the RTDX
module in the RTDX Manager Properties dialog of the Configuration Tool
or in a DSP/BIOS TextConf script:

❏ Enable Real-Time Data Exchange (RTDX). This box should be
checked if you want to link RTDX support into your application.
TextConf Name: ENABLERTDX Type: Bool

Example: RTDX.ENABLERTDX = true;
❏ RTDX Mode. Select the port configuration mode RTDX should use

to establish communication between the host and target. The default
is JTAG for most targets. Set this to simulator if you use a simulator.
The HS-RTDX emulation technology is also available. If this property
is set incorrectly, a message says “RTDX target application does not
match emulation protocol“ when you load the program.
TextConf Name: MODE Type: EnumString

Options: "JTAG", "HSRTDX", "Simulator"
Example: RTDX.MODE = "JTAG";

❏ RTDX Data Segment (.rtdx_data). The memory segment used for
buffering target-to-host data transfers. The RTDX message buffer
and state variables are placed in this segment.
TextConf Name: RTDXDATASEG Type: Ref

Example: RTDX.RTDXDATASEG =
prog.get("myMEM");

❏ RTDX Buffer Size (MADUs). The size of the RTDX target-to-host
message buffer, in minimum addressable data units (MADUs). The
default size is 1032 to accommodate a 1024-byte block and two
control words. HST channels using RTDX are limited by this value.
TextConf Name: BUFSIZE Type: Int16

Example: RTDX.BUFSIZE = 1032;
❏ RTDX Interrupt Mask. This mask identifies RTDX clients and

protects RTDX critical sections. The mask specifies the interrupts to
be temporarily disabled inside RTDX critical sections. This also
temporarily disables other RTDX clients and prevents another RTDX
function call. See the RTDX on-line help for details.
2-236

RTDX Module
TextConf Name: INTERRUPTMASK Type: Int16
Example: RTDX.INTERRUPTMASK = 0x00000000;

RTDX Object
Properties

To create an RTDX object in a configuration script, use the following
syntax. The DSP/BIOS TextConf examples that follow assume the object
has been created as shown here.

var myRtdx = RTDX.create("myRtdx");
The following properties can be set for an RTDX object in the RTDX
Object Properties dialog of the Configuration Tool or in a DSP/BIOS
TextConf script:

❏ comment. Type a comment to identify this RTDX object.
TextConf Name: comment Type: String

Example: myRtdx.comment = "my RTDX";
❏ Channel Mode. Select output if the RTDX channel handles output

from the DSP to the host. Select input if the RTDX channel handles
input to the DSP from the host.
TextConf Name: channelMode Type: EnumString

Options: "input", "output"
Example: myRtdx.channelMode = "output";

Examples The rtdx.xls example is in the c:\ti\examples\hostapps\rtdx
folder. (If you installed in a path other than c:\ti, substitute your
appropriate path.) The examples are described below.

❏ Ta_write.asm. Target to Host transmission example. This example
sends 100 consecutive integers starting from 0. In the rtdx.xls file,
use the h_read VB macro to view data on the host.

❏ Ta_read.asm. Host to target transmission example. This example
reads 100 integers. Use the h_write VB macro of the rtdx.xls file to
send data to the target.

❏ Ta_readNB.asm. Host to target transmission example. This
example reads 100 integers. Use the h_write VB macro of the
rtdx.xls file to send data to the target. This example demonstrates
how to use the non-blocking read, RTDX_readNB, function.

Note:
Programs must be linked with C run-time libraries and contain the
symbol _main.
Application Program Interface 2-237

RTDX_channelBusy
C Interface

Syntax int RTDX_channelBusy(RTDX_inputChannel *pichan);

Parameters pichan /* Identifier for the input data channel */

Return Value int /* Status: 0 = Channel is not busy. */
/* non-zero = Channel is busy. */

Assembly Interface Use C function calling standards.

Reentrant yes

Description RTDX_channelBusy is designed to be used in conjunction with
RTDX_readNB. The return value indicates whether the specified data
channel is currently in use or not. If a channel is busy reading, the
test/control flag (TC) bit of status register 0 (STO) is set to 1. Otherwise,
the TC bit is set to O.

Constraints and
Calling Context

❏ RTDX_channelBusy cannot be called by an HWI function.

See Also RTDX_readNB

RTDX_channelBusy Return status indicating whether data channel is busy
2-238

RTDX_CreateInputChannel
C Interface

Syntax RTDX_CreateInputChannel(ichan);

Parameters ichan /* Label for the input channel */

Return Value none

Assembly Interface Use C function calling standards.

Reentrant no

Description This macro declares and initializes to 0, the RTDX data channel for input.

Data channels must be declared as global objects. A data channel can
be used either for input or output, but not both. The contents of an input
or output data channel are unknown to the user.

A channel can be in one of two states: enabled or disabled. Channels are
initialized as disabled.

Channels can be enabled or disabled via a User Interface function. They
can also be enabled or disabled remotely from Code Composer or its
COM interface.

Constraints and
Calling Context

❏ RTDX_CreateInputChannel cannot be called by an HWI function.

See Also RTDX_CreateOutputChannel

RTDX_CreateInputChannel Declare input channel structure
Application Program Interface 2-239

RTDX_CreateOutputChannel
C Interface

Syntax RTDX_CreateOutputChannel(ochan);

Parameters ochan /* Label for the output channel */

Return Value none

Assembly Interface Use C function calling standards.

Reentrant no

Description This macro declares and initializes the RTDX data channels for output.

Data channels must be declared as global objects. A data channel can
be used either for input or output, but not both. The contents of an input
or output data channel are unknown to the user.

A channel can be in one of two states: enabled or disabled. Channels are
initialized as disabled.

Channels can be enabled or disabled via a User Interface function. They
can also be enabled or disabled remotely from Code Composer Studio or
its OLE interface.

Constraints and
Calling Context

❏ RTDX_CreateOutputChannel cannot be called by an HWI function.

See Also RTDX_CreateInputChannel

 RTDX_CreateOutputChannel Declare output channel structure
2-240

RTDX_disableInput
C Interface

Syntax void RTDX_disableInput(RTDX_inputChannel *ichan);

Parameters ichan /* Identifier for the input data channel */

Return Value void

Assembly Interface Use C function calling standards.

Reentrant yes

Description A call to a disable function causes the specified input channel to be
disabled.

Constraints and
Calling Context

❏ RTDX_disableInput cannot be called by an HWI function.

See Also RTDX_disableOutput
RTDX_enableInput
RTDX_read

RTDX_disableInput Disable an input data channel
Application Program Interface 2-241

RTDX_disableOutput
C Interface

Syntax void RTDX_disableOutput(RTDX_outputChannel *ochan);

Parameters ochan /* Identifier for an output data channel */

Return Value void

Assembly Interface Use C function calling standards.

Reentrant yes

Description A call to a disable function causes the specified data channel to be
disabled.

Constraints and
Calling Context

❏ RTDX_disableOutput cannot be called by an HWI function.

See Also RTDX_disableInput
RTDX_enableOutput
RTDX_read

RTDX_disableOutput Disable an output data channel
2-242

RTDX_enableInput
C Interface

Syntax void RTDX_enableInput(RTDX_inputChannel *ichan);

Parameters ochan /* Identifier for an output data channel */
ichan /* Identifier for the input data channel */

Return Value void

Assembly Interface Use C function calling standards.

Reentrant yes

Description A call to an enable function causes the specified data channel to be
enabled.

Constraints and
Calling Context

❏ RTDX_enableInput cannot be called by an HWI function.

See Also RTDX_disableInput
RTDX_enableOutput
RTDX_read

RTDX_enableInput Enable an input data channel
Application Program Interface 2-243

RTDX_enableOutput
C Interface

Syntax void RTDX_enableOutput(RTDX_outputChannel *ochan);

Parameters ochan /* Identifier for an output data channel */

Return Value void

Assembly Interface Use C function calling standards.

Reentrant yes

Description A call to an enable function causes the specified data channel to be
enabled.

Constraints and
Calling Context

❏ RTDX_enableOutput cannot be called by an HWI function.

See Also RTDX_disableOutput
RTDX_enableInput
RTDX_write

RTDX_enableOutput Enable an output data channel
2-244

RTDX_isInputEnabled
C Interface

Syntax RTDX_isInputEnabled(ichan);

Parameter ichan /* Identifier for an input channel. */

Return Value 0 /* Not enabled. */
non-zero /* Enabled. */

Assembly Interface Use C function calling standards.

Reentrant yes

Description The RTDX_isInputEnabled macro tests to see if an input channel is
enabled and sets the test/control flag (TC bit) of status register 0 to 1 if
the input channel is enabled. Otherwise, it sets the TC bit to 0.

Constraints and
Calling Context

❏ RTDX_isInputEnabled cannot be called by an HWI function.

See Also RTDX_isOutputEnabled

RTDX_isInputEnabled Return status of the input data channel
Application Program Interface 2-245

RTDX_isOutputEnabled
C Interface

Syntax RTDX_isOutputEnabled(ohan);

Parameter ochan /* Identifier for an output channel. */

Return Value 0 /* Not enabled. */
non-zero /* Enabled. *

Assembly Interface Use C function calling standards.

Reentrant yes

Description The RTDX_isOutputEnabled macro tests to see if an output channel is
enabled and sets the test/control flag (TC bit) of status register 0 to 1 if
the output channel is enabled. Otherwise, it sets the TC bit to 0.

Constraints and
Calling Context

❏ RTDX_isOutputEnabled cannot be called by an HWI function.

See Also RTDX_isInputEnabled

RTDX_isOutputEnabled Return status of the output data channel
2-246

RTDX_read
C Interface

Syntax int RTDX_read(RTDX_inputChannel *ichan, void *buffer, int bsize);

Parameters ichan /* Identifier for the input data channel */
buffer /* A pointer to the buffer that receives the data */
bsize /* The size of the buffer in address units */

Return Value > 0 /* The number of address units of data */
/* actually supplied in buffer. */

0 /* Failure. Cannot post read request */
/* because target buffer is full. */

RTDX_READ_ERROR /* Failure. Channel currently busy or
not enabled. */

Assembly Interface Use C function calling standards.

Reentrant yes

Description RTDX_read causes a read request to be posted to the specified input
data channel. If the channel is enabled, RTDX_read waits until the data
has arrived. On return from the function, the data has been copied into
the specified buffer and the number of address units of data actually
supplied is returned. The function returns RTDX_READ_ERROR
immediately if the channel is currently busy reading or is not enabled.

When RTDX_read is used, the target application notifies the RTDX Host
Library that it is ready to receive data and then waits for the RTDX Host
Library to write data to the target buffer. When the data is received, the
target application continues execution.

The specified data is to be written to the specified output data channel,
provided that channel is enabled. On return from the function, the data
has been copied out of the specified user buffer and into the RTDX target
buffer. If the channel is not enabled, the write operation is suppressed. If
the RTDX target buffer is full, failure is returned.

When RTDX_readNB is used, the target application notifies the RTDX
Host Library that it is ready to receive data, but the target application does
not wait. Execution of the target application continues immediately. Use
RTDX_channelBusy and RTDX_sizeofInput to determine when the
RTDX Host Library has written data to the target buffer.

Constraints and
Calling Context

❏ RTDX_read cannot be called by an HWI function.

See Also RTDX_channelBusy
RTDX_readNB

RTDX_read Read from an input channel
Application Program Interface 2-247

RTDX_readNB
C Interface

Syntax int RTDX_readNB(RTDX_inputChannel *ichan, void *buffer, int bsize);

Parameters ichan /* Identifier for the input data channel */
buffer /* A pointer to the buffer that receives

the data */
bsize /* The size of the buffer in address units */

Return Value RTDX_OK /* Success.*/
0 (zero) /* Failure. The target buffer is full. */
RTDX_READ_ERROR /*Channel is currently busy reading. */

Assembly Interface Use C function calling standards.

Reentrant yes

Description RTDX_readNB is a nonblocking form of the function RTDX_read.
RTDX_readNB issues a read request to be posted to the specified input
data channel and immediately returns. If the channel is not enabled or the
channel is currently busy reading, the function returns
RTDX_READ_ERROR. The function returns 0 if it cannot post the read
request due to lack of space in the RTDX target buffer.

When the function RTDX_readNB is used, the target application notifies
the RTDX Host Library that it is ready to receive data but the target
application does not wait. Execution of the target application continues
immediately. Use the RTDX_channelBusy and RTDX_sizeofInput
functions to determine when the RTDX Host Library has written data into
the target buffer.

When RTDX_read is used, the target application notifies the RTDX Host
Library that it is ready to receive data and then waits for the RTDX Host
Library to write data into the target buffer. When the data is received, the
target application continues execution.

Constraints and
Calling Context

❏ RTDX_readNB cannot be called by an HWI function.

See Also RTDX_channelBusy
RTDX_read
RTDX_sizeofInput

RTDX_readNB Read from input channel without blocking
2-248

RTDX_sizeofInput
C Interface

Syntax int RTDX_sizeofInput(RTDX_inputChannel *pichan);

Parameters pichan /* Identifier for the input data channel */

Return Value int /* Number of sizeof units of data actually */
/* supplied in buffer */

Assembly Interface Use C function calling standards.

Reentrant yes

Description RTDX_sizeofInput is designed to be used in conjunction with
RTDX_readNB after a read operation has completed. The function
returns the number of sizeof units actually read from the specified data
channel into the accumulator (register A).

Constraints and
Calling Context

❏ RTDX_sizeofInput cannot be called by an HWI function.

See Also RTDX_readNB

RTDX_sizeofInput Return the number of MADUs read from a data channel
Application Program Interface 2-249

RTDX_write
C Interface

Syntax int RTDX_write(RTDX_outputChannel *ochan, void *buffer, int bsize);

Parameters ochan /* Identifier for the output data channel */
buffer /* A pointer to the buffer containing the data */
bsize /* The size of the buffer in address units */

Return Value int /* Status: non-zero = Success. 0 = Failure. */

Assembly Interface Use C function calling standards.

Reentrant yes

Description RTDX_write causes the specified data to be written to the specified
output data channel, provided that channel is enabled. On return from the
function, the data has been copied out of the specified user buffer and
into the RTDX target buffer. If the channel is not enabled, the write
operation is suppressed. If the RTDX target buffer is full, Failure is
returned.

Constraints and
Calling Context

❏ RTDX_write cannot be called by an HWI function.

See Also RTDX_read

RTDX_write Write to an output channel
2-250

SEM Module
2.19 SEM Module

The SEM module is the semaphore manager.

Functions ❏ SEM_count. Get current semaphore count

❏ SEM_create. Create a semaphore

❏ SEM_delete. Delete a semaphore

❏ SEM_ipost. Signal a semaphore (interrupt only)

❏ SEM_new. Initialize a semaphore

❏ SEM_pend. Wait for a semaphore

❏ SEM_post. Signal a semaphore

❏ SEM_reset. Reset semaphore

Constants, Types,
and Structures

typedef struct SEM_Obj *SEM_Handle;
 /* handle for semaphore object */

struct SEM_Attrs { /* semaphore attributes */
 Int dummy; /* DUMMY */
};

SEM_Attrs SEM_ATTRS = { /* default attribute values */
 0,
};

Configuration
Properties

The following list shows the properties that can be configured in a
DSP/BIOS TextConf script, along with their types and default values. For
details, see the SEM Manager Properties and SEM Object Properties
headings. For descriptions of data types, see Section 1.4, DSP/BIOS
TextConf Overview, page 1-4.

Module Configuration Parameters.

Instance Configuration Parameters.

Name Type Default

OBJMEMSEG Reference prog.get("IDRAM")

Name Type Default

comment String "<add comments here>"

count Int16 0
Application Program Interface 2-251

SEM Module
Description The SEM module makes available a set of functions that manipulate
semaphore objects accessed through handles of type SEM_Handle.
SEM semaphores are counting semaphores that can be used for both
task synchronization and mutual exclusion.

SEM_pend is used to wait for a semaphore. The timeout parameter to
SEM_pend allows the task to wait until a timeout, wait indefinitely, or not
wait at all. SEM_pend’s return value is used to indicate if the semaphore
was signaled successfully.

SEM_post is used to signal a semaphore. If a task is waiting for the
semaphore, SEM_post removes the task from the semaphore queue and
puts it on the ready queue. If no tasks are waiting, SEM_post simply
increments the semaphore count and returns.

SEM Manager
Properties

The following global property can be set for the SEM module in the SEM
Manager Properties dialog of the Configuration Tool or in a DSP/BIOS
TextConf script:

❏ Object Memory. The memory segment that contains the SEM
objects created with the Configuration Tool.
TextConf Name: OBJMEMSEG Type: Ref

Example: SEM.OBJMEMSEG = prog.get("myMEM");
SEM Object Properties To create a SEM object in a configuration script, use the following syntax.

The DSP/BIOS TextConf examples that follow assume the object has
been created as shown here.

var mySem = SEM.create("mySem");
The following properties can be set for a SEM object in the SEM Object
Properties dialog of the Configuration Tool or in a DSP/BIOS TextConf
script:

❏ comment. Type a comment to identify this SEM object.
TextConf Name: comment Type: String

Example: mySem.comment = "my SEM";
❏ Initial semaphore count. Set this property to the desired initial

semaphore count.
TextConf Name: count Type: Int16

Example: mySem.count = 0;
SEM - Code Composer
Studio Interface

The SEM tab of the Kernel/Object View shows information about
semaphore objects.
2-252

SEM_count
C Interface

Syntax count = SEM_count(sem);

Parameters SEM_Handle sem; /* semaphore handle */

Return Value Int count; /* current semaphore count */

Assembly Interface none

Description SEM_count returns the current value of the semaphore specified by sem.

SEM_count Get current semaphore count
Application Program Interface 2-253

SEM_create
C Interface

Syntax sem = SEM_create(count, attrs);

Parameters Int count; /* initial semaphore count */
SEM_Attrs *attrs; /* pointer to semaphore attributes */

Return Value SEM_Handle sem; /* handle for new semaphore object */

Assembly Interface none

Description SEM_create creates a new semaphore object which is initialized to
count. If successful, SEM_create returns the handle of the new
semaphore. If unsuccessful, SEM_create returns NULL unless it aborts
(for example, because it directly or indirectly calls SYS_error, and
SYS_error is configured to abort).

If attrs is NULL, the new semaphore is assigned a default set of
attributes. Otherwise, the semaphore’s attributes are specified through a
structure of type SEM_Attrs.

Note:

At present, no attributes are supported for semaphore objects, and the
type SEM_Attrs is defined as a dummy structure.

Default attribute values are contained in the constant SEM_ATTRS,
which can be assigned to a variable of type SEM_Attrs before calling
SEM_create.

SEM_create calls MEM_alloc to dynamically create the object’s data
structure. MEM_alloc must acquire a lock to the memory before
proceeding. If another thread already holds a lock to the memory, there
is a context switch. The segment from which the object is allocated is
described by the DSP/BIOS objects property in the MEM Module.

Constraints and
Calling Context

❏ count must be greater than or equal to 0.

❏ SEM_create cannot be called from a SWI or HWI.

❏ You can reduce the size of your application by creating objects with
the Configuration Tool rather than using the XXX_create functions.

See Also MEM_alloc
SEM_delete

SEM_create Create a semaphore
2-254

SEM_delete
C Interface

Syntax SEM_delete(sem);

Parameters SEM_Handle sem; /* semaphore object handle */

Return Value Void

Assembly Interface none

Description SEM_delete uses MEM_free to free the semaphore object referenced by
sem.

SEM_delete calls MEM_free to delete the SEM object. MEM_free must
acquire a lock to the memory before proceeding. If another task already
holds a lock to the memory, then there is a context switch.

Constraints and
Calling Context

❏ No tasks should be pending on sem when SEM_delete is called.

❏ SEM_delete cannot be called from a SWI or HWI.

❏ No check is performed to prevent SEM_delete from being used on a
statically-created object. If a program attempts to delete a
semaphore object that was created using the Configuration Tool,
SYS_error is called.

See Also SEM_create

SEM_delete Delete a semaphore
Application Program Interface 2-255

SEM_ipost
C Interface

Syntax SEM_ipost(sem);

Parameters SEM_Handle sem; /* semaphore object handle */

Return Value Void

Assembly Interface none

Description SEM_ipost readies the first task waiting for the semaphore. If no task is
waiting, SEM_ipost simply increments the semaphore count and returns.

SEM_ipost is similar to SEM_post.

Use either SEM_ipost or SEM_post within an HWI or SWI. SEM_ipost is
slightly more efficient than SEM_post, because it does not check to see
whether it is being called from within a SWI or HWI.

Use SEM_post (not SEM_ipost) within a task.

Constraints and
Calling Context

❏ When called within an HWI ISR, the code sequence calling
SEM_ipost must be either wrapped within an HWI_enter/HWI_exit
pair or invoked by the HWI dispatcher.

❏ SEM_ipost should not be called from a TSK function.

❏ SEM_ipost cannot be called from the program’s main function.

See Also SEM_pend
SEM_post

SEM_ipost Signal a semaphore (interrupt use only)
2-256

SEM_new
C Interface

Syntax Void SEM_new(sem, count);

Parameters SEM_Handle sem; /* pointer to semaphore object */
Int count; /* initial semaphore count */

Return Value Void

Assembly Interface none

Description SEM_new initializes the semaphore object pointed to by sem with count.
The function should be used on a statically created semaphore for
initialization purposes only. No task switch occurs when calling
SEM_new.

Constraints and
Calling Context

❏ count must be greater than or equal to 0

❏ no tasks should be pending on the semaphore when SEM_new is
called

See Also QUE_new

SEM_new Initialize semaphore object
Application Program Interface 2-257

SEM_pend
C Interface

Syntax status = SEM_pend(sem, timeout);

Parameters SEM_Handle sem; /* semaphore object handle */
Uns timeout; /* return after this many system clock ticks */

Return Value Bool status; /* TRUE if successful, FALSE if timeout */

Assembly Interface none

Description If the semaphore count is greater than zero, SEM_pend decrements the
count and returns TRUE. Otherwise, SEM_pend suspends the execution
of the current task until SEM_post is called or the timeout expires. If
timeout is not equal to SYS_FOREVER or 0, the task suspension time
can be up to 1 system clock tick less than timeout due to granularity in
system timekeeping.

If timeout is SYS_FOREVER, the task remains suspended until
SEM_post is called on this semaphore. If timeout is 0, SEM_pend returns
immediately.

If timeout expires (or timeout is 0) before the semaphore is available,
SEM_pend returns FALSE. Otherwise SEM_pend returns TRUE.

A task switch occurs when calling SEM_pend if the semaphore count is
0 and timeout is not zero.

Constraints and
Calling Context

❏ SEM_pend can only be called from an HWI or SWI if timeout is 0.

❏ SEM_pend cannot be called from the program’s main function.

❏ If you need to call SEM_pend within a TSK_disable/TSK_enable
block, you must use a timeout of 0.

❏ SEM_pend should not be called from within an IDL function. Doing
so prevents analysis tools from gathering run-time information.

See Also SEM_post

SEM_pend Wait for a semaphore
2-258

SEM_post
C Interface

Syntax SEM_post(sem);

Parameters SEM_Handle sem; /* semaphore object handle */

Return Value Void

Assembly Interface none

Description SEM_post readies the first task waiting for the semaphore. If no task is
waiting, SEM_post simply increments the semaphore count and returns.

A task switch occurs when calling SEM_post if a higher priority task is
made ready to run.

Constraints and
Calling Context

❏ When called within an HWI ISR, the code sequence calling
SEM_post must be either wrapped within an HWI_enter/HWI_exit
pair or invoked by the HWI dispatcher.

❏ SEM_post cannot be called from within a TSK_disable/TSK_enable
block.

See Also SEM_ipost
SEM_pend

SEM_post Signal a semaphore
Application Program Interface 2-259

SEM_reset
C Interface

Syntax SEM_reset(sem, count);

Parameters SEM_Handle sem; /* semaphore object handle */
Int count; /* semaphore count */

Return Value Void

Assembly Interface none

Description SEM_reset resets the semaphore count to count.

No task switch occurs when calling SEM_reset.

Constraints and
Calling Context

❏ count must be greater than or equal to 0.

❏ No tasks should be waiting on the semaphore when SEM_reset is
called.

❏ SEM_reset cannot be called by an HWI or a SWI.

See Also SEM_create

SEM_reset Reset semaphore count
2-260

SIO Module
2.20 SIO Module

The SIO module is the stream input and output manager.

Functions ❏ SIO_bufsize. Size of the buffers used by a stream

❏ SIO_create. Create stream

❏ SIO_ctrl. Perform a device-dependent control operation
❏ SIO_delete. Delete stream

❏ SIO_flush. Idle a stream by flushing buffers

❏ SIO_get. Get buffer from stream

❏ SIO_idle. Idle a stream
❏ SIO_issue. Send a buffer to a stream

❏ SIO_put. Put buffer to a stream

❏ SIO_ready. Determine if device is ready
❏ SIO_reclaim. Request a buffer back from a stream

❏ SIO_segid. Memory segment used by a stream

❏ SIO_select. Select a ready device
❏ SIO_staticbuf. Acquire static buffer from stream

Constants, Types,
and Structures

#define SIO_STANDARD 0 /* open stream for */
 /* standard streaming model */
#define SIO_ISSUERECLAIM 1 /* open stream for */
 /* issue/reclaim streaming model */

#define SIO_INPUT 0 /* open for input */
#define SIO_OUTPUT 1 /* open for output */

typedef SIO_Handle; /* stream object handle */

struct SIO_Attrs { /* stream attributes */
 Int nbufs; /* number of buffers */
 Int segid; /* buffer segment ID */
 Int align; /* buffer alignment */
 Bool flush; /* TRUE-> don't block in DEV_idle */
 Uns model; /* SIO_STANDARD, SIO_ISSUERECLAIM */
 Uns timeout; /* passed to DEV_reclaim calls */
 DEV_Callback *callback;
 /* initializes callback in DEV_Obj */
} SIO_Attrs;
Application Program Interface 2-261

SIO Module
SIO_Attrs SIO_ATTRS = {
 2, /* nbufs */
 0, /* segid */
 0, /* align */
 FALSE, /* flush */
 SIO_STANDARD, /* model */
 SYS_FOREVER /* timeout */
 NULL /* callback */
};

Configuration
Properties

The following list shows the properties that can be configured in a
DSP/BIOS TextConf script, along with their types and default values. For
details, see the SIO Manager Properties and SIO Object Properties
headings. For descriptions of data types, see Section 1.4, DSP/BIOS
TextConf Overview, page 1-4.

Module Configuration Parameters.

Instance Configuration Parameters.

Name Type Default

OBJMEMSEG Reference prog.get("IDRAM")

USEISSUERECLAIM Bool false

Name Type Default (Enum Options)

comment String "<add comments here>"

deviceName Reference prog.get("dev-name")

controlParameter String ""

mode EnumString "input" ("output")

bufSize Int16 0x80

numBufs Int16 2

bufSegId Reference prog.get("IDRAM")

bufAlign EnumInt 1 (2, 4, 8, 16, 32, 64, ..., 32768)

flush Bool false

modelName EnumString "Standard" ("Issue/Reclaim")

allocStaticBuf Bool false

timeout Int16 -1

useCallBackFxn Bool false

callBackFxn Extern prog.extern("FXN_F_nop")

arg0 Arg 0

arg1 Arg 0
2-262

SIO Module
Description The stream manager provides efficient real-time device-independent I/O
through a set of functions that manipulate stream objects accessed
through handles of type SIO_Handle. The device independence is
afforded by having a common high-level abstraction appropriate for real-
time applications, continuous streams of data, that can be associated
with a variety of devices. All I/O programming is done in a high-level
manner using these stream handles to the devices and the stream
manager takes care of dispatching into the underlying device drivers.

For efficiency, streams are treated as sequences of fixed-size buffers of
data rather than just sequences of MADUs.

Streams can be opened and closed at any point during program
execution using the functions SIO_create and SIO_delete, respectively.

The SIO_issue and SIO_reclaim function calls are enhancements to the
basic DSP/BIOS device model. These functions provide a second usage
model for streaming, referred to as the issue/reclaim model. It is a more
flexible streaming model that allows clients to supply their own buffers to
a stream, and to get them back in the order that they were submitted. The
SIO_issue and SIO_reclaim functions also provide a user argument that
can be used for passing information between the stream client and the
stream devices.

Both SWI and TSK threads can be used with the SIO module. However,
SWI threads can be used only with the issue/reclaim model. TSK threads
can be use with either model.

SIO Manager
Properties

The following global properties can be set for the SIO module in the SIO
Manager Properties dialog of the Configuration Tool or in a DSP/BIOS
TextConf script:

Object Memory. The memory segment that contains the SIO objects
created with the Configuration Tool.

TextConf Name: OBJMEMSEG Type: Ref
Example: SIO.OBJMEMSEG = prog.get("myMEM");

SIO Object Properties To create an SIO object in a configuration script, use the following syntax.
The DSP/BIOS TextConf examples that follow assume the object has
been created as shown here.

var mySio = SIO.create("mySio");
The following properties can be set for an SIO object in the SIO Object
Properties dialog of the Configuration Tool or in a DSP/BIOS TextConf
script:
Application Program Interface 2-263

SIO Module
❏ comment. Type a comment to identify this SIO object.
TextConf Name: comment Type: String

Example: mySio.comment = "my SIO";
❏ Device. Select the device to which you want to bind this SIO object.

User-defined devices are listed along with DGN and DPI devices.
TextConf Name: deviceName Type: Ref

Example: mySio.deviceName =
prog.get("UDEV0");

❏ Device Control String. Type the device suffix to be passed to any
devices stacked below the device connected to this stream.
TextConf Name: controlParameter Type: String

Example: mySio.controlParameter =
"/split4/codec";

❏ Mode. Select input if this stream is to be used for input to the
application program and output if this stream is to be used for output.
TextConf Name: mode Type: EnumString

Options: "input", "output"
Example: mySio.mode = "input";

❏ Buffer size. If this stream uses the Standard model, this property
controls the size of buffers (in MADUs) allocated for use by the
steam. If this stream uses the Issue/Reclaim model, the stream can
handle buffers of any size.
TextConf Name: bufSize Type: Int16

Example: mySio.bufSize = 0x80;
❏ Number of buffers. If this stream uses the Standard model, this

property controls the number of buffers allocated for use by the
steam. If this stream uses the Issue/Reclaim model, the stream can
handle up to the specified Number of buffers.
TextConf Name: numBufs Type: Int16

Example: mySio.numBufs = 2;
❏ Place buffers in memory segment. Select the memory segment to

contain the stream buffers if Model is Standard.
TextConf Name: bufSegId Type: Ref

Example: mySio.bufSegId = prog.get("myMEM");
2-264

SIO Module
❏ Buffer alignment. Specify the memory alignment to use for stream
buffers if Model is Standard. For example, if you select 16, the buffer
must begin at an address that is a multiple of 16. The default is 1,
which means the buffer can begin at any address.
TextConf Name: bufAlign Type: EnumInt

Options: 1, 2, 4, 8, 16, 32, 64, ..., 32768
Example: mySio.bufAlign = 1;

❏ Flush. Check this box if you want the stream to discard all pending
data and return without blocking if this object is idled at run-time with
SIO_idle.
TextConf Name: flush Type: Bool

Example: mySio.flush = false;
❏ Model. Select Standard if you want all buffers to be allocated when

the stream is created. Select Issue/Reclaim if your program is to
allocate the buffers and supply them using SIO_issue. Both SWI and
TSK threads can be used with the SIO module. However, SWI
threads can be used only with the issue/reclaim model. TSK threads
can be use with either model.
TextConf Name: modelName Type: EnumString

Options: "Standard", "Issue/Reclaim"
Example: mySio.modelName = "Standard";

❏ Allocate Static Buffer(s). If this box is checked, the Configuration
Tool allocates stream buffers for the user. The SIO_staticbuf function
is used to acquire these buffers from the stream. When the Standard
model is used, checking this box causes one buffer more than the
Number of buffers property to be allocated. When the Issue/Reclaim
model is used, buffers are not normally allocated. Checking this box
causes the number of buffers specified by the Number of buffers
property to be allocated.
TextConf Name: allocStaticBuf Type: Bool

Example: mySio.allocStaticBuf = false;
❏ Timeout for I/O operation. This parameter specifies the length of

time the I/O operations SIO_get, SIO_put, and SIO_reclaim wait for
I/O. The device driver’s Dxx_reclaim function typically uses this
timeout while waiting for I/O. If the timeout expires before a buffer is
available, the I/O operation returns (-1 * SYS_ETIMEOUT) and no
buffer is returned.
TextConf Name: timeout Type: Int16

Example: mySio.timeout = -1;
Application Program Interface 2-265

SIO Module
❏ use callback function. Check this box if you want to use this SIO
object with a callback function. In most cases, the callback function
is SWI_andnHook or a similar function that posts a SWI. Checking
this box allows the SIO object to be used with SWI threads.
TextConf Name: useCallBackFxn Type: Bool

Example: mySio.useCallBackFxn = false;
❏ callback function. A function for the SIO object to call. In most

cases, the callback function is SWI_andnHook or a similar function
that posts a SWI. This function gets called by the class driver (see the
DIO Adapter) in the class driver's callback function. This callback
function in the class driver usually gets called in the mini-driver code
as a result of the ISR.
TextConf Name: callBackFxn Type: Extern

Example: mySio.callBackFxn =
prog.extern("SWI_andnHook");

❏ argument 0. The first argument to pass to the callback function. If the
callback function is SWI_andnHook, this argument should be a SWI
object handle.
TextConf Name: arg0 Type: Arg

Example: mySio.arg0 = prog.get("mySwi");
❏ argument 1. The second argument to pass to the callback function.

If the callback function is SWI_andnHook, this argument should be a
value mask.
TextConf Name: arg1 Type: Arg

Example: mySio.arg1 = 2;
2-266

SIO_bufsize
C Interface

Syntax size = SIO_bufsize(stream);

Parameters SIO_Handle stream;

Return Value Uns size;

Assembly Interface none

Description SIO_bufsize returns the size of the buffers used by stream.

See Also SIO_segid

SIO_bufsize Return the size of the buffers used by a stream
Application Program Interface 2-267

SIO_create
C Interface

Syntax stream = SIO_create(name, mode, bufsize, attrs);

Parameters String name; /* name of device */
Int mode; /* SIO_INPUT or SIO_OUTPUT */
Uns bufsize; /* stream buffer size */
SIO_Attrs *attrs; /* pointer to stream attributes */

Return Value SIO_Handle stream; /* stream object handle */

Assembly Interface none

Description SIO_create creates a new stream object and opens the device specified
by name. If successful, SIO_create returns the handle of the new stream
object. If unsuccessful, SIO_create returns NULL unless it aborts (for
example, because it directly or indirectly calls SYS_error, and SYS_error
is configured to abort).

Internally, SIO_create calls Dxx_open to open a device.

The mode parameter specifies whether the stream is to be used for input
(SIO_INPUT) or output (SIO_OUTPUT).

If the stream is being opened in SIO_STANDARD mode, SIO_create
allocates buffers of size bufsize for use by the stream. Initially these
buffers are placed on the device todevice queue for input streams, and
the device fromdevice queue for output streams.

If the stream is being opened in SIO_ISSUERECLAIM mode, SIO_create
does not allocate any buffers for the stream. In SIO_ISSUERECLAIM
mode all buffers must be supplied by the client via the SIO_issue call. It
does, however, prepare the stream for a maximum number of buffers of
the specified size.

If the attrs parameter is NULL, the new stream is assigned the default set
of attributes specified by SIO_ATTRS. The following stream attributes are
currently supported:

SIO_create Open a stream
2-268

SIO_create
struct SIO_Attrs { /* stream attributes */
 Int nbufs; /* number of buffers */
 Int segid; /* buffer segment ID */
 Int align; /* buffer alignment */
 Bool flush; /* TRUE -> don't block in DEV_idle */
 Uns model; /* SIO_STANDARD, SIO_ISSUERECLAIM */
 Uns timeout; /* passed to DEV_reclaim calls */
 DEV_Callback *callback;
 /* initialize callback in DEV_Obj */
} SIO_Attrs;
❏ nbufs. Specifies the number of buffers allocated by the stream in the

SIO_STANDARD usage model, or the number of buffers to prepare
for in the SIO_ISSUERECLAIM usage model. The default value of
nbufs is 2. In the SIO_ISSUERECLAIM usage model, nbufs is the
maximum number of buffers that can be outstanding (that is, issued
but not reclaimed) at any point in time.

❏ segid. Specifies the memory segment for stream buffers. Use the
memory segment names defined using the Configuration Tool. The
default value is 0, meaning that buffers are to be allocated from the
Segment for DSP/BIOS objects defined in the MEM Manager
Properties dialog.

❏ align. Specifies the memory alignment for stream buffers. The
default value is 0, meaning that no alignment is needed.

❏ flush. Indicates the desired behavior for an output stream when it is
deleted. If flush is TRUE, a call to SIO_delete causes the stream to
discard all pending data and return without blocking. If flush is
FALSE, a call to SIO_delete causes the stream to block until all
pending data has been processed. The default value is FALSE.

❏ model. Indicates the usage model that is to be used with this stream.
The two usage models are SIO_ISSUERECLAIM and
SIO_STANDARD. The default usage model is SIO_STANDARD.

❏ timeout. Specifies the length of time the device driver waits for I/O
completion before returning an error (for example,
SYS_ETIMEOUT). timeout is usually passed as a parameter to
SEM_pend by the device driver. The default is SYS_FOREVER
which indicates that the driver waits forever. If timeout is
SYS_FOREVER, the task remains suspended until a buffer is
available to be returned by the stream. The timeout attribute applies
to the I/O operations SIO_get, SIO_put, and SIO_reclaim. If timeout
is 0, the I/O operation returns immediately. If the timeout expires
before a buffer is available to be returned, the I/O operation returns
the value of (-1 * SYS_ETIMEOUT). Otherwise the I/O operation
returns the number of valid MADUs in the buffer, or -1 multiplied by
an error code.
Application Program Interface 2-269

SIO_create
❏ callback. Specifies a pointer to channel-specific callback
information. The DEV_Callback structure is defined by the DEV
module. It contains the callback function and two function arguments.
The callback function is typically SWI_andnHook or a similar function
that posts a SWI. Callbacks can only be used with the issue/reclaim
model.

SIO_create calls MEM_alloc to dynamically create the object’s data
structure. MEM_alloc must acquire a lock to the memory before
proceeding. If another thread already holds a lock to the memory, then
there is a context switch. The segment from which the object is allocated
is described by the DSP/BIOS objects property in the MEM Manager
Properties dialog.

Constraints and
Calling Context

❏ A stream can only be used by one task simultaneously. Catastrophic
failure can result if more than one task calls SIO_get (or SIO_issue/
SIO_reclaim) on the same input stream, or more than one task calls
SIO_put (or SIO_issue / SIO_reclaim) on the same output stream.

❏ SIO_create creates a stream dynamically. Do not call SIO_create on
a stream that was created with the Configuration Tool.

❏ You can reduce the size of your application program by creating
objects with the Configuration Tool rather than using the XXX_create
functions. However, streams that are to be used with stacking drivers
must be created dynamically with SIO_create.

❏ SIO_create cannot be called from a SWI or HWI.

See Also Dxx_open
MEM_alloc
SEM_pend
SIO_delete
SIO_issue
SIO_reclaim
SYS_error
2-270

SIO_ctrl
C Interface

Syntax status = SIO_ctrl(stream, cmd, arg);

Parameters SIO_Handle stream; /* stream handle */
Uns cmd; /* command to device */
Arg arg; /* arbitrary argument */

Return Value Int status; /* device status */

Assembly Interface none

Description SIO_ctrl causes a control operation to be issued to the device associated
with stream. cmd and arg are passed directly to the device.

SIO_ctrl returns SYS_OK if successful, and a non-zero device-
dependent error value if unsuccessful.

Internally, SIO_ctrl calls Dxx_ctrl to send control commands to a device.

Constraints and
Calling Context

❏ SIO_ctrl cannot be called from an HWI.

See Also Dxx_ctrl

SIO_ctrl Perform a device-dependent control operation
Application Program Interface 2-271

SIO_delete
C Interface

Syntax status = SIO_delete(stream);

Parameters SIO_Handle stream; /* stream object */

Return Value Int status; /* result of operation */

Assembly Interface none

Description SIO_delete idles the device before freeing the stream object and buffers.

If the stream being deleted was opened for input, then any pending input
data is discarded. If the stream being deleted was opened for output, the
method for handling data is determined by the value of the object’s Flush
property in the Configuration Tool or the flush field in the SIO_Attrs
structure (passed in with SIO_create). If flush is TRUE, SIO_delete
discards all pending data and return without blocking. If flush is FALSE,
SIO_delete blocks until all pending data has been processed by the
stream.

SIO_delete returns SYS_OK if and only if the operation is successful.

SIO_delete calls MEM_free to delete a stream. MEM_free must acquire
a lock to the memory before proceeding. If another task already holds a
lock to the memory, then there is a context switch.

Internally, SIO_delete first calls Dxx_idle to idle the device. Then it calls
Dxx_close.

Constraints and
Calling Context

❏ SIO_delete cannot be called from a SWI or HWI.

❏ No check is performed to prevent SIO_delete from being used on a
statically-created object. If a program attempts to delete a stream
object that was created using the Configuration Tool, SYS_error is
called.

❏ In SIO_ISSUERECLAIM mode, all buffers issued to a stream must
be reclaimed before SIO_delete is called. Failing to reclaim such
buffers causes a memory leak.

See Also SIO_create
SIO_flush
SIO_idle
Dxx_idle
Dxx_close

SIO_delete Close a stream and free its buffers
2-272

SIO_flush
C Interface

Syntax status = SIO_flush(stream);

Parameters SIO_Handle stream; /* stream handle */

Return Value Int status; /* result of operation */

Assembly Interface none

Description SIO_flush causes all pending data to be discarded regardless of the
mode of the stream. SIO_flush differs from SIO_idle in that SIO_flush
never suspends program execution to complete processing of data, even
for a stream created in output mode.

The underlying device connected to stream is idled as a result of calling
SIO_flush. In general, the interrupt is disabled for the device.

One of the purposes of this function is to provide synchronization with the
external environment.

SIO_flush returns SYS_OK if and only if the stream is successfully idled.

Internally, SIO_flush calls Dxx_idle and flushes all pending data.

Constraints and
Calling Context

❏ SIO_flush cannot be called from a SWI or HWI.

See Also Dxx_idle
SIO_create
SIO_idle

SIO_flush Flush a stream
Application Program Interface 2-273

SIO_get
C Interface

Syntax nmadus = SIO_get(stream, bufp);

Parameters SIO_Handle stream /* stream handle */
Ptr *bufp; /* pointer to a buffer */

Return Value Int nmadus; /* number of MADUs read or error if negative */

Assembly Interface none

Description SIO_get exchanges an empty buffer with a non-empty buffer from
stream. The bufp is an input/output parameter which points to an empty
buffer when SIO_get is called. When SIO_get returns, bufp points to a
new (different) buffer, and nmadus indicates success or failure of the call.

SIO_get blocks until a buffer can be returned to the caller, or until the
stream's timeout attribute expires (see SIO_create). If a timeout occurs,
the value (-1 * SYS_ETIMEOUT) is returned. If timeout is not equal to
SYS_FOREVER or 0, the task suspension time can be up to 1 system
clock tick less than timeout due to granularity in system timekeeping.

To indicate success, SIO_get returns a positive value for nmadus. As a
success indicator, nmadus is the number of MADUs received from the
stream. To indicate failure, SIO_get returns a negative value for nmadus.
As a failure indicator, nmadus is the actual error code multiplied by -1.

Since this operation is generally accomplished by redirection rather than
by copying data, references to the contents of the buffer pointed to by
bufp must be recomputed after the call to SIO_get.

A task switch occurs when calling SIO_get if there are no non-empty data
buffers in stream.

Internally, SIO_get calls Dxx_issue and Dxx_reclaim for the device.

Constraints and
Calling Context

❏ The stream must not be created with attrs.model set to
SIO_ISSUERECLAIM. The results of calling SIO_get on a stream
created for the issue/reclaim streaming model are undefined.

❏ SIO_get cannot be called from an HWI.

❏ If SIO_get is called from a SWI, no action is performed.

See Also Dxx_issue
Dxx_reclaim
SIO_put

SIO_get Get a buffer from stream
2-274

SIO_idle
C Interface

Syntax status = SIO_idle(stream);

Parameters SIO_Handle stream; /* stream handle */

Return Value Int status; /* result of operation */

Assembly Interface none

Description If stream is being used for output, SIO_idle causes any currently buffered
data to be transferred to the output device associated with stream.
SIO_idle suspends program execution for as long as is required for the
data to be consumed by the underlying device.

If stream is being used for input, SIO_idle causes any currently buffered
data to be discarded. The underlying device connected to stream is idled
as a result of calling SIO_idle. In general, the interrupt is disabled for this
device.

If discarding of unrendered output is desired, use SIO_flush instead.

One of the purposes of this function is to provide synchronization with the
external environment.

SIO_idle returns SYS_OK if and only if the stream is successfully idled.

Internally, SIO_idle calls Dxx_idle to idle the device.

Constraints and
Calling Context

❏ SIO_idle cannot be called from an HWI.

❏ If SIO_idle is called from a SWI, no action is performed.

See Also Dxx_idle
SIO_create
SIO_flush

SIO_idle Idle a stream
Application Program Interface 2-275

SIO_issue
C Interface

Syntax status = SIO_issue(stream, pbuf, nmadus, arg);

Parameters SIO_Handle stream; /* stream handle */
Ptr pbuf; /* pointer to a buffer */
Uns nmadus; /* number of MADUs in the buffer */
Arg arg; /* user argument */

Return Value Int status; /* result of operation */

Assembly Interface none

Description SIO_issue is used to send a buffer and its related information to a stream.
The buffer-related information consists of the logical length of the buffer
(nmadus), and the user argument to be associated with that buffer.
SIO_issue sends a buffer to the stream and return to the caller without
blocking. It also returns an error code indicating success (SYS_OK) or
failure of the call.

Internally, SIO_issue calls Dxx_issue after placing a new input frame on
the driver’s device->todevice queue.

Failure of SIO_issue indicates that the stream was not able to accept the
buffer being issued or that there was a device error when the underlying
Dxx_issue was called. In the first case, the application is probably issuing
more frames than the maximum MADUs allowed for the stream, before it
reclaims any frames. In the second case, the failure reveals an underlying
device driver or hardware problem. If SIO_issue fails, SIO_idle should be
called for an SIO_INPUT stream, and SIO_flush should be called for an
SIO_OUTPUT stream, before attempting more I/O through the stream.

The interpretation of nmadus, the logical size of a buffer, is direction-
dependent. For a stream opened in SIO_OUTPUT mode, the logical size
of the buffer indicates the number of valid MADUs of data it contains. For
a stream opened in SIO_INPUT mode, the logical length of a buffer
indicates the number of MADUs being requested by the client. In either
case, the logical size of the buffer must be less than or equal to the physical
size of the buffer.

The argument arg is not interpreted by DSP/BIOS, but is offered as a
service to the stream client. DSP/BIOS and all DSP/BIOS-compliant
device drivers preserve the value of arg and maintain its association with
the data that it was issued with. arg provides a user argument as a method
for a client to associate additional information with a particular buffer of
data.

SIO_issue Send a buffer to a stream
2-276

SIO_issue
SIO_issue is used in conjunction with SIO_reclaim to operate a stream
opened in SIO_ISSUERECLAIM mode. The SIO_issue call sends a
buffer to a stream, and SIO_reclaim retrieves a buffer from a stream. In
normal operation each SIO_issue call is followed by an SIO_reclaim call.
Short bursts of multiple SIO_issue calls can be made without an
intervening SIO_reclaim call, but over the life of the stream SIO_issue
and SIO_reclaim must be called the same number of times.

At any given point in the life of a stream, the number of SIO_issue calls
can exceed the number of SIO_reclaim calls by a maximum of nbufs. The
value of nbufs is determined by the SIO_create call or by setting the
Number of buffers property for the object in the Configuration Tool.

Note:

An SIO_reclaim call should not be made without at least one
outstanding SIO_issue call. Calling SIO_reclaim with no outstanding
SIO_issue calls has undefined results.

Constraints and
Calling Context

❏ The stream must be created with attrs.model set to
SIO_ISSUERECLAIM.

❏ SIO_issue cannot be called from an HWI.

See Also Dxx_issue
SIO_create
SIO_reclaim
Application Program Interface 2-277

SIO_put
C Interface
Syntax nmadus = SIO_put(stream, bufp, nmadus);

Parameters SIO_Handle stream; /* stream handle */
Ptr *bufp; /* pointer to a buffer */
Uns nmadus; /* number of MADUs in the buffer */

Return Value Int nmadus; /* number of MADUs, negative if error */

Assembly Interface none

Description SIO_put exchanges a non-empty buffer with an empty buffer. The bufp
parameter is an input/output parameter that points to a non-empty buffer
when SIO_put is called. When SIO_put returns, bufp points to a new
(different) buffer, and nmadus indicates success or failure of the call.

SIO_put blocks until a buffer can be returned to the caller, or until the
stream's timeout attribute expires (see SIO_create). If a timeout occurs,
the value (-1 * SYS_ETIMEOUT) is returned. If timeout is not equal to
SYS_FOREVER or 0, the task suspension time can be up to 1 system
clock tick less than timeout due to granularity in system timekeeping.

To indicate success, SIO_put returns a positive value for nmadus. As a
success indicator, nmadus is the number of valid MADUs in the buffer
returned by the stream (usually zero). To indicate failure, SIO_put returns
a negative value (the actual error code multiplied by -1).

Since this operation is generally accomplished by redirection rather than
by copying data, references to the contents of the buffer pointed to by
bufp must be recomputed after the call to SIO_put.

A task switch occurs when calling SIO_put if there are no empty data
buffers in the stream.

Internally, SIO_put calls Dxx_issue and Dxx_reclaim for the device.

Constraints and
Calling Context

❏ The stream must not be created with attrs.model set to
SIO_ISSUERECLAIM. The results of calling SIO_put on a stream
created for the issue/reclaim model are undefined.

❏ SIO_put cannot be called from an HWI.

❏ If SIO_put is called from a SWI, no action is performed.

See Also Dxx_issue
Dxx_reclaim
SIO_get

SIO_put Put a buffer to a stream
2-278

SIO_ready
C Interface

Syntax status = SIO_ready(stream);

Parameters SIO_Handle stream;

Return Value Int status; /* result of operation */

Assembly Interface none

Description SIO_ready returns TRUE if a stream is ready for input or output.

If you are using SIO objects with SWI threads, you may want to use
SIO_ready to avoid calling SIO_reclaim when it may fail because no
buffers are available.

SIO_ready is similar to SIO_select, except that it does not block. You can
prevent SIO_select from blocking by setting the timeout to zero, however,
SIO_ready is more efficient because SIO_select performs SEM_pend
with a timeout of zero. SIO_ready simply polls the stream to see if the
device is ready.

See Also SIO_select

SIO_ready Determine if device for stream is ready
Application Program Interface 2-279

SIO_reclaim
C Interface

Syntax nmadus = SIO_reclaim(stream, pbufp, parg);

Parameters SIO_Handle stream; /* stream handle */
Ptr *pbufp; /* pointer to the buffer */
Arg *parg; /* pointer to a user argument */

Return Value Int nmadus; /* number of MADUs or error if negative */

Assembly Interface none

Description SIO_reclaim is used to request a buffer back from a stream. It returns a
pointer to the buffer, the number of valid MADUs in the buffer, and a user
argument (parg). After the SIO_reclaim call parg points to the same value
that was passed in with this buffer using the SIO_issue call.

Internally, SIO_reclaim calls Dxx_reclaim, then it gets the frame from the
driver’s device->fromdevice queue.

If a stream was created in SIO_OUTPUT mode, then SIO_reclaim
returns an empty buffer, and nmadus is zero, since the buffer is empty. If
a stream was opened in SIO_INPUT mode, SIO_reclaim returns a non-
empty buffer, and nmadus is the number of valid MADUs of data in the
buffer.

If SIO_reclaim is called from a TSK thread, it blocks (in either mode) until
a buffer can be returned to the caller, or until the stream’s timeout
attribute expires (see SIO_create), and it returns a positive number or
zero (indicating success), or a negative number (indicating an error
condition). If timeout is not equal to SYS_FOREVER or 0, the task
suspension time can be up to 1 system clock tick less than timeout due
to granularity in system timekeeping.

If SIO_reclaim is called from a SWI thread, it returns an error if it is called
when no buffer is available. SIO_reclaim never blocks when called from
a SWI.

To indicate success, SIO_reclaim returns a positive value for nmadus. As
a success indicator, nmadus is the number of valid MADUs in the buffer.
To indicate failure, SIO_reclaim returns a negative value for nmadus. As
a failure indicator, nmadus is the actual error code multiplied by -1.

SIO_reclaim Request a buffer back from a stream
2-280

SIO_reclaim
Failure of SIO_reclaim indicates that no buffer was returned to the client.
Therefore, if SIO_reclaim fails, the client should not attempt to de-
reference pbufp, since it is not guaranteed to contain a valid buffer
pointer.

SIO_reclaim is used in conjunction with SIO_issue to operate a stream
opened in SIO_ISSUERECLAIM mode. The SIO_issue call sends a
buffer to a stream, and SIO_reclaim retrieves a buffer from a stream. In
normal operation each SIO_issue call is followed by an SIO_reclaim call.
Short bursts of multiple SIO_issue calls can be made without an
intervening SIO_reclaim call, but over the life of the stream SIO_issue
and SIO_reclaim must be called the same number of times. The number
of SIO_issue calls can exceed the number of SIO_reclaim calls by a
maximum of nbufs at any given time. The value of nbufs is determined by
the SIO_create call or by setting the Number of buffers property for the
object in the Configuration Tool.

Note:

An SIO_reclaim call should not be made without at least one
outstanding SIO_issue call. Calling SIO_reclaim with no outstanding
SIO_issue calls has undefined results.

SIO_reclaim only returns buffers that were passed in using SIO_issue. It
also returns the buffers in the same order that they were issued.

A task switch occurs when calling SIO_reclaim if timeout is not set to 0,
and there are no data buffers available to be returned.

Constraints and
Calling Context

❏ The stream must be created with attrs.model set to
SIO_ISSUERECLAIM.

❏ There must be at least one outstanding SIO_issue when an
SIO_reclaim call is made.

❏ SIO_reclaim returns an error if it is called from a SWI when no buffer
is available. SIO_reclaim does not block if called from a SWI.

❏ All frames issued to a stream must be reclaimed before closing the
stream.

❏ SIO_reclaim cannot be called from a HWI.

See Also Dxx_reclaim
SIO_issue
SIO_create
Application Program Interface 2-281

SIO_segid
C Interface

Syntax segid = SIO_segid(stream);

Parameters SIO_Handle stream;

Return Value Int segid; /* memory segment ID */

Assembly Interface none

Description SIO_segid returns the identifier of the memory segment that stream uses
for buffers.

See Also SIO_bufsize

SIO_segid Return the memory segment used by the stream
2-282

SIO_select
C Interface

Syntax mask = SIO_select(streamtab, nstreams, timeout);

Parameters SIO_Handle streamtab; /* stream table */
Int nstreams; /* number of streams */
Uns timeout; /* return after this many system clock ticks */

Return Value Uns mask; /* stream ready mask */

Assembly Interface none

Description SIO_select waits until one or more of the streams in the streamtab[] array
is ready for I/O (that is, it does not block when an I/O operation is
attempted).

streamtab[] is an array of streams where nstreams < 16. The timeout
parameter indicates the number of system clock ticks to wait before a
stream becomes ready. If timeout is 0, SIO_select returns immediately. If
timeout is SYS_FOREVER, SIO_select waits until one of the streams is
ready. Otherwise, SIO_select waits for up to 1 system clock tick less than
timeout due to granularity in system timekeeping.

The return value is a mask indicating which streams are ready for I/O. A
1 in bit position j indicates the stream streamtab[j] is ready.

SIO_select results in a context switch if no streams are ready for I/O.

Internally, SIO_select calls Dxx_ready to determine if the device is ready
for an I/O operation.

SIO_ready is similar to SIO_select, except that it does not block. You can
prevent SIO_select from blocking by setting the timeout to zero, however,
SIO_ready is more efficient in this situation because SIO_select performs
SEM_pend with a timeout of zero. SIO_ready simply polls the stream to
see if the device is ready.

For the SIO_STANDARD model in SIO_INPUT mode only, if stream I/O
has not been started (that is, if SIO_get has not been called), SIO_select
calls Dxx_issue for all empty frames to start the device.

Constraints and
Calling Context

❏ streamtab must contain handles of type SIO_Handle returned from
prior calls to SIO_create.

❏ streamtab[] is an array of streams; streamtab[i] corresponds to bit
position i in mask.

SIO_select Select a ready device
Application Program Interface 2-283

SIO_select
❏ SIO_select cannot be called from an HWI.

❏ SIO_select can only be called from a SWI if the timeout value is zero.

See Also Dxx_ready
SIO_get
SIO_put
SIO_ready
SIO_reclaim
2-284

SIO_staticbuf
C Interface

Syntax nmadus = SIO_staticbuf(stream, bufp);

Parameters SIO_Handle stream; /* stream handle */
Ptr *bufp; /* pointer to a buffer */

Return Value Int nmadus; /* number of MADUs in buffer */

Assembly Interface none

Description SIO_staticbuf returns buffers for static streams that were configured
using the Configuration Tool. Buffers are allocated for static streams by
checking the Allocate Static Buffer(s) check box for the related SIO
object.

SIO_staticbuf returns the size of the buffer or 0 if no more buffers are
available from the stream.

SIO_staticbuf can be called multiple times for SIO_ISSUERECLAIM
model streams.

SIO_staticbuf must be called to acquire all static buffers before calling
SIO_get, SIO_put, SIO_issue or SIO_reclaim.

Constraints and
Calling Context

❏ SIO_staticbuf should only be called for streams that are defined
statically using the Configuration Tool.

❏ SIO_staticbuf should only be called for static streams whose Allocate
Static Buffer(s) check box has been checked.

❏ SIO_staticbuf cannot be called after SIO_get, SIO_put, SIO_issue or
SIO_reclaim have been called for the given stream.

❏ SIO_staticbuf cannot be called from an HWI.

See Also SIO_get

SIO_staticbuf Acquire static buffer from stream
Application Program Interface 2-285

STS Module
2.21 STS Module

The STS module is the statistics objects manager.

Functions ❏ STS_add. Update statistics using provided value

❏ STS_delta. Update statistics using difference between provided
value and setpoint

❏ STS_reset. Reset values stored in STS object

❏ STS_set. Save a setpoint value

Constants, Types, and
Structures

struct STS_Obj {
 LgInt num; /* count */
 LgInt acc; /* total value */
 LgInt max; /* maximum value */
}

Note:

STS objects should not be shared across threads. Therefore,
STS_add, STS_delta, STS_reset, and STS_set are not reentrant.

Configuration
Properties

The following list shows the properties that can be configured in a
DSP/BIOS TextConf script, along with their types and default values. For
details, see the STS Manager Properties and STS Object Properties
headings. For descriptions of data types, see Section 1.4, DSP/BIOS
TextConf Overview, page 1-4.

Module Configuration Parameters.

Instance Configuration Parameters.

Name Type Default

OBJMEMSEG Reference prog.get("IDRAM")

Name Type Default (Enum Options)

comment String "<add comments here>"

previousVal Int32 0

unitType EnumString "Not time based"
("High resolution time based",
"Low resolution time based")

operation EnumString "Nothing" ("A * x", "A * x + B",
"(A * x + B) / C")

numA Int32 1
2-286

STS Module
Description The STS module manages objects called statistics accumulators. Each
STS object accumulates the following statistical information about an
arbitrary 32-bit wide data series:

❏ Count. The number of values in an application-supplied data series

❏ Total. The sum of the individual data values in this series

❏ Maximum. The largest value already encountered in this series

Using the count and total, the Statistics View analysis tool calculates the
average on the host.

Statistics are accumulated in 32-bit variables on the target and in 64-bit
variables on the host. When the host polls the target for real-time
statistics, it resets the variables on the target. This minimizes space
requirements on the target while allowing you to keep statistics for long
test runs.

Default STS Tracing In the RTA Control Panel, you can enable statistics tracing for the
following modules by marking the appropriate checkbox. You can also set
the HWI Object Properties to perform various STS operations on
registers, addresses, or pointers.

Except for tracing TSK execution, your program does not need to include
any calls to STS functions in order to gather these statistics. The default
units for the statistics values are shown in Table 2-5.

Table 2-5. Statistics Units for HWI, PIP, PRD, and SWI Modules

Custom STS Objects You can create custom STS objects using the Configuration Tool. The
STS_add operation updates the count, total, and maximum using the
value you provide. The STS_set operation sets a previous value. The

numB Int32 0

numC Int32 1

Name Type Default (Enum Options)

Module Units

HWI Gather statistics on monitored values within HWIs

PIP Number of frames read from or written to data pipe (count only)

PRD Number of ticks elapsed from time that the PRD object is ready
to run to end of execution

SWI Instruction cycles elapsed from time posted to completion

TSK Instruction cycles elapsed from time TSK is made ready to run
until the application calls TSK_deltatime.
Application Program Interface 2-287

STS Module
STS_delta operation accumulates the difference between the value you
pass and the previous value and updates the previous value to the value
you pass.

By using custom STS objects and the STS operations, you can do the
following:

❏ Count the number of occurrences of an event. You can pass a
value of 0 to STS_add. The count statistic tracks how many times
your program calls STS_add for this STS object.

❏ Track the maximum and average values for a variable in your
program. For example, suppose you pass amplitude values to
STS_add. The count tracks how many times your program calls
STS_add for this STS object. The total is the sum of all the
amplitudes. The maximum is the largest value. The Statistics View
calculates the average amplitude.

❏ Track the minimum value for a variable in your program. Negate
the values you are monitoring and pass them to STS_add. The
maximum is the negative of the minimum value.

❏ Time events or monitor incremental differences in a value. For
example, suppose you want to measure the time between hardware
interrupts. You would call STS_set when the program begins running
and STS_delta each time the interrupt routine runs, passing the
result of CLK_gethtime each time. STS_delta subtracts the previous
value from the current value. The count tracks how many times the
interrupt routine was performed. The maximum is the largest number
of clock counts between interrupt routines. The Statistics View also
calculates the average number of clock counts.

❏ Monitor differences between actual values and desired values.
For example, suppose you want to make sure a value stays within a
certain range. Subtract the midpoint of the range from the value and
pass the absolute value of the result to STS_add. The count tracks
how many times your program calls STS_add for this STS object.
The total is the sum of all deviations from the middle of the range. The
maximum is the largest deviation. The Statistics View calculates the
average deviation.

You can further customize the statistics data by setting the STS Object
Properties to apply a printf format to the Total, Max, and Average fields in
the Statistics View window and choosing a formula to apply to the data
values on the host.
2-288

STS Module
Statistics Data
Gathering by the
Statistics View
Analysis Tool

The statistics manager allows the creation of any number of statistics
objects, which in turn can be used by the application to accumulate
simple statistics about a time series. This information includes the 32-bit
maximum value, the last 32-bit value passed to the object, the number of
samples (up to 232 - 1 samples), and the 32-bit sum of all samples.

These statistics are accumulated on the target in real-time until the host
reads and clears these values on the target. The host, however,
continues to accumulate the values read from the target in a host buffer
which is displayed by the Statistics View real-time analysis tool. Provided
that the host reads and clears the target statistics objects faster than the
target can overflow the 32-bit wide values being accumulated, no
information loss occurs.

Using the Configuration Tool, you can select a Host Operation for an STS
object. The statistics are filtered on the host using the operation and
variables you specify. Figure 2-4 shows the effects of the (A x X + B) / C
operation.

Figure 2-4. Statistics Accumulation on the Host

STS Manager
Properties

The following global property can be set for the STS module in the STS
Manager Properties dialog of the Configuration Tool or in a DSP/BIOS
TextConf script:

❏ Object Memory. The memory segment that contains the STS
objects.
TextConf Name: OBJMEMSEG Type: Ref

Example: STS.OBJMEMSEG = prog.get("myMEM");
STS Object Properties To create an STS object in a configuration script, use the following

syntax. The DSP/BIOS TextConf examples that follow assume the object
has been created as shown here.

var mySts = STS.create("mySts");

Target Host

Read
&

clear

Accumulate Filter = (A*x + B) / C Display

Count

(A x total + B) / C

(A x max + B) / C

Count

Total

Maximum

Count

Total

0 Max

32
Previous

Count

Total

Max

Average(A x total + B) /
(C x count)

64
Application Program Interface 2-289

STS Module
The following properties can be set for an STS object in the STS Object
Properties dialog of the Configuration Tool or in a DSP/BIOS TextConf
script:

❏ comment. Type a comment to identify this STS object.
TextConf Name: comment Type: String

Example: mySts.comment = "my STS";
❏ prev. The initial 32-bit history value to use in this object.

TextConf Name: previousVal Type: Int32
Example: mySts.previousVal = 0;

❏ unit type. The unit type property enables you to choose the type of
time base units.

� Not time based. When you select this unit type, the values are
displayed in the Statistics View without applying any conversion.

� High-resolution time based. When you select this unit type, the
Statistics View, by default, presents the results in units of
instruction cycles.

� Low-resolution time based. When you select this unit type, the
Statistics View, by default, presents the results in units of timer
interrupts.

TextConf Name: unitType Type: EnumString
Options: "Not time based", "High resolution time based",

"Low resolution time based"
Example: mySts.unitType = "Not time based";

❏ host operation. The expression evaluated (by the host) on the data
for this object before it is displayed by the Statistics View real-time
analysis tool. The operation can be:

� A x X

� A x X + B

� (A x X + B) / C
TextConf Name: operation Type: EnumString

Options: "Nothing", "A * x", "A * x + B", "(A * x + B) / C"
Example: mySts.operation = "Nothing";
2-290

STS Module
❏ A, B, C. The integer parameters used by the expression specified by
the Host Operation field above.
TextConf Name: numA Type: Int32
TextConf Name: numB Type: Int32
TextConf Name: numC Type: Int32

Example: mySts.numA = 1;
mySts.numB = 0;
mySts.numC = 1;

STS - Statistics View
Interface

You can view statistics in real-time with the Statistics View analysis tool
by choosing the DSP/BIOS→Statistics View menu item.

By default, the Statistics View displays all STS objects available. To limit
the list of STS objects, right-click on the Statistics View and select
Property Page from the pop-up menu. This presents a list of all STS
objects. Hold down the control key while selecting the STS object that
you wish to observe in the Statistics View. To copy data from the Statistics
View, right-click on the Statistics View and select Copy from the pop-up
menu. This places the window data in tab-delimited format to the
clipboard.

Note: Updating Task Statistics

If TSK_deltatime is not called by a task, its STS object is never updated
in the Statistics View, even if TSK accumulators are enabled in the RTA
Control Panel.

TSK statistics are handled differently than other statistics because TSK
functions typically run an infinite loop that blocks when waiting for other
threads. In contrast, HWI and SWI functions run to completion without
blocking. Because of this difference, DSP/BIOS allows programs to
identify the “beginning” of a TSK function’s processing loop by calling
TSK_settime and the “end” of the loop by calling TSK_deltatime.
Application Program Interface 2-291

STS Module
To modify the units of time-based STS objects or to provide unit labels for
STS objects that are not time based, select the Units tab from the
Statistics View Property Page. Select an STS object from the list of STS
objects available. The unit options displayed on the right are the unit
options for the selected STS object. If the STS object is high-resolution
based, you can choose instruction cycles, microseconds, or milliseconds.
If your STS object is low-resolution time based, you can choose
interrupts, microseconds, or milliseconds. If your STS object is not time
based, you can provide a unit label.

When you run your program, the Statistics View displays the Count, Total,
Max and Average statistic values for the STS objects. To pause the
display, right-click on this window and choose Pause from the pop-up
menu. To reset the values to 0, right-click on this window and choose
Clear from the pop-up menu.

You can also control how frequently the host polls the target for statistics
information. Right-click on the RTA Control Panel and choose the
Property Page to set the refresh rate as seen in Figure 2-5. If you set the
refresh rate to 0, the host does not poll the target unless you right-click
on the Statistics View window and choose Refresh Window from the pop-
up menu

Figure 2-5. RTA Control Panel Properties Page

See the Code Composer Studio online tutorial for more information on
how to monitor statistics with the Statistics View analysis tool.
2-292

STS_add
C Interface

Syntax STS_add(sts, value);

Parameters STS_Handle sts; /* statistics object handle */
LgInt value; /* new value to update statistics object */

Return Value Void

Assembly Interface

Syntax STS_add

Preconditions a4 = STS object handle
b4 = 32-bit sample
amr = 0

Postconditions none

Modifies a1, a3, b1, b2, b3

Reentrant no

Description STS_add updates a custom STS object’s Total, Count, and Max fields
using the data value you provide.

For example, suppose your program passes 32-bit amplitude values to
STS_add. The Count field tracks how many times your program calls
STS_add for this STS object. The Total field tracks the total of all the
amplitudes. The Max field holds the largest value passed to this point.
The Statistics View analysis tool calculates the average amplitude.

You can count the occurrences of an event by passing a dummy value
(such as 0) to STS_add and watching the Count field.

You can view the statistics values with the Statistics View analysis tool by
enabling statistics in the DSP/BIOS→RTA Control Panel window and
choosing your custom STS object in the DSP/BIOS→Statistics View
window.

See Also STS_delta
STS_reset
STS_set
TRC_disable
TRC_enable

STS_add Update statistics using the provided value
Application Program Interface 2-293

STS_delta
C Interface

Syntax STS_delta(sts,value);

Parameters STS_Handle sts; /* statistics object handle */
LgInt value; /* new value to update statistics object */

Return Value Void

Assembly Interface

Syntax STS_delta

Preconditions a4 = STS object handle
b4 = 32-bit sample
amr = 0

Postconditions none

Modifies a1, a3, b1, b2, b3, b4, b5

Reentrant no

Description Each STS object contains a previous value that can be initialized with the
Configuration Tool or with a call to STS_set. A call to STS_delta subtracts
the previous value from the value it is passed and then invokes STS_add
with the result to update the statistics. STS_delta also updates the
previous value with the value it is passed.

STS_delta can be used in conjunction with STS_set to monitor the
difference between a variable and a desired value or to benchmark
program performance.

You can benchmark your code by using paired calls to STS_set and
STS_delta that pass the value provided by CLK_gethtime.

STS_set(&sts, CLK_gethtime());
 "processing to be benchmarked"
STS_delta(&sts, CLK_gethtime());

Constraints and
Calling Context

❏ Before the first call to STS_delta is made, the previous value of the
STS object should be initialized either with a call to STS_set or by
setting the prev property of the STS object using the Configuration
Tool.

STS_delta Update statistics using the difference between the provided value and
the setpoint
2-294

STS_delta
Example STS_set(&sts, targetValue);
 "processing"
STS_delta(&sts, currentValue);
 "processing"
STS_delta(&sts, currentValue);
 "processing"
STS_delta(&sts, currentValue);

See Also STS_add
STS_reset
STS_set
CLK_gethtime
CLK_getltime
PRD_getticks
TRC_disable
TRC_enable
Application Program Interface 2-295

STS_reset
C Interface

Syntax STS_reset(sts);

Parameters STS_Handle sts; /* statistics object handle */

Return Value Void

Assembly Interface

Syntax STS_reset

Preconditions a4 = STS object handle
amr = 0

Postconditions none

Modifies a1

Reentrant no

Description STS_reset resets the values stored in an STS object. The Count and
Total fields are set to 0 and the Max field is set to the largest negative
number. STS_reset does not modify the value set by STS_set.

After the Statistics View analysis tool polls statistics data on the target, it
performs STS_reset internally. This keeps the 32-bit total and count
values from wrapping back to 0 on the target. The host accumulates
these values as 64-bit numbers to allow a much larger range than can be
stored on the target.

Example STS_reset(&sts);
STS_set(&sts, value);

See Also STS_add
STS_delta
STS_set
TRC_disable
TRC_enable

STS_reset Reset the values stored in an STS object
2-296

STS_set
C Interface

Syntax STS_set(sts, value);

Parameters STS_Handle sts; /* statistics object handle */
LgInt value; /* new value to update statistics object */

Return Value Void

Assembly Interface

Syntax STS_set

Preconditions a4 = STS object handle
b4 = new 32-bit value to store as previous
amr = 0

Postconditions none

Modifies none

Reentrant no

Description STS_set can be used in conjunction with STS_delta to monitor the
difference between a variable and a desired value or to benchmark
program performance. STS_set saves a value as the previous value in
an STS object. STS_delta subtracts this saved value from the value it is
passed and invokes STS_add with the result.

STS_delta also updates the previous value with the value it was passed.
Depending on what you are measuring, you can need to use STS_set to
reset the previous value before the next call to STS_delta.

You can also set a previous value for an STS object in the Configuration
Tool. STS_set changes this value.

See STS_delta for details on how to use the value you set with STS_set.

Example This example gathers performance information for the processing
between STS_set and STS_delta.

STS_set(&sts, CLK_getltime());
 "processing to be benchmarked"
STS_delta(&sts, CLK_getltime());
This example gathers information about a value’s deviation from the
desired value.

STS_set Save a value for STS_delta
Application Program Interface 2-297

STS_set
STS_set(&sts, targetValue);
 "processing"
STS_delta(&sts, currentValue);
 "processing"
STS_delta(&sts, currentValue);
 "processing"
STS_delta(&sts, currentValue);
This example gathers information about a value’s difference from a base
value.

STS_set(&sts, baseValue);
 "processing"
STS_delta(&sts, currentValue);
STS_set(&sts, baseValue);
 "processing"
STS_delta(&sts, currentValue);
STS_set(&sts, baseValue);

See Also STS_add
STS_delta
STS_reset
TRC_disable
TRC_enable
2-298

SWI Module
2.22 SWI Module

The SWI module is the software interrupt manager.

Functions ❏ SWI_andn. Clear bits from SWI's mailbox; post if becomes 0.

❏ SWI_andnHook. Specialized version of SWI_andn for use as hook
function for configured DSP/BIOS objects. Both its arguments are of
type (Arg).

❏ SWI_create. Create a software interrupt.

❏ SWI_dec. Decrement SWI's mailbox value; post if becomes 0.

❏ SWI_delete. Delete a software interrupt.

❏ SWI_disable. Disable software interrupts.

❏ SWI_enable. Enable software interrupts.

❏ SWI_getattrs. Get attributes of a software interrupt.

❏ SWI_getmbox. Return the mailbox value of the SWI when it started
running.

❏ SWI_getpri. Return a SWI’s priority mask.

❏ SWI_inc. Increment SWI's mailbox value.

❏ SWI_or. Or mask with value contained in SWI's mailbox field and
post the SWI.

❏ SWI_orHook. Specialized version of SWI_or for use as hook function
for configured DSP/BIOS objects. Both its arguments are of type
(Arg).

❏ SWI_post. Post a software interrupt.

❏ SWI_raisepri. Raise a SWI’s priority.

❏ SWI_restorepri. Restore a SWI’s priority.

❏ SWI_self. Return address of currently executing SWI object.

❏ SWI_setattrs. Set attributes of a software interrupt.

Configuration
Properties

The following list shows the properties that can be configured in a
DSP/BIOS TextConf script, along with their types and default values. For
details, see the SWI Manager Properties and SWI Object Properties
headings. For descriptions of data types, see Section 1.4, DSP/BIOS
TextConf Overview, page 1-4.
Application Program Interface 2-299

SWI Module
Module Configuration Parameters

Instance Configuration Parameters.

Description The SWI module manages software interrupt service routines, which are
patterned after HWI hardware interrupt service routines.

DSP/BIOS manages four distinct levels of execution threads: hardware
interrupt service routines, software interrupt routines, tasks, and
background idle functions. A software interrupt is an object that
encapsulates a function to be executed and a priority. Software interrupts
are prioritized, preempt tasks, and are preempted by hardware interrupt
service routines.

Note:

SWI functions are called after the processor register state has been
saved. SWI functions can be written in C or assembly and must follow
the C calling conventions described in the compiler manual.

The processor registers that are saved before SWI functions are called
include a0-a9 and b0-b9. These registers are the parent-preserved
registers mentioned in the TMS320C6000 Optimizing Compiler User’s
Guide. The child-preserved registers, a10-a15 and b10-b15, are not
saved.

Each software interrupt has a priority level. A software interrupt preempts
any lower-priority software interrupt currently executing.

A target program uses an API call to post a SWI object. This causes the
SWI module to schedule execution of the software interrupt’s function.
When a software interrupt is posted by an API call, the SWI object’s
function is not executed immediately. Instead, the function is scheduled
for execution. DSP/BIOS uses the software interrupt’s priority to

Name Type Default

OBJMEMSEG Reference prog.get("IDRAM")

Name Type Default (Enum Options)

comment String "<add comments here>"

fxn Extern prog.extern("FXN_F_nop")

priority EnumInt 1 (0 to 14)

mailbox Int16 0

arg0 Arg 0

arg1 Arg 0
2-300

SWI Module
determine whether to preempt the thread currently running. Note that if a
software interrupt is posted several times before it begins running,
(because HWIs and higher priority interrupts are running,) when the
software interrupt does eventually run, it will run only one time.

Software interrupts can be posted for execution with a call to SWI_post
or a number of other SWI functions. Each SWI object has a 32-bit mailbox
which is used either to determine whether to post the software interrupt
or as a value that can be evaluated within the software interrupt’s
function. SWI_andn and SWI_dec post the software interrupt if the
mailbox value transitions to 0. SWI_or and SWI_inc also modify the
mailbox value. (SWI_or sets bits, and SWI_andn clears bits.)

The SWI_disable and SWI_enable operations allow you to post several
software interrupts and enable them all for execution at the same time.
The software interrupt priorities then determine which software interrupt
runs first.

All software interrupts run to completion; you cannot suspend a software
interrupt while it waits for something (for example, a device) to be ready.
So, you can use the mailbox to tell the software interrupt when all the
devices and other conditions it relies on are ready. Within a software
interrupt processing function, a call to SWI_getmbox returns the value of
the mailbox when the software interrupt started running. Note that the
mailbox is automatically reset to its original value when a software
interrupt runs; however, SWI_getmbox will return the saved mailbox
value from when the SWI started execution.

Software interrupts can have up to 15 priority levels. The highest level is
SWI_MAXPRI (14). The lowest is SWI_MINPRI (0). The priority level of
0 is reserved for the KNL_swi object, which runs the task (TSK)
scheduler.

A software interrupt preempts any currently running software interrupt
with a lower priority. If two software interrupts with the same priority level
have been posted, the software interrupt that was posted first runs first.
Hardware interrupts in turn preempt any currently running software
interrupt, allowing the target to respond quickly to hardware peripherals.

Treat mailbox
as bitmask

Treat mailbox
as counter

Always post

Post if
becomes 0

SWI_or

SWI_andn SWI_dec

SWI_inc

Does not modify
mailbox

SWI_post
Application Program Interface 2-301

SWI Module
For information about setting software interrupt priorities, choose Help−
>Help Topics in the Configuration Tool, and type priority in the Index tab.

Interrupt threads (including hardware interrupts and software interrupts)
are all executed using the same stack. A context switch is performed
when a new thread is added to the top of the stack. The SWI module
automatically saves the processor’s registers before running a higher-
priority software interrupt that preempts a lower-priority software
interrupt. After the higher-priority software interrupt finishes running, the
registers are restored and the lower-priority software interrupt can run if
no other higher-priority software interrupts have been posted. (A
separate task stack is used by each task thread.)

See the Code Composer Studio online tutorial for more information on
how to post software interrupts and scheduling issues for the Software
Interrupt manager.

SWI Manager
Properties

The following global property can be set for the SWI module in the SWI
Manager Properties dialog of the Configuration Tool or in a DSP/BIOS
TextConf script:

❏ Object Memory. The memory segment that contains the SWI
objects.
TextConf Name: OBJMEMSEG Type: Ref

Example: SWI.OBJMEMSEG = prog.get("myMEM");
SWI Object Properties To create a SWI object in a configuration script, use the following syntax.

The DSP/BIOS TextConf examples that follow assume the object has
been created as shown here.

var mySwi = SWI.create("mySwi");
If you cannot create a new SWI object (an error occurs or the Insert SWI
item is inactive in the Configuration Tool), try increasing the Stack Size
property in the MEM Manager Properties dialog before adding a SWI
object or a SWI priority level.

The following properties can be set for a SWI object in the SWI Object
Properties dialog of the Configuration Tool or in a DSP/BIOS TextConf
script:

❏ comment. Type a comment to identify this SWI object.
TextConf Name: comment Type: String

Example: mySwi.comment = "my SWI";
❏ function. The function to execute.

TextConf Name: fxn Type: Extern
Example: mySwi.fxn = prog.extern("swiFxn");
2-302

SWI Module
❏ priority. This field shows the numeric priority level for this SWI
object. Software interrupts can have up to 15 priority levels. The
highest level is SWI_MAXPRI (14). The lowest is SWI_MINPRI (0).
The priority level of 0 is reserved for the KNL_swi object, which runs
the task scheduler. Instead of typing a number in the DSP/BIOS
Configuration Tool, you change the relative priority levels of SWI
objects by dragging the objects in the ordered collection view.
TextConf Name: priority Type: EnumInt

Options: 0 to 14
Example: mySwi.priority = 1;

❏ mailbox. The initial value of the 32-bit word used to determine if this
software interrupt should be posted.
TextConf Name: mailbox Type: Int16

Example: mySwi.mailbox = 7;
❏ arg0, arg1. Two arbitrary pointer type (Arg) arguments to the above

configured user function.
TextConf Name: arg0 Type: Arg
TextConf Name: arg1 Type: Arg

Example: mySwi.arg0 = 0;
SWI - Code Composer
Studio Interface

The SWI tab of the Kernel/Object View shows information about software
interrupt objects.

To enable SWI logging, choose DSP/BIOS→RTA Control Panel and put
a check in the appropriate box. To view a graph of activity that includes
SWI function execution, choose DSP/BIOS→Execution Graph.

You can also enable SWI accumulators in the RTA Control Panel. Then
you can choose DSP/BIOS→Statistics View, which lets you select
objects for which you want to see statistics. If you choose a SWI object,
you see statistics about the number of instruction cycles elapsed from the
time the SWI was posted to the SWI function’s completion.

Note:

Static SWIs have an STS object associated with them, while dynamic
SWIs do not. The STS pointer is located in the SWI object structure for
static SWIs only. Therefore, they may be accessed by the user and
used for STS operations.
Application Program Interface 2-303

SWI_andn
C Interface

Syntax SWI_andn(swi, mask);

Parameters SWI_Handle swi; /* SWI object handle*/
Uns mask /* inverse value to be ANDed */

Return Value Void

Assembly Interface

Syntax SWI_andn

Preconditions a4 = address of the SWI object
b4 = mask
amr = 0

Postconditions none

Modifies a0, a1, a2, a3, a4, a5, a6, a7, a9, b0, b1, b2, b3, b4, b5, b6, b7, csr

Reentrant yes

Description SWI_andn is used to conditionally post a software interrupt. SWI_andn
clears the bits specified by a mask from SWI’s internal mailbox. If SWI’s
mailbox becomes 0, SWI_andn posts the software interrupt. The bitwise
logical operation performed is:

mailbox = mailbox AND (NOT MASK)
For example, if there are multiple conditions that must all be met before
a software interrupt can run, you should use a different bit in the mailbox
for each condition. When a condition is met, clear the bit for that
condition.

SWI_andn results in a context switch if the SWI's mailbox becomes zero
and the SWI has higher priority than the currently executing thread.

You specify a software interrupt’s initial mailbox value in the
Configuration Tool. The mailbox value is automatically reset when the
software interrupt executes.

SWI_andn Clear bits from SWI’s mailbox and post if mailbox becomes 0
2-304

SWI_andn
Note:

Use the specialized version, SWI_andnHook, when SWI_andn
functionality is required for a DSP/BIOS object hook function.

The following figure shows an example of how a mailbox with an initial
value of 3 can be cleared by two calls to SWI_andn with values of 2 and
1. The entire mailbox could also be cleared with a single call to SWI_andn
with a value of 3.

Constraints and
Calling Context

❏ If this function is invoked outside the context of an interrupt service
routine, interrupts must be enabled.

❏ When called within an HWI ISR, the code sequence calling
SWI_andn must be either wrapped within an HWI_enter/HWI_exit
pair or invoked by the HWI dispatcher.

Example /* ======== ioReady ======== */

 Void ioReady(unsigned int mask)
 {
 /* clear bits of "ready mask" */
 SWI_andn(©SWI, mask);
 }

Mailbox value = 3

SWI object

Mailbox value = 1

Mailbox value = 0

 SWI_andn with
mask=1

Software
interrupt is

posted

SWI object

SWI object

SWI_andn with
mask=2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
Application Program Interface 2-305

SWI_andn
See Also SWI_andnHook
SWI_dec
SWI_getmbox
SWI_inc
SWI_or
SWI_orHook
SWI_post
SWI_self
2-306

SWI_andnHook
C Interface

Syntax SWI_andnHook(swi, mask);

Parameters Arg swi; /* SWI object handle*/
Arg mask /* value to be ANDed */

Return Value Void

Assembly Interface

Syntax SWI_andnHook

Preconditions a4 = address of the SWI object
b4 = mask
amr = 0

Postconditions none

Modifies a0, a1, a2, a3, a4, a5, a6, a7, a9, b0, b1, b2, b3, b4, b5, b6, b7, csr

Reentrant yes

Description SWI_andnHook is a specialized version of SWI_andn for use as hook
function for configured DSP/BIOS objects. SWI_andnHook clears the bits
specified by a mask from SWI’s internal mailbox and also moves the
arguments to the correct registers for proper interface with low level
DSP/BIOS assembly code. If SWI’s mailbox becomes 0, SWI_andnHook
posts the software interrupt. The bitwise logical operation performed is:

mailbox = mailbox AND (NOT MASK)
For example, if there are multiple conditions that must all be met before
a software interrupt can run, you should use a different bit in the mailbox
for each condition. When a condition is met, clear the bit for that
condition.

SWI_andnHook results in a context switch if the SWI's mailbox becomes
zero and the SWI has higher priority than the currently executing thread.

You specify a software interrupt’s initial mailbox value in the
Configuration Tool. The mailbox value is automatically reset when the
software interrupt executes.

Constraints and
Calling Context

❏ If this macro (API) is invoked outside the context of an interrupt
service routine, interrupts must be enabled.

SWI_andnHook Clear bits from SWI’s mailbox and post if mailbox becomes 0
Application Program Interface 2-307

SWI_andnHook
❏ When called within an HWI ISR, the code sequence calling
SWI_andnHook must be either wrapped within an
HWI_enter/HWI_exit pair or invoked by the HWI dispatcher.

Example /* ======== ioReady ======== */

 Void ioReady(unsigned int mask)
 {
 /* clear bits of "ready mask" */
 SWI_andn(©SWI, mask);
 }

See Also SWI_andn
SWI_dec
SWI_getmbox
SWI_inc
SWI_or
SWI_orHook
SWI_post
SWI_self
2-308

SWI_create
C Interface

Syntax swi = SWI_create(attrs);

Parameters SWI_Attrs *attrs; /* pointer to swi attributes */

Return Value SWI_Handle swi; /* handle for new swi object */

Assembly Interface none

Description SWI_create creates a new SWI object. If successful, SWI_create returns
the handle of the new SWI object. If unsuccessful, SWI_create returns
NULL unless it aborts. For example, SWI_create can abort if it directly or
indirectly calls SYS_error, and SYS_error is configured to abort.

The attrs parameter, which can be either NULL or a pointer to a structure
that contains attributes for the object to be created, facilitates setting the
SWI object’s attributes. If attrs is NULL, the new SWI object is assigned
a default set of attributes. Otherwise, the SWI object’s attributes are
specified through a structure of type SWI_attrs defined as follows:

struct SWI_Attrs {
 SWI_Fxn fxn;
 Arg arg0;
 Arg arg1;
 Int priority;
 Uns mailbox;
};
The fxn attribute, which is the address of the SWI function, serves as the
entry point of the software interrupt service routine.

The arg0 and arg1 attributes specify the arguments passed to the SWI
function, fxn.

The priority attribute specifies the SWI object’s execution priority and
must range from 0 to 14. The highest level is SWI_MAXPRI (14). The
lowest is SWI_MINPRI (0). The priority level of 0 is reserved for the
KNL_swi object, which runs the task scheduler.

The mailbox attribute is used either to determine whether to post the SWI
or as a value that can be evaluated within the SWI function.

All default attribute values are contained in the constant SWI_ATTRS,
which can be assigned to a variable of type SWI_Attrs prior to calling
SWI_create.

SWI_create Create a software interrupt
Application Program Interface 2-309

SWI_create
SWI_create calls MEM_alloc to dynamically create the object’s data
structure. MEM_alloc must acquire a lock to the memory before
proceeding. If another thread already holds a lock to the memory, then
there is a context switch. The segment from which the object is allocated
is described by the DSP/BIOS objects property in the MEM Module, page
2–170.

Constraints and
Calling Context

❏ SWI_create cannot be called from a SWI or HWI.

❏ The fxn attribute cannot be NULL.

❏ The priority attribute must be less than or equal to 14 and greater
than or equal to 1.

See Also SWI_delete
SWI_getattrs
SWI_setattrs
SYS_error
2-310

SWI_dec
C Interface

Syntax SWI_dec(swi);

Parameters SWI_Handle swi; /* SWI object handle*/

Return Value Void

Assembly Interface

Syntax SWI_dec

Preconditions a4 = address of the SWI object
amr = 0

Postconditions none

Modifies a0, a1, a2, a3, a4, a5, a6, a7, a9, b0, b1, b2, b3, b4, b5, b6, b7, csr

Reentrant yes

Description SWI_dec is used to conditionally post a software interrupt. SWI_dec
decrements the value in SWI’s mailbox by 1. If SWI’s mailbox value
becomes 0, SWI_dec posts the software interrupt. You can increment a
mailbox value by using SWI_inc, which always posts the software
interrupt.

For example, you would use SWI_dec if you wanted to post a software
interrupt after a number of occurrences of an event.

You specify a software interrupt’s initial mailbox value in the
Configuration Tool. The mailbox value is automatically reset when the
software interrupt executes.

SWI_dec results in a context switch if the SWI's mailbox becomes zero
and the SWI has higher priority than the currently executing thread.

Constraints and
Calling Context

❏ If this macro (API) is invoked outside the context of an interrupt
service routine, interrupts must be enabled.

❏ When called within an HWI ISR, the code sequence calling SWI_dec
must be either wrapped within an HWI_enter/HWI_exit pair or
invoked by the HWI dispatcher.

SWI_dec Decrement SWI’s mailbox value and post if mailbox becomes 0
Application Program Interface 2-311

SWI_dec
Example /* ======== strikeOrBall ======== */

 Void strikeOrBall(unsigned int call)
 {
 if (call == 1) {
 /* initial mailbox value is 3 */
 SWI_dec(&strikeoutSwi);
 }
 if (call == 2) {
 /* initial mailbox value is 4 */
 SWI_dec(&walkSwi);
 }
 }

See Also SWI_delete
SWI_getmbox
SWI_inc
SWI_or
SWI_post
SWI_self
2-312

SWI_delete
C Interface

Syntax SWI_delete(swi);

Parameters SWI_Handle swi; /* SWI object handle */

Return Value Void

Assembly Interface none

Description SWI_delete uses MEM_free to free the SWI object referenced by swi.

SWI_delete calls MEM_free to delete the SWI object. MEM_free must
acquire a lock to the memory before proceeding. If another task already
holds a lock to the memory, then there is a context switch.

Constraints and
Calling Context

❏ swi cannot be the currently executing SWI object (SWI_self)

❏ SWI_delete cannot be called from a SWI or HWI.

❏ SWI_delete must not be used to delete a statically-created SWI
object. No check is performed to prevent SWI_delete from being
used on a statically-created object. If a program attempts to delete a
SWI object that was created using the Configuration Tool, SYS_error
is called.

See Also SWI_create
SWI_getattrs
SWI_setattrs
SYS_error

SWI_delete Delete a software interrupt
Application Program Interface 2-313

SWI_disable
C Interface

Syntax SWI_disable();

Parameters Void

Return Value Void

Assembly Interface

Syntax SWI_disable

Preconditions b14 = address of the start of .bss
GIE = 1 (interrupts must be enabled)
amr = 0

Postconditions none

Modifies a4

Reentrant yes

Description SWI_disable and SWI_enable control SWI software interrupt processing.
SWI_disable disables all other SWI functions from running until
SWI_enable is called. Hardware interrupts can still run.

SWI_disable and SWI_enable allow you to ensure that statements that
must be performed together during critical processing are not interrupted.
In the following example, the critical section is not preempted by any
software interrupts.

SWI_disable();
 `critical section`
SWI_enable();
You can also use SWI_disable and SWI_enable to post several software
interrupts and allow them to be performed in priority order. See the
example that follows.

SWI_disable calls can be nested. The number of nesting levels is stored
internally. Software interrupt handling is not reenabled until SWI_enable
has been called as many times as SWI_disable.

Constraints and
Calling Context

❏ The calls to HWI_enter and HWI_exit required in any hardware ISRs
that schedules software interrupts automatically disable and
reenable software interrupt handling. You should not call
SWI_disable or SWI_enable within a hardware ISR.

SWI_disable Disable software interrupts
2-314

SWI_disable
❏ SWI_disable cannot be called from the program’s main function.

Example /* ======== postEm ======== */
 Void postEm
 {
 SWI_disable();

 SWI_post(&encoderSwi);
 SWI_andn(©Swi, mask);
 SWI_dec(&strikeoutSwi);

 SWI_enable();
 }

See Also HWI_disable
HWI_enable
SWI_enable
Application Program Interface 2-315

SWI_enable
C Interface

Syntax SWI_enable();

Parameters Void

Return Value Void

Assembly Interface

Syntax SWI_enable

Preconditions SWI_D_lock>= 0 (SWI execution is disabled; that is, locked)
GIE = 1 (interrupts must be enabled)
amr = 0

Postconditions none

Modifies a1, a4, b0, b1, b3, b4, csr

Reentrant yes

Description SWI_disable and SWI_enable control SWI software interrupt processing.
SWI_disable disables all other software interrupt functions from running
until SWI_enable is called. Hardware interrupts can still run. See the
SWI_disable section for details.

SWI_disable calls can be nested. The number of nesting levels is stored
internally. Software interrupt handling is not be reenabled until
SWI_enable has been called as many times as SWI_disable.

SWI_enable results in a context switch if a higher-priority SWI is ready to
run.

Constraints and
Calling Context

❏ The calls to HWI_enter and HWI_exit required in any hardware ISRs
that schedules software interrupts automatically disable and
reenable software interrupt handling. You should not call
SWI_disable or SWI_enable within a hardware ISR.

❏ SWI_enable cannot be called from the program’s main function.

See Also HWI_disable
HWI_enable
SWI_disable

SWI_enable Enable software interrupts
2-316

SWI_getattrs
C Interface

Syntax SWI_getattrs(swi, attrs);

Parameters SWI_Handle swi; /* handle of the swi */
SWI_Attrs *attrs; /* pointer to swi attributes */

Return Value Void

Assembly Interface none

Description SWI_getattrs retrieves attributes of an existing SWI object.

The swi parameter specifies the address of the SWI object whose
attributes are to be retrieved. The attrs parameter, which is the pointer to
a structure that contains the retrieved attributes for the SWI object,
facilitates retrieval of the attributes of the SWI object.

The SWI object’s attributes are specified through a structure of type
SWI_attrs defined as follows:

struct SWI_Attrs {
 SWI_Fxn fxn;
 Arg arg0;
 Arg arg1;
 Int priority;
 Uns mailbox;
};
The fxn attribute, which is the address of the SWI function, serves as the
entry point of the software interrupt service routine.

The arg0 and arg1 attributes specify the arguments passed to the SWI
function, fxn.

The priority attribute specifies the SWI object’s execution priority and
ranges from 0 to 14. The highest level is SWI_MAXPRI (14). The lowest
is SWI_MINPRI (0). The priority level of 0 is reserved for the KNL_swi
object, which runs the task scheduler.

The mailbox attribute is used either to determine whether to post the SWI
or as a value that can be evaluated within the SWI function.

SWI_getattrs Get attributes of a software interrupt
Application Program Interface 2-317

SWI_getattrs
The following example uses SWI_getattrs:

extern SWI_Handle swi;
SWI_Attrs attrs;

SWI_getattrs(swi, &attrs);
attrs.priority = 5;
SWI_setattrs(swi, &attrs);

Constraints and
Calling Context

❏ SWI_getattrs cannot be called from a SWI or HWI.

❏ The attrs parameter cannot be NULL.

See Also SWI_create
SWI_delete
SWI_setattrs
2-318

SWI_getmbox
C Interface

Syntax num = Uns SWI_getmbox();

Parameters Void

Return Value Uns num /* mailbox value */

Assembly Interface

Syntax SWI_getmbox

Preconditions b14 = address of the start of .bss
amr = 0

Postconditions al4 = current software interrupt’s mailbox value

Modifies a4

Reentrant yes

Description SWI_getmbox returns the value that SWI’s mailbox had when the
software interrupt started running. DSP/BIOS saves the mailbox value
internally so that SWI_getmbox can access it at any point within a SWI
object’s function. DSP/BIOS then automatically resets the mailbox to its
initial value (defined with the Configuration Tool) so that other threads can
continue to use the software interrupt’s mailbox.

SWI_getmbox should only be called within a function run by a SWI object.

Constraints and
Calling Context

❏ SWI_getmbox cannot be called from an HWI or TSK level.

❏ SWI_getmbox cannot be called from the program’s main function.

Example This call could be used within a SWI object’s function to use the mailbox
value within the function. For example, if you use SWI_or or SWI_inc to
post a software interrupt, different mailbox values can require different
processing.

swicount = SWI_getmbox();
See Also SWI_andn

SWI_andnHook
SWI_dec
SWI_inc
SWI_or
SWI_orHook
SWI_post
SWI_self

SWI_getmbox Return a SWI’s mailbox value
Application Program Interface 2-319

SWI_getpri
C Interface

Syntax key = SWI_getpri(swi);

Parameters SWI_Handle swi; /* SWI object handle*/

Return Value Uns key /* Priority mask of swi */

Assembly Interface

Syntax SWI_getpri

Preconditions a4 = address of the SWI object
b14 = address of start of .bss

Postconditions a4 = SWI object’s priority mask

Modifies a4

Reentrant yes

Description SWI_getpri returns the priority mask of the SWI passed in as the
argument.

Example /* Get the priority key of swi1 */
key = SWI_getpri(&swi1);

/* Get the priorities of swi1 and swi3 */
key = SWI_getpri(&swi1) | SWI_getpri(&swi3);

See Also SWI_raisepri
SWI_restorepri

SWI_getpri Return a SWI’s priority mask
2-320

SWI_inc
C Interface

Syntax SWI_inc(swi);

Parameters SWI_Handle swi; /* SWI object handle*/

Return Value Void

Assembly Interface

Syntax SWI_inc

Preconditions a4 = address of the SWI object
amr = 0

Postconditions none

Modifies a0, a1, a2, a3, a4, a5, a6, a7, a9, b0, b1, b2, b3, b4, b5, b6, b7, csr

Reentrant no

Description SWI_inc increments the value in SWI’s mailbox by 1 and posts the
software interrupt regardless of the resulting mailbox value. You can
decrement a mailbox value by using SWI_dec, which only posts the
software interrupt if the mailbox value is 0.

If a software interrupt is posted several times before it has a chance to
begin executing, because HWIs and higher priority software interrupts
are running, the software interrupt only runs one time. If this situation
occurs, you can use SWI_inc to post the software interrupt. Within the
software interrupt’s function, you could then use SWI_getmbox to find out
how many times this software interrupt has been posted since the last
time it was executed.

You specify a software interrupt’s initial mailbox value in the
Configuration Tool. The mailbox value is automatically reset when the
software interrupt executes. To get the mailbox value, use SWI_getmbox.

SWI_inc results in a context switch if the SWI is higher priority than the
currently executing thread.

Constraints and
Calling Context

❏ If this macro (API) is invoked outside the context of an interrupt
service routine, interrupts must be enabled.

SWI_inc Increment SWI’s mailbox value
Application Program Interface 2-321

SWI_inc
❏ When called within an HWI ISR, the code sequence calling SWI_inc
must be either wrapped within an HWI_enter/HWI_exit pair or
invoked by the HWI dispatcher.

Example extern SWI_ObjMySwi;
/* ======== AddAndProcess ======== */

 Void AddAndProcess(int count)
 {
 int i;

 for (i = 1; I <= count; ++i)
 SWI_inc(&MySwi);
 }

See Also SWI_andn
SWI_dec
SWI_getmbox
SWI_or
SWI_post
SWI_self
2-322

SWI_or
C Interface

Syntax SWI_or(swi, mask);

Parameters SWI_Handle swi; /* SWI object handle*/
Uns mask; /* value to be ORed */

Return Value Void

Assembly Interface

Syntax SWI_or

Preconditions a4 = address of the SWI object
b4 = mask
amr = 0

Postconditions none

Modifies a0, a1, a2, a3, a4, a5, a6, a7, a9, b0, b1, b2, b3, b4, b5, b6, b7, csr

Reentrant no

Description SWI_or is used to post a software interrupt. SWI_or sets the bits specified
by a mask in SWI’s mailbox. SWI_or posts the software interrupt
regardless of the resulting mailbox value. The bitwise logical operation
performed on the mailbox value is:

mailbox = mailbox OR mask
You specify a software interrupt’s initial mailbox value in the
Configuration Tool. The mailbox value is automatically reset when the
software interrupt executes. To get the mailbox value, use SWI_getmbox.

For example, you might use SWI_or to post a software interrupt if any of
three events should cause a software interrupt to be executed, but you
want the software interrupt’s function to be able to tell which event
occurred. Each event would correspond to a different bit in the mailbox.

SWI_or results in a context switch if the SWI is higher priority than the
currently executing thread.

SWI_or OR mask with the value contained in SWI’s mailbox field
Application Program Interface 2-323

SWI_or
Note:

Use the specialized version, SWI_orHook, when SWI_or functionality
is required for a DSP/BIOS object hook function.

Constraints and
Calling Context

❏ If this macro (API) is invoked outside the context of an interrupt
service routine, interrupts must be enabled.

❏ When called within an HWI ISR, the code sequence calling SWI_or
must be either wrapped within an HWI_enter/HWI_exit pair or
invoked by the HWI dispatcher.

See Also SWI_andn
SWI_andnHook
SWI_dec
SWI_getmbox
SWI_inc
SWI_orHook
SWI_post
SWI_self
2-324

SWI_orHook
C Interface

Syntax SWI_orHook(swi, mask);

Parameters Arg swi; /* SWI object handle*/
Arg mask; /* value to be ORed */

Return Value Void

Assembly Interface

Syntax SWI_orHook

Preconditions a4 = address of the SWI object
b4 = mask
amr = 0

Postconditions none

Modifies a0, a1, a2, a3, a4, a5, a6, a7, a9, b0, b1, b2, b3, b4, b5, b6, b7, csr

Reentrant no

Description SWI_orHook is used to post a software interrupt, and should be used
when hook functionality is required for DSP/BIOS hook objects.
SWI_orHook sets the bits specified by a mask in SWI’s mailbox and also
moves the arguments to the correct registers for interfacing with low level
DSP/BIOS assembly code. SWI_orHook posts the software interrupt
regardless of the resulting mailbox value. The bitwise logical operation
performed on the mailbox value is:

mailbox = mailbox OR mask
You specify a software interrupt’s initial mailbox value in the
Configuration Tool. The mailbox value is automatically reset when the
software interrupt executes. To get the mailbox value, use SWI_getmbox.

For example, you might use SWI_orHook to post a software interrupt if
any of three events should cause a software interrupt to be executed, but
you want the software interrupt’s function to be able to tell which event
occurred. Each event would correspond to a different bit in the mailbox.

SWI_orHook results in a context switch if the SWI is higher priority than
the currently executing thread.

SWI_orHook OR mask with the value contained in SWI’s mailbox field
Application Program Interface 2-325

SWI_orHook
Note:

Use the specialized version, SWI_orHook, when SWI_or functionality
is required for a DSP/BIOS object hook function.

Constraints and
Calling Context

❏ If this macro (API) is invoked outside the context of an interrupt
service routine, interrupts must be enabled.

❏ When called within an HWI ISR, the code sequence calling
SWI_orHook must be either wrapped within an HWI_enter/HWI_exit
pair or invoked by the HWI dispatcher.

See Also SWI_andn
SWI_andnHook
SWI_dec
SWI_getmbox
SWI_inc
SWI_or
SWI_post
SWI_self
2-326

SWI_post
C Interface

Syntax SWI_post(swi);

Parameters SWI_Handle swi; /* SWI object handle*/

Return Value Void

Assembly Interface

Syntax SWI_post

Preconditions a4 = address of the SWI object
amr = 0

Postconditions none

Modifies a0, a1, a2, a3, a4, a5, a6, a7, a9, b0, b1, b2, b3, b4, b5, b6, b7, csr

Reentrant yes

Description SWI_post is used to post a software interrupt regardless of the mailbox
value. No change is made to the SWI object’s mailbox value.

To have a PRD object post a SWI object’s function, you can set
_SWI_post as the function property of a PRD object and the name of the
software interrupt object you want to post its function as the arg0
property.

SWI_post results in a context switch if the SWI is higher priority than the
currently executing thread.

Constraints and
Calling Context

❏ If this macro (API) is invoked outside the context of an interrupt
service routine, interrupts must be enabled.

❏ When called within an HWI ISR, the code sequence calling SWI_post
must be either wrapped within an HWI_enter/HWI_exit pair or
invoked by the HWI dispatcher.

See Also SWI_andn
SWI_dec
SWI_getmbox
SWI_inc
SWI_or
SWI_self

SWI_post Post a software interrupt
Application Program Interface 2-327

SWI_raisepri
C Interface

Syntax key = SWI_raisepri(mask);

Parameters Uns mask; /* mask of desired priority level */

Return Value Uns key; /* key for use with SWI_restorepri */

Assembly Interface

Syntax SWI_raisepri

Preconditions b14 = address of start of .bss
a4 = priority mask of desired priority level

Postconditions a4 = key for use with SWI_restorepri

Modifies a1, a2, a4

Reentrant yes

Description SWI_raisepri is used to raise the priority of the currently running SWI to
the priority mask passed in as the argument. SWI_raisepri can be used
in conjunction with SWI_restorepri to provide a mutual exclusion
mechanism without disabling software interrupts.

SWI_raisepri should be called before a shared resource is accessed, and
SWI_restorepri should be called after the access to the shared resource.

A call to SWI_raisepri not followed by a SWI_restorepri keeps the SWI's
priority for the rest of the processing at the raised level. A SWI_post of
the SWI posts the SWI at its original priority level.

A SWI object’s execution priority must range from 0 to 14. The highest
level is SWI_MAXPRI (14). The lowest is SWI_MINPRI (0). Priority zero
(0) is reserved for the KNL_swi object, which runs the task scheduler.

SWI_raisepri never lowers the current SWI priority.

Constraints and
Calling Context

❏ SWI_raisepri cannot be called from an HWI or TSK level.

Example /* raise priority to the priority of swi_1 */
key = SWI_raisepri(SWI_getpri(&swi_1));
--- access shared resource ---
SWI_restore(key);

See Also SWI_getpri
SWI_restorepri

SWI_raisepri Raise a SWI’s priority
2-328

SWI_restorepri
C Interface

Syntax SWI_restorepri(key);

Parameters Uns key; /* key to restore original priority level */

Return Value Void

Assembly Interface

Syntax SWI_restorepri

Preconditions b14 = address of start of .bss
a4 = return value from the SWI_raisepri call

Postconditions none

Modifies a1, a2, a4, b0,csr

Reentrant yes

Description SWI_restorepri restores the priority to the SWI's priority prior to the
SWI_raisepri call returning the key. SWI_restorepri can be used in
conjunction with SWI_raisepri to provide a mutual exclusion mechanism
without disabling all software interrupts.

SWI_raisepri should be called right before the shared resource is
referenced, and SWI_restorepri should be called after the reference to
the shared resource.

Constraints and
Calling Context

❏ SWI_restorepri cannot be called from an HWI or TSK level.

❏ SWI_restorepri cannot be called from the program’s main function.

Example /* raise priority to the priority of swi_1 */
key = SWI_raisepri(SWI_getpri(&swi_1));
--- access shared resource ---
SWI_restore(key);

See Also SWI_getpri
SWI_raisepri

SWI_restorepri Restore a SWI’s priority
Application Program Interface 2-329

SWI_self
C Interface

Syntax curswi = SWI_self();

Parameters Void

Return Value SWI_Handle swi; /* handle for current swi object */

Assembly Interface

Syntax SWI_self

Preconditions b14 = address of the start of .bss
amr = 0

Postconditions a4 = address of the current SWI object

Modifies a4, b4

Reentrant yes

Description SWI_self returns the address of the currently executing software
interrupt.

Constraints and
Calling Context

❏ SWI_self cannot be called from an HWI or TSK level.

❏ SWI_self cannot be called from the program’s main function.

Example You can use SWI_self if you want a software interrupt to repost itself:

SWI_post(SWI_self());
See Also SWI_andn

SWI_getmbox
SWI_post

SWI_self Return address of currently executing SWI object
2-330

SWI_setattrs
C Interface

Syntax SWI_setattrs(swi, attrs);

Parameters SWI_Handle swi; /* handle of the swi */
SWI_Attrs *attrs; /* pointer to swi attributes */

Return Value Void

Assembly Interface none

Description SWI_setattrs sets attributes of an existing SWI object.

The swi parameter specifies the address of the SWI object whose
attributes are to be set.

The attrs parameter, which can be either NULL or a pointer to a structure
that contains attributes for the SWI object, facilitates setting the attributes
of the SWI object. If attrs is NULL, the new SWI object is assigned a
default set of attributes. Otherwise, the SWI object’s attributes are
specified through a structure of type SWI_attrs defined as follows:

struct SWI_Attrs {
 SWI_Fxn fxn;
 Arg arg0;
 Arg arg1;
 Int priority;
 Uns mailbox;
};
The fxn attribute, which is the address of the swi function, serves as the
entry point of the software interrupt service routine.

The arg0 and arg1 attributes specify the arguments passed to the swi
function, fxn.

The priority attribute specifies the SWI object’s execution priority and
must range from 1 to 14. Priority 14 is the highest priority. You cannot use
a priority of 0; that priority is reserved for the system SWI that runs the
TSK scheduler.

The mailbox attribute is used either to determine whether to post the SWI
or as a value that can be evaluated within the SWI function.

SWI_setattrs Set attributes of a software interrupt
Application Program Interface 2-331

SWI_setattrs
All default attribute values are contained in the constant SWI_ATTRS,
which can be assigned to a variable of type SWI_Attrs prior to calling
SWI_setattrs.

The following example uses SWI_setattrs:

extern SWI_Handle swi;
SWI_Attrs attrs;

SWI_getattrs(swi, &attrs);
attrs.priority = 5;
SWI_setattrs(swi, &attrs);

Constraints and
Calling Context

❏ SWI_setattrs must not be used to set the attributes of a SWI that is
preempted or is ready to run.

❏ The fxn attribute cannot be NULL.

❏ The priority attribute must be less than or equal to 14 and greater
than or equal to 1.

See Also SWI_create
SWI_delete
SWI_getattrs
2-332

SYS Module
2.23 SYS Module

The SYS modules manages system settings.

Functions ❏ SYS_abort. Abort program execution

❏ SYS_atexit. Stack an exit handler

❏ SYS_error. Flag error condition

❏ SYS_exit. Terminate program execution

❏ SYS_printf. Formatted output

❏ SYS_putchar. Output a single character

❏ SYS_sprintf. Formatted output to string buffer

❏ SYS_vprintf. Formatted output, variable argument list

❏ SYS_vsprintf. Output formatted data

Constants, Types,
and Structures

#define SYS_FOREVER (Uns)-1 /* wait forever */
#define SYS_POLL (Uns)0 /* don’t wait */

#define SYS_OK 0 /* no error */
#define SYS_EALLOC 1 /* memory allocation error */
#define SYS_EFREE 2 /* memory free error */
#define SYS_ENODEV 3 /* device driver not found */
#define SYS_EBUSY 4 /* device driver busy */
#define SYS_EINVAL 5 /* invalid device parameter */
#define SYS_EBADIO 6 /* I/O failure */
#define SYS_EMODE 7 /* bad mode for device driver */
#define SYS_EDOMAIN 8 /* domain error */
#define SYS_ETIMEOUT 9 /* call timed out */
#define SYS_EE0F 10 /* end-of-file */
#define SYS_EDEAD 11 /* previously deleted obj */
#define SYS_EBADOBJ 12 /* invalid object */
#define SYS_EUSER 256 /* user errors start here */

#define SYS_NUMHANDLERS 8 /* # of atexit handlers */

extern String SYS_errors[]; /* array of error strings
*/

Configuration
Properties

The following list shows the properties that can be configured in a
DSP/BIOS TextConf script, along with their types and default values. For
details, see the SYS Manager Properties heading. For descriptions of
data types, see Section 1.4, DSP/BIOS TextConf Overview, page 1-4.
Application Program Interface 2-333

SYS Module
Module Configuration Parameters.

Description The SYS module makes available a set of general-purpose functions that
provide basic system services, such as halting program execution and
printing formatted text. In general, each SYS function is patterned after a
similar function normally found in the standard C library.

SYS does not directly use the services of any other DSP/BIOS module
and therefore resides at the bottom of the system. Other DSP/BIOS
modules use the services provided by SYS in lieu of similar C library
functions. The SYS module provides hooks for binding system-specific
code. This allows programs to gain control wherever other DSP/BIOS
modules call one of the SYS functions.

SYS Manager
Properties

The following global properties can be set for the SYS module in the SYS
Manager Properties dialog of the Configuration Tool or in a DSP/BIOS
TextConf script.

❏ Trace Buffer Size. The size of the buffer that contains system trace
information. This system trace buffer can be viewed only by looking
for the SYS_PUTCBEG symbol in the Code Composer Studio
memory view. For example, by default the Putc function writes to the
trace buffer.
TextConf Name: TRACESIZE Type: Numeric

Example: TRC.TRACESIZE = 512;
❏ Trace Buffer Memory. The memory segment that contains system

trace information.
TextConf Name: TRACESEG Type: Ref

Example: TRC.TRACESEG = prog.get("myMEM");
❏ Abort Function. The function to run if the application aborts by

calling SYS_abort. The default function is _UTL_doAbort, which logs
an error message and calls _halt.
If this function is written in C, use a leading underscore before the C

Name Type Default

TRACESIZE Numeric 512

TRACESEG Reference prog.get("IDRAM")

ABORTFXN Extern prog.extern("UTL_doAbort")

ERRORFXN Extern prog.extern("UTL_doError")

EXITFXN Extern prog.extern("UTL_halt")

PUTCFXN Extern prog.extern("UTL_doPutc")
2-334

SYS Module
function name. (The Configuration Tool generates assembly code
which must use the leading underscore when referencing C functions
or labels.)
TextConf Name: ABORTFXN Type: Extern

Example: TRC.ABORTFXN = prog.extern("abort");
❏ Error Function. The function to run if an error flagged by SYS_error

occurs. The default function is _UTL_doError, which logs an error
message and returns. If this function is written in C, use a leading
underscore before the C function name.
TextConf Name: ERRORFXN Type: Extern

Example: TRC.ERRORFXN = prog.extern("error");
❏ Exit Function. The function to run when the application exits by

calling SYS_exit. The default function is UTL_halt, which loops
forever with interrupts disabled and prevents other processing. If this
function is written in C, use a leading underscore before the C
function name.
TextConf Name: EXITFXN Type: Extern

Example: TRC.EXITFXN = prog.extern("exit");
❏ Putc Function. The function to run if the application calls

SYS_putchar, SYS_printf, or SYS_vprintf. The default function is
_UTL_doPutc, which writes a character to the system trace buffer.
This system trace buffer can be viewed only by looking for the
SYS_PUTCBEG symbol in the Code Composer Studio memory
view. If this function is written in C, use a leading underscore before
the C function name.
TextConf Name: PUTCFXN Type: Extern

Example: TRC.PUTCFXN = prog.extern("myPutc");
SYS Object Properties The SYS module does not support the creation of individual SYS objects.
Application Program Interface 2-335

SYS_abort
C Interface

Syntax SYS_abort(format, [arg,] ...);

Parameters String format; /* format specification string */
Arg arg; /* optional argument */

Return Value Void

Assembly Interface none

Description SYS_abort aborts program execution by calling the function bound to the
configuration parameter Abort function, where vargs is of type va_list and
represents the sequence of arg parameters originally passed to
SYS_abort.

(*(Abort_function))(format, vargs)
The function bound to Abort function can elect to pass the format and
vargs parameters directly to SYS_vprintf or SYS_vsprintf prior to
terminating program execution.

The default Abort function for the SYS manager is _UTL_doAbort, which
logs an error message and calls UTL _halt, which is defined in the boot.c
file. The UTL_halt function performs an infinite loop with all processor
interrupts disabled.

Constraints and
Calling Context

❏ If the function bound to Abort function is not reentrant, SYS_abort
must be called atomically.

See Also SYS_exit
SYS_printf

SYS_abort Abort program execution
2-336

SYS_atexit
C Interface

Syntax success = SYS_atexit(handler);

Parameters Fxn handler /* exit handler function */

Return Value Bool success /* handler successfully stacked */

Assembly Interface none

Description SYS_atexit pushes handler onto an internal stack of functions to be
executed when SYS_exit is called. Up to SYS_NUMHANDLERS(8)
functions can be specified in this manner. SYS_exit pops the internal
stack until empty and calls each function as follows, where status is the
parameter passed to SYS_exit:

(*handler)(status)
SYS_atexit returns TRUE if handler has been successfully stacked;
FALSE if the internal stack is full.

The handlers on the stack are called only if either of the following
happens:

❏ SYS_exit is called.

❏ All tasks for which the Don’t shut down system while this task is still
running property is TRUE have exited. (By default, this includes the
TSK_idle task, which manages communication between the target
and analysis tools.)

Constraints and
Calling Context

❏ handler cannot be NULL.

SYS_atexit Stack an exit handler
Application Program Interface 2-337

SYS_error
C Interface

Syntax SYS_error(s, errno, [arg], ...);

Parameters String s; /* error string */
Int errno; /* error code */
Arg arg; /* optional argument */

Return Value Void

Assembly Interface none

Description SYS_error is used to flag DSP/BIOS error conditions. Application
programs as well as internal functions use SYS_error to handle program
errors.

SYS_error calls the function bound to Error function to handle errors.

The default Error function for the SYS manager is _UTL_doError, which
logs an error message and returns.

Constraints and
Calling Context

❏ The only valid error numbers are the error constants defined in sys.h
(SYS_E*) or numbers greater than or equal to SYS_EUSER.
Passing any other error values to SYS_error can cause DSP/BIOS to
crash.

❏ The string passed to SYS_error must be non-NULL.

SYS_error Flag error condition
2-338

SYS_exit
C Interface

Syntax SYS_exit(status);

Parameters Int status; /* termination status code */

Return Value Void

Assembly Interface none

Description SYS_exit first pops a stack of handlers registered through the function
SYS_atexit, and then terminates program execution by calling the
function bound to the configuration parameter Exit function, passing on
its original status parameter.

(*handlerN)(status)
 ...
(*handler2)(status)
(*handler1)(status)

(*(Exit_function))(status)
The default Exit function for the SYS manager is UTL_halt, which
performs an infinite loop with all processor interrupts disabled.

Constraints and
Calling Context

❏ If the function bound to Exit function or any of the handler functions
is not reentrant, SYS_exit must be called atomically.

See Also SYS_abort
SYS_atexit

SYS_exit Terminate program execution
Application Program Interface 2-339

SYS_printf
C Interface

Syntax SYS_printf(format, [arg,] ...);

Parameters String format; /* format specification string */
Arg arg; /* optional argument */

Return Value Void

Assembly Interface none

Description SYS_printf provides a subset of the capabilities found in the standard C
library function printf.

Note:

SYS_printf and the related functions are code-intensive. If possible,
applications should use the LOG Module functions to reduce code size
and execution time.

Conversion specifications begin with a % and end with a conversion
character. The conversion characters recognized by SYS_printf are
limited to the characters shown in Table 2-6.

Table 2-6. Conversion Characters Recognized by SYS_printf

Between the % and the conversion character, the following symbols or
specifiers contained in square brackets can appear, in the order shown.

%[-][0][width]type

SYS_printf Output formatted data

Character Corresponding Output Format

d signed decimal integer

u unsigned decimal integer

f decimal floating point

o octal integer

x hexadecimal integer

c single character

s NULL-terminated string

p pointer
2-340

SYS_printf
A dash (-) symbol causes the converted argument to be left-justified
within a field of width characters with blanks following. A 0 (zero) causes
the converted argument to be right-justified within a field of size width with
leading 0s. If neither a dash nor 0 are given, the converted argument is
right-justified in a field of size width, with leading blanks. The width is a
decimal integer. The converted argument is not modified if it has more
than width characters, or if width is not given.

The length modifier l can precede %d, %u, %o, and %x if the
corresponding argument is a 40-bit long integer. If the argument is a 32-
bit long integer (LgInt or LgUns), the l modifier should not be used.

SYS_vprintf is equivalent to SYS_printf, except that the optional set of
arguments is replaced by a va_list on which the standard C macro
va_start has already been applied. SYS_sprintf and SYS_vsprintf are
counterparts of SYS_printf and SYS_vprintf, respectively, in which output
is placed in a specified buffer.

Both SYS_printf and SYS_vprintf internally call the function SYS_putchar
to output individual characters via the Putc function configured in the SYS
Manager Properties. The default Putc function is _UTL_doPutc, which
writes a character to the system trace buffer. The size and memory
segment for the system trace buffer can also be set in the SYS Manager
Properties. This system trace buffer can be viewed only by looking for the
SYS_PUTCBEG symbol in the Code Composer Studio memory view.

Constraints and
Calling Context

❏ On a DSP with floating-point support, SYS_printf prints an error for
floating point numbers whose absolute value is greater than the
maximum long int (defined as LONG_MAX in the <limits.h> ANSI
header). This is because the integer part is computed by simply
casting the float parameter to a long int local variable.

❏ On a DSP with floating-point support, SYS_printf only prints four
digits after the decimal point for floating point numbers. Since
SYS_printf does not support %e, floating point numbers have to be
scaled approximately before being passed to SYS_printf.

❏ The function bound to Exit function or any of the handler functions
are not reentrant; SYS_exit must be called atomically.

See Also SYS_sprintf
SYS_vprintf
SYS_vsprintf
Application Program Interface 2-341

SYS_sprintf
C Interface

Syntax SYS_sprintf (buffer, format, [arg,] ...);

Parameters String buffer; /* output buffer */
String format; /* format specification string */
Arg arg; /* optional argument */

Return Value Void

Assembly Interface none

Description SYS_sprintf provides a subset of the capabilities found in the standard C
library function printf.

Note:

SYS_sprintf and the related functions are code-intensive. If possible,
applications should use LOG Module module functions to reduce code
size and execution time.

Conversion specifications begin with a % and end with a conversion
character. The conversion characters recognized by SYS_sprintf are
limited to the characters in Table 2-7.

Table 2-7. Conversion Characters Recognized by SYS_sprintf

SYS_sprintf Output formatted data

Character Corresponding Output Format

d signed decimal integer

u unsigned decimal integer

f decimal floating point

o octal integer

x hexadecimal integer

c single character

s NULL-terminated string

p pointer
2-342

SYS_sprintf
Between the % and the conversion character, the following symbols or
specifiers contained within square brackets can appear, in the order
shown.

%[-][0][width]type
A dash (-) symbol causes the converted argument to be left-justified
within a field of width characters with blanks following. A 0 (zero) causes
the converted argument to be right-justified within a field of size width with
leading 0s. If neither a dash nor 0 are given, the converted argument is
right-justified in a field of size width, with leading blanks. The width is a
decimal integer. The converted argument is not modified if it has more
than width characters, or if width is not given.

The length modifier l can precede %d, %u, %o, and %x if the
corresponding argument is a 40-bit long integer. If the argument is a 32-
bit long integer (LgInt or LgUns), the l modifier should not be used.

SYS_vprintf is equivalent to SYS_printf, except that the optional set of
arguments is replaced by a va_list on which the standard C macro
va_start has already been applied. SYS_sprintf and SYS_vsprintf are
counterparts of SYS_printf and SYS_vprintf, respectively, in which output
is placed in a specified buffer.

Both SYS_printf and SYS_vprintf internally call the function SYS_putchar
to output individual characters in a system-dependent fashion via the
configuration parameter Putc function. This parameter is bound to a
function that displays output on a debugger if one is running, or places
output in an output buffer between PUTCEND and PUTCBEG.

Constraints and
Calling Context

❏ On a DSP with floating-point support, SYS_printf prints an error for
floating point numbers whose absolute value is greater than the
maximum long int (defined as LONG_MAX in the <limits.h> ANSI
header). This is because the integer part is computed by simply
casting the float parameter to a long int local variable.

❏ On a DSP with floating-point support, SYS_printf only prints four
digits after the decimal point for floating point numbers. Since
SYS_printf does not support %e, floating point numbers have to be
scaled approximately before being passed to SYS_printf.

❏ The function bound to Exit function or any of the handler functions
are not reentrant; SYS_exit must be called atomically.

See Also SYS_printf
SYS_vprintf
SYS_vsprintf
Application Program Interface 2-343

SYS_vprintf
C Interface

Syntax SYS_vprintf(format, vargs);

Parameters String format; /* format specification string */
va_list vargs; /* variable argument list reference */

Return Value Void

Assembly Interface none

Description SYS_vprintf provides a subset of the capabilities found in the standard C
library function printf.

Note:

SYS_vprintf and the related functions are code-intensive. If possible,
applications should use LOG Module functions to reduce code size and
execution time.

Conversion specifications begin with a % and end with a conversion
character. The conversion characters recognized by SYS_vprintf are
limited to the characters in Table 2-8.

Table 2-8. Conversion Characters Recognized by SYS_vprintf

SYS_vprintf Output formatted data

Character Corresponding Output Format

d signed decimal integer

u unsigned decimal integer

f decimal floating point

o octal integer

x hexadecimal integer

c single character

s NULL-terminated string

p pointer
2-344

SYS_vprintf
Between the % and the conversion character, the following symbols or
specifiers contained within square brackets can appear, in the order
shown.

%[-][0][width]type
A dash (-) symbol causes the converted argument to be left-justified
within a field of width characters with blanks following. A 0 (zero) causes
the converted argument to be right-justified within a field of size width with
leading 0s. If neither a dash nor 0 are given, the converted argument is
right-justified in a field of size width, with leading blanks. The width is a
decimal integer. The converted argument is not modified if it has more
than width characters, or if width is not given.

The length modifier l can precede %d, %u, %o, and %x if the
corresponding argument is a 40-bit long integer. If the argument is a 32-
bit long integer (LgInt or LgUns), the l modifier should not be used.

SYS_vprintf is equivalent to SYS_printf, except that the optional set of
arguments is replaced by a va_list on which the standard C macro
va_start has already been applied. SYS_sprintf and SYS_vsprintf are
counterparts of SYS_printf and SYS_vprintf, respectively, in which output
is placed in a specified buffer.

Both SYS_printf and SYS_vprintf internally call the function SYS_putchar
to output individual characters via the Putc function configured in the SYS
Manager Properties. The default Putc function is _UTL_doPutc, which
writes a character to the system trace buffer. The size and memory
segment for the system trace buffer can also be set in the SYS Manager
Properties. This system trace buffer can be viewed only by looking for the
SYS_PUTCBEG symbol in the Code Composer Studio memory view.

Constraints and
Calling Context

❏ On a DSP with floating-point support, SYS_printf prints an error for
floating point numbers whose absolute value is greater than the
maximum long int (defined as LONG_MAX in the <limits.h> ANSI
header). This is because the integer part is computed by simply
casting the float parameter to a long int local variable.

❏ On a DSP with floating-point support, SYS_printf only prints four
digits after the decimal point for floating point numbers. Since
SYS_printf does not support %e, floating point numbers have to be
scaled approximately before being passed to SYS_printf.

❏ The function bound to Exit function or any of the handler functions
are not reentrant; SYS_exit must be called atomically.

See Also SYS_printf
SYS_sprintf
SYS_vsprintf
Application Program Interface 2-345

SYS_vsprintf
C Interface

Syntax SYS_vsprintf(buffer, format, vargs);

Parameters String buffer; /* output buffer */
String format; /* format specification string */
va_list vargs; /* variable argument list reference */

Return Value Void

Assembly Interface none

Description SYS_vsprintf provides a subset of the capabilities found in the standard
C library function printf.

Note:

SYS_vsprintf and the related functions are code-intensive. If possible,
applications should use LOG Module functions to reduce code size and
execution time.

Conversion specifications begin with a % and end with a conversion
character. The conversion characters recognized by SYS_vsprintf are
limited to the characters in Table 2-9.

Table 2-9. Conversion Characters Recognized by SYS_vsprintf

SYS_vsprintf Output formatted data

Character Corresponding Output Format

d signed decimal integer

u unsigned decimal integer

f decimal floating point

o octal integer

x hexadecimal integer

c single character

s NULL-terminated string

p pointer
2-346

SYS_vsprintf
Between the % and the conversion character, the following symbols or
specifiers contained within square brackets can appear, in the order
shown.

%[-][0][width]type
A dash (-) symbol causes the converted argument to be left-justified
within a field of width characters with blanks following. A 0 (zero) causes
the converted argument to be right-justified within a field of size width with
leading 0s. If neither a dash nor 0 are given, the converted argument is
right-justified in a field of size width, with leading blanks. The width is a
decimal integer. The converted argument is not modified if it has more
than width characters, or if width is not given.

The length modifier l can precede %d, %u, %o, and %x if the
corresponding argument is a 40-bit long integer. If the argument is a 32-
bit long integer (LgInt or LgUns), the l modifier should not be used.

SYS_vprintf is equivalent to SYS_printf, except that the optional set of
arguments is replaced by a va_list on which the standard C macro
va_start has already been applied. SYS_sprintf and SYS_vsprintf are
counterparts of SYS_printf and SYS_vprintf, respectively, in which output
is placed in a specified buffer.

Both SYS_printf and SYS_vprintf internally call the function SYS_putchar
to output individual characters in a system-dependent fashion via the
configuration parameter Putc function. This parameter is bound to a
function that displays output on a debugger if one is running, or places
output in an output buffer between PUTCEND and PUTCBEG.

Constraints and
Calling Context

❏ On a DSP with floating-point support, SYS_printf prints an error for
floating point numbers whose absolute value is greater than the
maximum long int (defined as LONG_MAX in the <limits.h> ANSI
header). This is because the integer part is computed by simply
casting the float parameter to a long int local variable.

❏ On a DSP with floating-point support, SYS_printf only prints four
digits after the decimal point for floating point numbers. Since
SYS_printf does not support %e, floating point numbers have to be
scaled approximately before being passed to SYS_printf.

❏ The function bound to Exit function or any of the handler functions
are not reentrant; SYS_exit must be called atomically.

See Also SYS_printf
SYS_sprintf
SYS_vprintf
Application Program Interface 2-347

SYS_putchar
C Interface

Syntax SYS_putchar(c);

Parameters Char c; /* next output character */

Return Value Void

Assembly Interface none

Description SYS_putchar outputs the character c by calling the system-dependent
function bound to the configuration parameter Putc function.

((Putc function))(c)
For systems with limited I/O capabilities, the function bound to Putc
function might simply place c into a global buffer that can be examined
after program termination.

The default Putc function for the SYS manager is _UTL_doPutc, which
writes a character to the system trace buffer. The size and memory
segment for the system trace buffer can be set in the SYS Manager
Properties. This system trace buffer can be viewed only by looking for the
SYS_PUTCBEG symbol in the Code Composer Studio memory view.

SYS_putchar is also used internally by SYS_printf and SYS_vprintf when
generating their output.

Constraints and
Calling Context

❏ If the function bound to Putc function is not reentrant, SYS_putchar
must be called atomically.

See Also SYS_printf

SYS_putchar Output a single character
2-348

TRC Module
2.24 TRC Module

The TRC module is the trace manager.

Functions ❏ TRC_disable. Disable trace class(es)

❏ TRC_enable. Enable trace type(s)

❏ TRC_query. Query trace class(es)

Description The TRC module manages a set of trace control bits which control the
real-time capture of program information through event logs and statistics
accumulators. For greater efficiency, the target does not store log or
statistics information unless tracing is enabled.

Table 2-10 lists events and statistics that can be traced. The constants
defined in trc.h, trc.h62, and trc.h64are shown in the left column.

Table 2-10. Events and Statistics Traced by TRC

Constant Tracing Enabled/Disabled Default

TRC_LOGCLK Log timer interrupts off

TRC_LOGPRD Log periodic ticks and start of periodic functions off

TRC_LOGSWI Log events when a software interrupt is posted and completes off

TRC_LOGTSK Log events when a task is made ready, starts, becomes blocked, resumes off

TRC_STSHWI Gather statistics on monitored values within HWIs off

TRC_STSPIP Count number of frames read from or written to data pipe off

TRC_STSPRD Gather statistics on number of ticks elapsed during execution off

TRC_STSSWI Gather statistics on length of SWI execution off

TRC_STSTSK Gather statistics on length of TSK execution. Statistics are gathered from
the time TSK is made ready to run until the application calls TSK_deltatime.

off

TRC_USER0
 and
TRC_USER1

Your program can use these bits to enable or disable sets of explicit instru-
mentation actions. You can use TRC_query to check the settings of these
bits and either perform or omit instrumentation calls based on the result.

off

TRC_GBLHOST This bit must be set in order for any implicit instrumentation to be performed.
Simultaneously starts or stops gathering of all enabled types of tracing. This
can be important if you are trying to correlate events of different types. This

off

TRC_GBLTARG This bit must also be set for any implicit instrumentation to be performed.
This bit can only be set by the target program and is enabled by default.

on

TRC_STSSWI Gather statistics on length of SWI execution off
Application Program Interface 2-349

TRC Module
All trace constants except TRC_GBLTARG are switched off initially. To
enable tracing you can use calls to TRC_enable or the DSP/BIOS→RTA
Control Panel, which uses the TRC module internally. You do not need to
enable tracing for messages written with LOG_printf or LOG_event and
statistics added with STS_add or STS_delta.

Your program can call the TRC_enable and TRC_disable operations to
explicitly start and stop event logging or statistics accumulation in
response to conditions encountered during real-time execution. This
enables you to preserve the specific log or statistics information you need
to see.

TRC - Code Composer
Studio Interface

You can choose DSP/BIOS→RTA Control Panel to open a window that
allows you to control run-time tracing.

Once you have enabled tracing, you can use DSP/BIOS→Execution
Graph and DSP/BIOS→Event Log to see log information, and
DSP/BIOS→Statistics View to see statistical information.

You can also control how frequently the host polls the target for trace
information. Right-click on the RTA Control Panel and choose the
Property Page to set the refresh rate as seen in Figure 2-6. If you set the
refresh rate to 0, the host does not poll the target unless you right-click
on the RTA Control Panel and choose Refresh Window from the pop-up
menu
2-350

TRC Module
Figure 2-6. RTA Control Panel Properties Page

See the Code Composer Studio online tutorial for more information on
how to enable tracing in the RTA Control Panel.
Application Program Interface 2-351

TRC_disable
C Interface

Syntax TRC_disable(mask);

Parameters Uns mask; /* trace type constant mask */

Return Value Void

Assembly Interface

Syntax TRC_disable mask

Inputs mask

Preconditions constant - mask for trace types (TRC_LOGSWI, TRC_LOGPRD, ...)
b14 = address of the start of .bss
amr = 0

Postconditions none

Modifies a2, a4

Reentrant no

Description TRC_disable disables tracing of one or more trace types. Trace types are
specified with a 32-bit mask. (See the TRC Module topic for a list of
constants to use in the mask.)

The following C code would disable tracing of statistics for software
interrupts and periodic functions:

TRC_disable(TRC_LOGSWI | TRC_LOGPRD);
Internally, DSP/BIOS uses a bitwise AND NOT operation to disable
multiple trace types.

For example, you might want to use TRC_disable with a circular log and
disable tracing when an unwanted condition occurs. This allows test
equipment to retrieve the log events that happened just before this
condition started.

See Also TRC_enable
TRC_query
LOG_printf
LOG_event
STS_add
STS_delta

TRC_disable Disable trace class(es)
2-352

TRC_enable
C Interface

Syntax TRC_enable(mask);

Parameters Uns mask; /* trace type constant mask */

Return Value Void

Assembly Interface

Syntax TRC_enable mask

Inputs mask

Preconditions constant - mask for trace types (TRC_LOGSWI, TRC_LOGPRD, ...)
b14 = address of the start of .bss
amr = 0

Postconditions none

Modifies a2, a4

Reentrant no

Description TRC_enable enables tracing of one or more trace types. Trace types are
specified with a 32-bit mask. (See the TRC Module topic for a list of
constants to use in the mask.)

The following C code would enable tracing of statistics for software
interrupts and periodic functions:

TRC_enable(TRC_STSSWI | TRC_STSPRD);
Internally, DSP/BIOS uses a bitwise OR operation to enable multiple
trace types.

For example, you might want to use TRC_enable with a fixed log to
enable tracing when a specific condition occurs. This allows test
equipment to retrieve the log events that happened just after this
condition occurred.

See Also TRC_disable
TRC_query
LOG_printf
LOG_event
STS_add
STS_delta

TRC_enable Enable trace type(s)
Application Program Interface 2-353

TRC_query
C Interface

Syntax result = TRC_query(mask);

Parameters Uns mask; /* trace type constant mask */

Return Value Int result /* indicates whether all trace types enabled */

Assembly Interface

Syntax TRC_query mask

Inputs mask

Preconditions constant - mask for trace types
b14 = address of the start of .bss
amr = 0

Postconditions a4 == 0 if all trace types in the mask are enabled
a4 != 0 if any trace type in the mask is disabled

Modifies a2, a4

Reentrant yes

Description TRC_query determines whether particular trace types are enabled.
TRC_query returns 0 if all trace types in the mask are enabled. If any
trace types in the mask are disabled, TRC_query returns a value with a
bit set for each trace type in the mask that is disabled. (See the TRC
Module topic for a list of constants to use in the mask.)

Trace types are specified with a 32-bit mask. The full list of constants you
can use is included in the description of the TRC module.

For example, the following C code returns 0 if statistics tracing for the
PRD class is enabled:

result = TRC_query(TRC_STSPRD);
The following C code returns 0 if both logging and statistics tracing for the
SWI class are enabled:

result = TRC_query(TRC_LOGSWI | TRC_STSSWI);

TRC_query Query trace class(es)
2-354

TRC_query
Note that TRC_query does not return 0 unless the bits you are querying
and the TRC_GBLHOST and TRC_GBLTARG bits are set. TRC_query
returns non-zero if either TRC_GBLHOST or TRC_GBLTARG are
disabled. This is because no tracing is done unless these bits are set.

For example, if the TRC_GBLHOST, TRC_GBLTARG, and
TRC_LOGSWI bits are set, the following C code returns the results
shown:

result = TRC_query(TRC_LOGSWI) /* returns 0 */
result = TRC_query(TRC_LOGPRD) /* returns non-zero
*/
However, if only the TRC_GBLHOST and TRC_LOGSWI bits are set, the
same C code returns the results shown:

result = TRC_query(TRC_LOGSWI) /* returns non-zero
*/
result = TRC_query(TRC_LOGPRD) /* returns non-zero
*/

See Also TRC_enable
TRC_disable
Application Program Interface 2-355

TSK Module
2.25 TSK Module

The TSK module is the task manager.

Functions ❏ TSK_checkstacks. Check for stack overflow

❏ TSK_create. Create a task ready for execution

❏ TSK_delete. Delete a task

❏ TSK_deltatime. Update task STS with time difference

❏ TSK_disable. Disable DSP/BIOS task scheduler

❏ TSK_enable. Enable DSP/BIOS task scheduler

❏ TSK_exit. Terminate execution of the current task

❏ TSK_getenv. Get task environment

❏ TSK_geterr. Get task error number

❏ TSK_getname. Get task name

❏ TSK_getpri. Get task priority

❏ TSK_getsts. Get task STS object

❏ TSK_itick. Advance system alarm clock (interrupt only)

❏ TSK_self. Get handle of currently executing task

❏ TSK_setenv. Set task environment

❏ TSK_seterr. Set task error number

❏ TSK_setpri. Set a task’s execution priority

❏ TSK_settime. Set task STS previous time

❏ TSK_sleep. Delay execution of the current task

❏ TSK_stat. Retrieve the status of a task

❏ TSK_tick. Advance system alarm clock

❏ TSK_time. Return current value of system clock

❏ TSK_yield. Yield processor to equal priority task

Task Hook Functions Void TSK_createFxn(TSK_Handle task);
Void TSK_deleteFxn(TSK_Handle task);
Void TSK_exitFxn(Void);
Void TSK_readyFxn(TSK_Handle newtask);
Void TSK_switchFxn(TSK_Handle oldtask,
 TSK_Handle newtask);
2-356

TSK Module
Constants, Types,
and Structures

typedef struct TSK_OBJ *TSK_Handle;
 /* handle for task object */

struct TSK_Attrs { /* task attributes */
 Int priority; /* execution priority */
 Ptr stack; /* pre-allocated stack */
 Uns stacksize; /* stack size in MADUs */
#ifdef
 Uns sysstacksize; system stack in MADUs */
#endif
 Int stackseg; /* memory seg for stack allocation */
 Ptr environ; /* global environment data structure */
 String name; /* printable name */
 Bool exitflag; /* program termination requires this */
 /* task to terminate */
 TSK_DBG_Mode debug /* indicates enum type TSK_DBG_YES */
 /* TSK_DBG_NO or TSK_DBG_MAYBE */
};

Int TSK_pid; /* MP processor ID */

Int TSK_MAXARGS = 8; /* maximum number of task arguments */
Int TSK_IDLEPRI = 0; /* used for idle task */
Int TSK_MINPRI = 1; /* minimum execution priority */
Int TSK_MAXPRI = 15; /* maximum execution priority */
Int TRG_STACKSTAMP = 0xBEBEBEBE
TSK_Attrs TSK_ATTRS = { /* default attribute values */
 TSK->PRIORITY, /* priority */
 NULL, /* stack */
 TSK->STACKSIZE, /* stacksize */
#ifdef
 TSK->SYSSTACKSIZE, /* system stacksize in MADUs */
#endif
 TSK->STACKSEG, /* stackseg */
 NULL, /* environ */
 "", /* name */
 TRUE, /* exitflag */
};

enum TSK_Mode { /* task execution modes */
 TSK_RUNNING, /* task is currently executing */
 TSK_READY, /* task is scheduled for execution */
 TSK_BLOCKED, /* task is suspended from execution */
 TSK_TERMINATED, /* task is terminated from execution */
};

struct TSK_Stat { /* task status structure */
 TSK_Attrs attrs; /* task attributes */
 TSK_Mode mode; /* task execution mode */
 Ptr sp; /* task stack pointer */
 Uns used; /* task stack used */
};
Application Program Interface 2-357

TSK Module
Configuration
Properties

The following list shows the properties that can be configured in a
DSP/BIOS TextConf script, along with their types and default values. For
details, see the TSK Manager Properties and TSK Object Properties
headings. For descriptions of data types, see Section 1.4, DSP/BIOS
TextConf Overview, page 1-4.

Module Configuration Parameters.

Instance Configuration Parameters.

Name Type Default (Enum Options)

ENABLETSK Bool true

OBJMEMSEG Reference prog.get("IDRAM")

STACKSIZE Int16 1024

STACKSEG Reference prog.get("IDRAM")

PRIORITY EnumInt 1 (1 to 15)

DRIVETSKTICK EnumString "PRD" ("User")

CREATEFXN Extern prog.extern("FXN_F_nop")

DELETEFXN Extern prog.extern("FXN_F_nop")

EXITFXN Extern prog.extern("FXN_F_nop")

CALLSWITCHFXN Bool false

SWITCHFXN Extern prog.extern("FXN_F_nop")

CALLREADYFXN Bool false

READYFXN Extern prog.extern("FXN_F_nop")

Name Type Default (Enum Options)

comment String "<add comments here>"

autoAllocateStack Bool true

manualStack Extern prog.extern("null","asm")

stackSize Int16 1024

stackMemSeg Reference prog.get("IDRAM")

priority EnumInt 0 (-1, 0, 1 to 15)

fxn Extern prog.extern("FXN_F_nop")

arg0 Arg 0

arg7 Arg 0

envPointer Arg 0x00000000

exitFlag Bool true

allocateTaskName Bool false
2-358

TSK Module
Description The TSK module makes available a set of functions that manipulate task
objects accessed through handles of type TSK_Handle. Tasks represent
independent threads of control that conceptually execute functions in
parallel within a single C program; in reality, concurrency is achieved by
switching the processor from one task to the next.

When you create a task, it is provided with its own run-time stack, used
for storing local variables as well as for further nesting of function calls.
The TRG_STACKSTAMP value is used to initialize the run-time stack.
Each stack must be large enough to handle normal subroutine calls as
well as a single task preemption context. A task preemption context is the
context that gets saved when one task preempts another as a result of
an interrupt thread readying a higher-priority task. All tasks executing
within a single program share a common set of global variables,
accessed according to the standard rules of scope defined for C
functions.

Each task is in one of four modes of execution at any point in time:
running, ready, blocked, or terminated. By design, there is always one
(and only one) task currently running, even if it is a dummy idle task
managed internally by TSK. The current task can be suspended from
execution by calling certain TSK functions, as well as functions provided
by other modules like the SEM Module and the SIO Module; the current
task can also terminate its own execution. In either case, the processor
is switched to the next task that is ready to run.

You can assign numeric priorities to tasks through TSK. Tasks are
readied for execution in strict priority order; tasks of the same priority are
scheduled on a first-come, first-served basis. As a rule, the priority of the
currently running task is never lower than the priority of any ready task.
Conversely, the running task is preempted and re-scheduled for
execution whenever there exists some ready task of higher priority.

You can use the DSP/BIOS Configuration Tool to specify one or more
sets of application-wide hook functions that run whenever a task state
changes in a particular way. For the TSK module, these functions are the
Create, Delete, Exit, Switch, and Ready functions. The HOOK module
adds an additional Initialization function.

A single set of hook functions can be specified for the TSK module itself.
To create additional sets of hook functions, use the HOOK Module. When
you create the first HOOK object, any TSK module hook functions you
have specified are automatically placed in a HOOK object called
HOOK_KNL. To set any properties of this object other than the
Initialization function, use the TSK module properties. To set the
Application Program Interface 2-359

TSK Module
Initialization function property of the HOOK_KNL object, use the HOOK
object properties. If you configure only a single set of hook functions
using the TSK module, the HOOK module is not used.

The TSK_create topic describes the Create function. The TSK_delete
topic describes the Delete function. The TSK_exit topic describes the Exit
function.

If a Switch function is specified, it is invoked when a new task becomes
the TSK_RUNNING task. The Switch function gives the application
access to both the current and next task handles at task switch time. The
function should use these argument types:

Void mySwitchFxn(TSK_Handle currTask,
 TSK_Handle nextTask);
This function can be used to save/restore additional task context (for
example, external hardware registers), to check for task stack overflow,
to monitor the time used by each task, etc.

If a Ready function is specified, it is invoked whenever a task is made
ready to run. Even if a higher-priority thread is running, the Ready
function runs. The Ready function is called with a handle to the task being
made ready to run as its argument. This example function prints the
name of both the task that is ready to run and the task that is currently
running:

Void myReadyFxn(TSK_Handle task)
{
 String nextName, currName;
 TSK_Handle currTask = TSK_self();

 nextName = TSK_getname(task);
 LOG_printf(&trace, “Task %s Ready”, nextName);

 currName = TSK_getname(currTask);
 LOG_printf(&trace, “Task %s Running”, currName);
}
The Switch function and Ready function are called in such a way that they
can use only functions allowed within a software interrupt handler. See
Appendix A, Function Callability and Error Tables, for a list of functions
that can be called by SWI handlers. There are no real constraints on what
functions are called via the Create function, Delete function, or Exit
function.

TSK Manager
Properties

The following global properties can be set for the TSK module in the TSK
Manager Properties dialog of the Configuration Tool or in a DSP/BIOS
TextConf script:
2-360

TSK Module
❏ Enable TSK Manager. If no tasks are used by the program other
than TSK_idle, you can optimize the program by disabling the task
manager. The program must then not use TSK objects created with
either the Configuration Tool or the TSK_create function. If the task
manager is disabled, the idle loop still runs and uses the system
stack instead of a task stack.
TextConf Name: ENABLETSK Type: Bool

Example: TSK.ENABLETSK = true;
❏ Object Memory. The memory segment that contains the TSK

objects created with the Configuration Tool.
TextConf Name: OBJMEMSEG Type: Ref

Example: TSK.OBJMEMSEG = prog.get("myMEM");
❏ Default stack size. The default size of the stack (in MADUs) used by

tasks. You can override this value for an individual task you create
with the Configuration Tool or TSK_create. The estimated minimum
task size is shown in the status bar of the Configuration Tool.
This property applies to TSK objects created both with the
Configuration Tool and with TSK_create.
TextConf Name: STACKSIZE Type: Int

Example: TSK.STACKSIZE = 1024;
❏ Stack segment for dynamic tasks. The default memory segment to

contain task objects created at run-time with the TSK_create
function. The TSK_Attrs structure passed to the TSK_create function
can override this default. If you select MEM_NULL for this property,
creation of task objects at run-time is disabled.
TextConf Name: STACKSEG Type: Ref

Example: TSK.STACKSEG = prog.get("myMEM");
❏ Default task priority. The default priority level for tasks that are

created dynamically with TSK_create.
This property applies to TSK objects created both with the
Configuration Tool and with TSK_create.
TextConf Name: PRIORITY Type: EnumInt

Options: 1 to 15
Example: TSK.PRIORITY = 1;
Application Program Interface 2-361

TSK Module
❏ TSK tick driven by. Choose whether you want the system clock to
be driven by the PRD module or by calls to TSK_tick and TSK_itick.
This clock is used by TSK_sleep and functions such as SEM_pend
that accept a timeout argument.
TextConf Name: DRIVETSKTICK Type: EnumString

Options: "PRD", "User"
Example: TSK.DRIVETSKTICK = "PRD";

❏ Create function. The name of a function to call when any task is
created. This includes tasks that are created statically in the
DSP/BIOS Configuration Tool and those created dynamically using
TSK_create. If the Create function is written in C, use a leading
underscore before the C function name. (The Configuration Tool
generates assembly code which must use the leading underscore
when referencing C functions or labels.) The TSK_create topic
describes the Create function.
TextConf Name: CREATEFXN Type: Extern

Example: TSK.CREATEFXN =
prog.extern("tskCreate");

❏ Delete function. The name of a function to call when any task is
deleted at run-time with TSK_delete. If this function is written in C,
use a leading underscore before the C function name. The
TSK_delete topic describes the Delete function.
TextConf Name: DELETEFXN Type: Extern

Example: TSK.DELETEFXN =
prog.extern("tskDelete");

❏ Exit function. The name of a function to call when any task exits. If
this function is written in C, use a leading underscore before the C
function name. The TSK_exit topic describes the Exit function.
TextConf Name: EXITFXN Type: Extern

Example: TSK.EXITFXN =
prog.extern("tskExit");

❏ Call switch function. Check this box if you want a function to be
called when any task switch occurs.
TextConf Name: CALLSWITCHFXN Type: Bool

Example: TSK.CALLSWITCHFXN = false;
2-362

TSK Module
❏ Switch function. The name of a function to call when any task switch
occurs. This function can give the application access to both the
current and next task handles. If this function is written in C, use a
leading underscore before the C function name. The TSK Module
topic describes the Switch function.
TextConf Name: SWITCHFXN Type: Extern

Example: TSK.SWITCHFXN =
prog.extern("tskSwitch");

❏ Call ready function. Check this box if you want a function to be
called when any task becomes ready to run.
TextConf Name: CALLREADYFXN Type: Bool

Example: TSK.CALLREADYFXN = false;
❏ Ready function. The name of a function to call when any task

becomes ready to run. If this function is written in C, use a leading
underscore before the C function name. The TSK Module topic
describes the Ready function.
TextConf Name: READYFXN Type: Extern

Example: TSK.READYFXN =
prog.extern("tskReady");

TSK Object Properties To create a TSK object in a configuration script, use the following syntax.
The DSP/BIOS TextConf examples that follow assume the object has
been created as shown here.

var myTsk = TSK.create("myTsk");
The following properties can be set for a TSK object in the TSK Object
Properties dialog of the Configuration Tool or in a DSP/BIOS TextConf
script:

General tab ❏ comment. Type a comment to identify this TSK object.
TextConf Name: comment Type: String

Example: myTsk.comment = "my TSK";
❏ Automatically allocate stack. Check this box if you want the task’s

private stack space to be allocated automatically when this task is
created. The task’s context is saved in this stack before any higher-
priority task is allowed to block this task and run.
TextConf Name: autoAllocateStack Type: Bool

Example: myTsk.autoAllocateStack = true;
Application Program Interface 2-363

TSK Module
❏ Manually allocated stack. If you did not check the box to
Automatically allocate stack, type the name of the manually allocated
stack to use for this task. If the stack is defined in a C program, add
a leading underscore before the stack name.
TextConf Name: manualStack Type: Extern

Example: myTsk.manualStack =
prog.extern("myStack");

❏ Stack size. If you checked the box to Automatically allocate stack,
enter the size (in MADUs) of the stack space to allocate for this task.
Each stack must be large enough to handle normal subroutine calls
as well as a single task preemption context. A task preemption
context is the context that gets saved when one task preempts
another as a result of an interrupt thread readying a higher priority
task.
TextConf Name: stackSize Type: Int

Example: myTsk.stackSize = 1024;
❏ Stack Memory Segment. If you checked the box to Automatically

allocate stack, select the memory segment to contain the stack
space for this task.
TextConf Name: stackMemSeg Type: Ref

Example: myTsk.stackMemSeg =
prog.get("myMEM");

❏ Priority. The priority level for this task.
TextConf Name: priority Type: EnumInt

Options: -1, 0, 1 to 15
Example: myTsk.priority = 1;

Function tab ❏ Task function. The function to be executed when the task runs. If
this function is written in C, use a leading underscore before the C
function name. (The Configuration Tool generates assembly code
which must use the leading underscore when referencing C functions
or labels.)
TextConf Name: fxn Type: Extern

Example: myTsk.fxn = prog.extern("tskFxn");
❏ Task function argument 0-7. The arguments to pass to the task

function. Arguments can be integers or labels. For labels defined in
a C program, add a leading underscore before the label name.
TextConf Name: arg0 to arg7 Type: Arg

Example: myTsk.arg0 = 0;
2-364

TSK Module
Advanced tab ❏ Environment pointer. A pointer to a globally-defined data structure
this task can access. The task can get and set the task environment
pointer with the TSK_getenv and TSK_setenv functions. If this
structure is defined in C, use a leading underscore before the
structure name. If your program uses multiple HOOK objects,
HOOK_setenv allows you to set individual environment pointers for
each HOOK and TSK object combination.
TextConf Name: envPointer Type: Arg

Example: myTsk.envPointer = 0;
❏ Don’t shut down system while this task is still running. Check

this box if you do not want the application to be able to end if this task
is still running. The application can still abort. For example, you might
clear this box for a monitor task that collects data whenever all other
tasks are blocked. The application does not need to explicitly shut
down this task.
TextConf Name: exitFlag Type: Bool

Example: myTsk.exitFlag = true;
❏ Allocate Task Name on Target. Check this box if you want the

name of this TSK object to be retrievable by the TSK_getname
function. Clearing this box saves a small amount of memory. The task
name is available in analysis tools in either case.
TextConf Name: allocateTaskName Type: Bool

Example: myTsk.allocateTaskName = false;
TSK - DSP/BIOS
Analysis Tool Interface

The TSK tab of the Kernel/Object View shows information about task
objects.

To enable TSK logging, choosing DSP/BIOS→RTA Control Panel and
check the appropriate box. Then you can open the system log by
choosing View−>System Log. You see a graph of activity that includes
TSK function execution states.

Only TSK objects created with the Configuration Tool are traced. The
System Log graph includes time spent performing dynamically created
TSK functions in the Other Threads row.

You can also enable TSK accumulators in the RTA Control Panel. Then
you can choose DSP/BIOS→Statistics View, which lets you select
objects for which you want to see statistics. If you choose a TSK object,
you see statistics about the time elapsed from the time the TSK was
posted (made ready to run) until TSK_deltatime is called by the
application. See TSK_settime on page 2–387 and TSK_deltatime on
page 2–372, for more information on gathering statistics on TSK objects.
Application Program Interface 2-365

TSK_checkstacks
C Interface

Syntax TSK_checkstacks(oldtask, newtask);

Parameters TSK_Handle oldtask; /* handle of task switched from */
TSK_Handle newtask; /* handle of task switched to */

Return Value Void

Assembly Interface none

Description TSK_checkstacks calls SYS_abort with an error message if either
oldtask or newtask has a stack in which the last location no longer
contains the initial value TRG_STACKSTAMP. The presumption in one
case is that oldtask’s stack overflowed, and in the other that an invalid
store has corrupted newtask’s stack.

You can call TSK_checkstacks directly from your application. For
example, you can check the current task’s stack integrity at any time with
a call like the following:

TSK_checkstacks(TSK_self(), TSK_self());
However, it is more typical to call TSK_checkstacks in the task Switch
function specified for the TSK manager in your configuration file. This
provides stack checking at every context switch, with no alterations to
your source code.

If you want to perform other operations in the Switch function, you can do
so by writing your own function (myswitchfxn) and then calling
TSK_checkstacks from it.

Void myswitchfxn(TSK_Handle oldtask,
 TSK_Handle newtask)
{
 `your additional context switch operations`
 TSK_checkstacks(oldtask, newtask);
 ...
}

Constraints and
Calling Context

❏ TSK_checkstacks cannot be called from an HWI or SWI.

TSK_checkstacks Check for stack overflow
2-366

TSK_create
C Interface

Syntax task = TSK_create(fxn, attrs, [arg,] ...);

Parameters Fxn fxn; /* pointer to task function */
TSK_Attrs *attrs; /* pointer to task attributes */
Arg arg; /* task arguments */

Return Value TSK_Handle task; /* task object handle */

Assembly Interface none

Description TSK_create creates a new task object. If successful, TSK_create returns
the handle of the new task object. If unsuccessful, TSK_create returns
NULL unless it aborts (for example, because it directly or indirectly calls
SYS_error, and SYS_error is configured to abort).

The fxn parameter uses the Fxn type to pass a pointer to the function the
TSK object should run. For example, if myFxn is a function in your
program, you can create a TSK object to call that function as follows:

task = TSK_create((Fxn)myFxn, NULL);
You can use the DSP/BIOS Configuration Tool to specify an application-
wide Create function that runs whenever a task is created. This includes
tasks that are created statically in the Configuration Tool and those
created dynamically using TSK_create. The default Create function is a
no-op function.

For TSK objects created statically, the Create function is called during the
BIOS_start portion of the program startup process, which runs after the
main() function and before the program drops into the idle loop.

For TSK objects created dynamically, the Create function is called after
the task handle has been initialized but before the task has been placed
on its ready queue.

Any DSP/BIOS function can be called from the Create function.
DSP/BIOS passes the task handle of the task being created to your
Create function. Your Create function declaration should be similar to the
following:

Void myCreateFxn(TSK_Handle task);
The new task is placed in TSK_READY mode, and is scheduled to begin
concurrent execution of the following function call:

TSK_create Create a task ready for execution
Application Program Interface 2-367

TSK_create
(*fxn)(arg1, arg2, ... argN) /* N = TSK_MAXARGS = 8 */
As a result of being made ready to run, the task runs the application-wide
Ready function if one has been specified.

TSK_exit is automatically called if and when the task returns from fxn.

If attrs is NULL, the new task is assigned a default set of attributes.
Otherwise, the task’s attributes are specified through a structure of type
TSK_Attrs defined as follows:

struct TSK_Attrs {
 Int priority;
 Ptr stack;
 Uns stacksize;
#ifdef
 /* system stack size in MADUs*/
 Uns sysstacksize;
#endif
 Uns stackseg;
 Ptr environ;
 String name;
 Bool exitflag;
};
The priority attribute specifies the task’s execution priority and must be
less than or equal to TSK_MAXPRI (15); this attribute defaults to the
value of the configuration parameter Default task priority (preset to
TSK_MINPRI). If priority is less than 0, task is barred from execution until
its priority is raised at a later time by another task. A priority value of 0 is
reserved for the TSK_idle task defined in the default configuration. You
should not use a priority of 0 for any other tasks.

The stack attribute specifies a pre-allocated block of stacksize MADUs to
be used for the task’s private stack; this attribute defaults to NULL, in
which case the task’s stack is automatically allocated using MEM_alloc
from the memory segment given by the stackseg attribute.

The stacksize attribute specifies the number of MADUs to be allocated
for the task’s private stack; this attribute defaults to the value of the
configuration parameter Default stack size (preset to 1024). Each stack
must be large enough to handle normal subroutine calls as well as a
single task preemption context. A task preemption context is the context
that gets saved when one task preempts another as a result of an
interrupt thread readying a higher priority task.

The stackseg attribute specifies the memory segment to use when
allocating the task stack with MEM_alloc; this attribute defaults to the
value of the configuration parameter Default stack segment.
2-368

TSK_create
The environ attribute specifies the task’s global environment through a
generic pointer that references an arbitrary application-defined data
structure; this attribute defaults to NULL.

The name attribute specifies the task’s printable name, which is a NULL-
terminated character string; this attribute defaults to the empty string "".
This name can be returned by TSK_getname.

The exitflag attribute specifies whether or not the task must terminate
before the program as a whole can terminate; this attribute defaults to
TRUE.

All default attribute values are contained in the constant TSK_ATTRS,
which can be assigned to a variable of type TSK_Attrs prior to calling
TSK_create.

A task switch occurs when calling TSK_create if the priority of the new
task is greater than the priority of the current task.

TSK_create calls MEM_alloc to dynamically create the object’s data
structure. MEM_alloc must acquire a lock to the memory before
proceeding. If another thread already holds a lock to the memory, then
there is a context switch. The segment from which the object is allocated
is described by the DSP/BIOS objects property in the MEM Module, page
2–170.

Constraints and
Calling Context

❏ TSK_create cannot be called from a SWI or HWI.

❏ The fxn parameter and the name attribute cannot be NULL.

❏ The priority attribute must be less than or equal to TSK_MAXPRI and
greater than or equal to TSK_MINPRI. The priority can be less than
zero (0) for tasks that should not execute.

❏ The string referenced through the name attribute cannot be allocated
locally.

❏ The stackseg attribute must identify a valid memory segment.

❏ Task arguments passed to TSK_create cannot be greater than 32
bits in length; that is, 40-bit integers and Double or Long Double data
types cannot be passed as arguments to the TSK_create function.

❏ You can reduce the size of your application program by creating
objects with the Configuration Tool rather than using the XXX_create
functions.

See Also MEM_alloc
SYS_error
TSK_delete
TSK_exit
Application Program Interface 2-369

TSK_delete
C Interface

Syntax TSK_delete(task);

Parameters TSK_Handle task; /* task object handle */

Return Value Void

Assembly Interface none

Description TSK_delete removes the task from all internal queues and calls
MEM_free to free the task object and stack. task should be in a state that
does not violate any of the listed constraints.

If all remaining tasks have their exitflag attribute set to FALSE, DSP/BIOS
terminates the program as a whole by calling SYS_exit with a status code
of 0.

You can use the DSP/BIOS Configuration Tool to specify an application-
wide Delete function that runs whenever a task is deleted. The default
Delete function is a no-op function. The Delete function is called before
the task object has been removed from any internal queues and its object
and stack are freed. Any DSP/BIOS function can be called from the
Delete function. DSP/BIOS passes the task handle of the task being
deleted to your Delete function. Your Delete function declaration should
be similar to the following:

Void myDeleteFxn(TSK_Handle task);
TSK_delete calls MEM_free to delete the TSK object. MEM_free must
acquire a lock to the memory before proceeding. If another task already
holds a lock to the memory, then there is a context switch.

Note:

Unless the mode of the deleted task is TSK_TERMINATED,
TSK_delete should be called with care. For example, if the task has
obtained exclusive access to a resource, deleting the task makes the
resource unavailable.

Constraints and
Calling Context

❏ The task cannot be the currently executing task (TSK_self).

❏ TSK_delete cannot be called from a SWI or HWI.

TSK_delete Delete a task
2-370

TSK_delete
❏ No check is performed to prevent TSK_delete from being used on a
statically-created object. If a program attempts to delete a task object
that was created using the Configuration Tool, SYS_error is called.

See Also MEM_free
TSK_create
Application Program Interface 2-371

TSK_deltatime
C Interface

Syntax TSK_deltatime(task);

Parameters TSK_Handle task; /* task object handle */

Return Value Void

Assembly Interface none

Description This function accumulates the time difference from when a task is made
ready to the time TSK_deltatime is called. These time differences are
accumulated in the task’s internal STS object and can be used to
determine whether or not a task misses real-time deadlines.

If TSK_deltatime is not called by a task, its STS object is never updated
in the Statistics View, even if TSK accumulators are enabled in the RTA
Control Panel.

TSK statistics are handled differently than other statistics because TSK
functions typically run an infinite loop that blocks when waiting for other
threads. In contrast, HWI and SWI functions run to completion without
blocking. Because of this difference, DSP/BIOS allows programs to
identify the “beginning” of a TSK function’s processing loop by calling
TSK_settime and the “end” of the loop by calling TSK_deltatime.

For example, if a task waits for data and then processes the data, you
want to ensure that the time from when the data is made available until
the processing is complete is always less than a certain value. A loop
within the task can look something like the following:

Void task
{
 'do some startup work'

 /* Initialize time in task's
 STS object to current time */
 TSK_settime(TSK_self);

 for (;;) {
 /* Get data */
 SIO_get(...);

 'process data'

TSK_deltatime Update task statistics with difference between current time and time
task was made ready
2-372

TSK_deltatime
 /* Get time difference and
 add it to task's STS object */
 TSK_deltatime(TSK_self);
 }
}
In the example above, the task blocks on SIO_get and the device driver
posts a semaphore that readies the task. DSP/BIOS sets the task’s
statistics object with the current time when the semaphore becomes
available and the task is made ready to run. Thus, the call to
TSK_deltatime effectively measures the processing time of the task.

Constraints and
Calling Context

❏ The results of calls to TSK_deltatime and TSK_settime are displayed
in the Statistics View only if Enable TSK accumulators is selected in
the RTA Control Panel.

See Also TSK_getsts
TSK_settime
Application Program Interface 2-373

TSK_disable
C Interface

Syntax TSK_disable();

Parameters Void

Return Value Void

Assembly Interface none

Description TSK_disable disables the DSP/BIOS task scheduler. The current task
continues to execute (even if a higher priority task can become ready to
run) until TSK_enable is called.

TSK_disable does not disable interrupts, but is instead used before
disabling interrupts to make sure a context switch to another task does
not occur when interrupts are disabled.

TSK_disable maintains a count which allows nested calls to
TSK_disable. Task switching is not reenabled until TSK_enable has been
called as many times as TSK_disable. Calls to TSK_disable can be
nested.

Since TSK_disable can prohibit ready tasks of higher priority from
running it should not be used as a general means of mutual exclusion.
SEM Module semaphores should be used for mutual exclusion when
possible.

Constraints and
Calling Context

❏ No kernel operations that can cause the current task to block can be
made from within a TSK_disable/TSK_enable block. This includes
SEM_pend (unless timeout is 0), TSK_sleep, and TSK_yield.

❏ TSK_yield cannot be called within a TSK_disable/TSK_enable block.

❏ TSK_disable cannot be called from a SWI or HWI.

❏ TSK_disable cannot be called from the program’s main function.

See Also SEM Module
TSK_enable

TSK_disable Disable DSP/BIOS task scheduler
2-374

TSK_enable
C Interface

Syntax TSK_enable();

Parameters Void

Return Value Void

Assembly Interface none

Description TSK_enable is used to reenable the DSP/BIOS task scheduler after
TSK_disable has been called. Since TSK_disable calls can be nested,
the task scheduler is not enabled until TSK_enable is called the same
number of times as TSK_disable.

A task switch occurs when calling TSK_enable only if there exists a
TSK_READY task whose priority is greater than the currently executing
task.

Constraints and
Calling Context

❏ No kernel operations that can cause the current task to block can be
made from within a TSK_disable/TSK_enable block. This includes
SEM_pend (unless timeout is 0), TSK_sleep, and TSK_yield.

❏ TSK_enable cannot be called from a SWI or HWI.

❏ TSK_enable cannot be called from the program’s main function.

See Also SEM Module
TSK_disable

TSK_enable Enable DSP/BIOS task scheduler
Application Program Interface 2-375

TSK_exit
C Interface

Syntax TSK_exit();

Parameters Void

Return Value Void

Assembly Interface none

Description TSK_exit terminates execution of the current task, changing its mode
from TSK_RUNNING to TSK_TERMINATED. If all tasks have been
terminated, or if all remaining tasks have their exitflag attribute set to
FALSE, then DSP/BIOS terminates the program as a whole by calling the
function SYS_exit with a status code of 0.

TSK_exit is automatically called whenever a task returns from its top-
level function.

You can use the DSP/BIOS Configuration Tool to specify an application-
wide Exit function that runs whenever a task is terminated. The default
Exit function is a no-op function. The Exit function is called before the task
has been blocked and marked TSK_TERMINATED. Any DSP/BIOS
function can be called from an Exit function. Calling TSK_self within an
Exit function returns the task being exited. Your Exit function declaration
should be similar to the following:

Void myExitFxn(Void);
A task switch occurs when calling TSK_exit unless the program as a
whole is terminated.

Constraints and
Calling Context

❏ TSK_exit cannot be called from a SWI or HWI.

❏ TSK_exit cannot be called from the program’s main function.

See Also MEM_free
TSK_create
TSK_delete

TSK_exit Terminate execution of the current task
2-376

TSK_getenv
C Interface

Syntax environ = TSK_getenv(task);

Parameters TSK_Handle task; /* task object handle */

Return Value Ptr environ; /* task environment pointer */

Assembly Interface none

Description TSK_getenv returns the environment pointer of the specified task. The
environment pointer, environ, references an arbitrary application-defined
data structure.

If your program uses multiple HOOK objects, HOOK_getenv allows you
to get environment pointers you have set for a particular HOOK and TSK
object combination.

See Also HOOK_getenv
HOOK_setenv
TSK_setenv
TSK_seterr
TSK_setpri

TSK_getenv Get task environment pointer
Application Program Interface 2-377

TSK_geterr
C Interface

Syntax errno = TSK_geterr(task);

Parameters TSK_Handle task; /* task object handle */

Return Value Int errno; /* error number */

Assembly Interface none

Description Each task carries a task-specific error number. This number is initially
SYS_OK, but it can be changed by TSK_seterr. TSK_geterr returns the
current value of this number.

See Also SYS_error
TSK_setenv
TSK_seterr
TSK_setpri

TSK_geterr Get task error number
2-378

TSK_getname
C Interface

Syntax name = TSK_getname(task);

Parameters TSK_Handle task; /* task object handle */

Return Value String name; /* task name */

Assembly Interface none

Description TSK_getname returns the task’s name.

For tasks created with the Configuration Tool, the name is available to
this function only if the Allocate Task Name on Target box is checked in
the properties for this task. For tasks created with TSK_create,
TSK_getname returns the attrs.name field value, or an empty string if this
attribute was not specified.

See Also TSK_setenv
TSK_seterr
TSK_setpri

TSK_getname Get task name
Application Program Interface 2-379

TSK_getpri
C Interface

Syntax priority = TSK_getpri(task);

Parameters TSK_Handle task; /* task object handle */

Return Value Int priority; /* task priority */

Assembly Interface none

Description TSK_getpri returns the priority of task.

See Also TSK_setenv
TSK_seterr
TSK_setpri

TSK_getpri Get task priority
2-380

TSK_getsts
C Interface

Syntax sts = TSK_getsts(task);

Parameters TSK_Handle task; /* task object handle */

Return Value STS_Handle sts; /* statistics object handle */

Assembly Interface none

Description This function provides access to the task’s internal STS object. For
example, you can want the program to check the maximum value to see
if it has exceeded some value.

See Also TSK_deltatime
TSK_settime

TSK_getsts Get the handle of the task’s STS object
Application Program Interface 2-381

TSK_itick
C Interface

Syntax TSK_itick();

Parameters Void

Return Value Void

Assembly Interface none

Description TSK_itick increments the system alarm clock, and readies any tasks
blocked on TSK_sleep or SEM_pend whose timeout intervals have
expired.

Constraints and
Calling Context

❏ TSK_itick cannot be called by a TSK object.

❏ TSK_itick cannot be called from the program’s main function.

❏ When called within an HWI ISR, the code sequence calling TSK_itick
must be either wrapped within an HWI_enter/HWI_exit pair or
invoked by the HWI dispatcher.

See Also SEM_pend
TSK_sleep
TSK_tick

TSK_itick Advance the system alarm clock (interrupt use only)
2-382

TSK_self
C Interface

Syntax curtask = TSK_self();

Parameters Void

Return Value TSK_Handle curtask; /* handle for current task object */

Assembly Interface none

Description TSK_self returns the object handle for the currently executing task. This
function is useful when inspecting the object or when the current task
changes its own priority through TSK_setpri.

No task switch occurs when calling TSK_self.

See Also TSK_setpri

TSK_self Returns handle to the currently executing task
Application Program Interface 2-383

TSK_setenv
C Interface

Syntax TSK_setenv(task, environ);

Parameters TSK_Handle task; /* task object handle */
Ptr environ; /* task environment pointer */

Return Value Void

Assembly Interface none

Description TSK_setenv sets the task environment pointer to environ. The
environment pointer, environ, references an arbitrary application-defined
data structure.

If your program uses multiple HOOK objects, HOOK_setenv allows you
to set individual environment pointers for each HOOK and TSK object
combination.

See Also HOOK_getenv
HOOK_setenv
TSK_getenv
TSK_geterr

TSK_setenv Set task environment
2-384

TSK_seterr
C Interface

Syntax TSK_seterr(task, errno);

Parameters TSK_Handle task; /* task object handle */
Int errno; /* error number */

Return Value Void

Assembly Interface none

Description Each task carries a task-specific error number. This number is initially
SYS_OK, but can be changed to errno by calling TSK_seterr. TSK_geterr
returns the current value of this number.

See Also TSK_getenv
TSK_geterr

TSK_seterr Set task error number
Application Program Interface 2-385

TSK_setpri
C Interface

Syntax oldpri = TSK_setpri(task, newpri);

Parameters TSK_Handle task; /* task object handle */
Int newpri; /* task’s new priority */

Return Value Int oldpri; /* task’s old priority */

Assembly Interface none

Description TSK_setpri sets the execution priority of task to newpri, and returns that
task’s old priority value. Raising or lowering a task’s priority does not
necessarily force preemption and re-scheduling of the caller: tasks in the
TSK_BLOCKED mode remain suspended despite a change in priority;
and tasks in the TSK_READY mode gain control only if their (new) priority
is greater than that of the currently executing task.

The maximum value of newpri is TSK_MAXPRI(15). If the minimum value
of newpri is TSK_MINPRI(0). If newpri is less than 0, task is barred from
further execution until its priority is raised at a later time by another task;
if newpri equals TSK_MAXPRI, execution of task effectively locks out all
other program activity, except for the handling of interrupts.

The current task can change its own priority (and possibly preempt its
execution) by passing the output of TSK_self as the value of the task
parameter.

A context switch occurs when calling TSK_setpri if a task makes its own
priority lower than the priority of another currently ready task, or if the
currently executing task makes a ready task’s priority higher than its own
priority. TSK_setpri can be used for mutual exclusion.

Constraints and
Calling Context

❏ newpri must be less than or equal to TSK_MAXPRI.

❏ The task cannot be TSK_TERMINATED.

❏ The new priority should not be zero (0). This priority level is reserved
for the TSK_idle task.

See Also TSK_self
TSK_sleep

TSK_setpri Set a task’s execution priority
2-386

TSK_settime
C Interface

Syntax TSK_settime(task);

Parameters TSK_Handle task; /* task object handle */

Return Value Void

Assembly Interface none

Description Your application can call TSK_settime before a task enters its processing
loop in order to ensure your first call to TSK_deltatime is as accurate as
possible and doesn’t reflect the time difference since the time the task
was created. However, it is only necessary to call TSK_settime once for
initialization purposes. After initialization, DSP/BIOS sets the time value
of the task’s STS object every time the task is made ready to run.

TSK statistics are handled differently than other statistics because TSK
functions typically run an infinite loop that blocks when waiting for other
threads. In contrast, HWI and SWI functions run to completion without
blocking. Because of this difference, DSP/BIOS allows programs to
identify the “beginning” of a TSK function’s processing loop by calling
TSK_settime and the “end” of the loop by calling TSK_deltatime.

For example, a loop within the task can look something like the following:

Void task
{
 'do some startup work'

 /* Initialize task's STS object to current time */
 TSK_settime(TSK_self());

 for (;;) {
 /* Get data */
 SIO_get(...);

 'process data'

 /* Get time difference and
 add it to task's STS object */
 TSK_deltatime(TSK_self());
 }
}

TSK_settime Reset task statistics previous value to current time
Application Program Interface 2-387

TSK_settime
In the previous example, the task blocks on SIO_get and the device
driver posts a semaphore that readies the task. DSP/BIOS sets the task’s
statistics object with the current time when the semaphore becomes
available and the task is made ready to run. Thus, the call to
TSK_deltatime effectively measures the processing time of the task.

Constraints and
Calling Context

❏ TSK_settime cannot be called from the program’s main function.

❏ The results of calls to TSK_deltatime and TSK_settime are displayed
in the Statistics View only if Enable TSK accumulators is selected
within the RTA Control Panel.

See Also TSK_deltatime
TSK_getsts
2-388

TSK_sleep
C Interface

Syntax TSK_sleep(nticks);

Parameters Uns nticks; /* number of system clock ticks to sleep */

Return Value Void

Assembly Interface none

Description TSK_sleep changes the current task’s mode from TSK_RUNNING to
TSK_BLOCKED, and delays its execution for nticks increments of the
system clock. The actual time delayed can be up to 1 system clock tick
less than timeout due to granularity in system timekeeping.

After the specified period of time has elapsed, the task reverts to the
TSK_READY mode and is scheduled for execution.

A task switch always occurs when calling TSK_sleep if nticks > 0.

Constraints and
Calling Context

❏ TSK_sleep cannot be called from a SWI or HWI, or within a
TSK_disable / TSK_enable block.

❏ TSK_sleep cannot be called from the program’s main function.

❏ TSK_sleep should not be called from within an IDL function. Doing so
prevents analysis tools from gathering run-time information.

❏ nticks cannot be SYS_FOREVER.

TSK_sleep Delay execution of the current task
Application Program Interface 2-389

TSK_stat
C Interface

Syntax TSK_stat(task, statbuf);

Parameters TSK_Handle task; /* task object handle */
TSK_Stat *statbuf; /* pointer to task status structure */

Return Value Void

Assembly Interface none

Description TSK_stat retrieves attribute values and status information about task; the
current task can inquire about itself by passing the output of TSK_self as
the first argument to TSK_stat.

Status information is returned through statbuf, which references a
structure of type TSK_Stat defined as follows:

struct TSK_Stat { /* task status structure */
 TSK_Attrs attrs; /* task attributes */
 TSK_Mode mode; /* task execution mode */
 Ptr sp; /* task’s current stack pointer */
 Uns used; /* max number of words ever */
 /* used on the task stack */
};
When a task is preempted by a software or hardware interrupt, the task
execution mode returned for that task by TSK_stat is still TSK_RUNNING
because the task runs when the preemption ends.

TSK_stat has a non-deterministic execution time. As such, it is not
recommended to call this API from SWIs or HWIs.

Constraints and
Calling Context

❏ statbuf cannot be NULL.

See Also TSK_create

TSK_stat Retrieve the status of a task
2-390

TSK_tick
C Interface

Syntax TSK_tick();

Parameters Void

Return Value Void

Assembly Interface none

Description TSK_tick increments the system clock, and readies any tasks blocked on
TSK_sleep or SEM_pend whose timeout intervals have expired.
TSK_tick can be invoked by an ISR or by the currently executing task.
The latter is particularly useful for testing timeouts in a controlled
environment.

A task switch occurs when calling TSK_tick if the priority of any of the
readied tasks is greater than the priority of the currently executing task.

Constraints and
Calling Context

❏ When called within an HWI ISR, the code sequence calling TSK_tick
must be either wrapped within an HWI_enter/HWI_exit pair or
invoked by the HWI dispatcher.

See Also CLK Module
SEM_pend
TSK_itick
TSK_sleep

TSK_tick Advance the system alarm clock
Application Program Interface 2-391

TSK_time
C Interface

Syntax curtime = TSK_time();

Parameters Void

Return Value Uns curtime; /* current time */

Assembly Interface none

Description TSK_time returns the current value of the system alarm clock.

Note that since the system clock is usually updated asynchronously by
an interrupt service routine (via TSK_itick or TSK_tick), curtime can lag
behind the actual system time. This lag can be even greater if a higher
priority task preempts the current task between the call to TSK_time and
when its return value is used. Nevertheless, TSK_time is useful for
getting a rough idea of the current system time.

TSK_time Return current value of system clock
2-392

TSK_yield
C Interface

Syntax TSK_yield();

Parameters Void

Return Value Void

Assembly Interface none

Description TSK_yield yields the processor to another task of equal priority.

A task switch occurs when you call TSK_yield if there is an equal priority
task ready to run.

Constraints and
Calling Context

❏ When called within an HWI ISR, the code sequence calling
TSK_yield must be either wrapped within an HWI_enter/HWI_exit
pair or invoked by the HWI dispatcher.

❏ TSK_yield cannot be called from the program’s main function.

❏ TSK_yield should not be called from within a
TSK_disable/TSK_enable block.

See Also TSK_sleep

TSK_yield Yield processor to equal priority task
Application Program Interface 2-393

std.h and stdlib.h functions
2.26 std.h and stdlib.h functions

This section contains descriptions of special utility macros found in std.h
and DSP/BIOS standard library functions found in stdlib.h.

Macros ❏ ArgToInt. Cast an Arg type parameter as an integer type.

❏ ArgToPtr. Cast an Arg type parameter as a pointer type.

Functions ❏ atexit. Register an exit function.

❏ *calloc. Allocate and clear memory.

❏ exit. Call the exit functions registered by atexit.

❏ free.*getenv. Get environmental variable.

❏ *malloc. Allocate memory.

❏ *realloc. Reallocate a memory packet.

Syntax #include <std.h>
ArgToInt(arg)
ArgToPtr(arg)

#include <stdlib.h>
int atexit(void (*fcn)(void));
void *calloc(size_t nobj, size_t size);
void exit(int status);
void free(void *p);
char *getenv(char *name);
void *malloc(size_t size);
void *realloc(void *p, size_t size);

Description The DSP/BIOS library contains some C standard library functions which
supersede the library functions bundled with the C compiler. These
functions follow the ANSI C specification for parameters and return
values. Consult Kernighan and Ritchie for a complete description of
these functions.

The functions calloc, free, malloc, and realloc use MEM_alloc and
MEM_free (with segid = Segment for malloc/free) to allocate and free
memory.

getenv uses the _environ variable defined and initialized in the boot file
to search for a matching environment string.

exit calls the exit functions registered by atexit before calling SYS_exit.
2-394

std.h and stdlib.h functions
Many runtime support (RTS) functions use lock and unlock functions to
prevent reentrancy. However, DSP/BIOS SWI and HWI threads cannot
call LCK_pend and LCK_post unless the timeout is 0. As a result, RTS
functions that call LCK_pend must only be used outside the context of
SWI and HWI threads.

To determine whether a particular RTS function uses LCK_pend, refer to
the source code for that function shipped with CCStudio. The following
table shows some of the RTS functions that call LCK_pend in certain
versions of CCStudio:

fprintf printf vfprintf sprintf

vprintf vsprintf clock strftime

minit malloc realloc free

calloc rand srand getenv
Application Program Interface 2-395

Chapter 3

Utility Programs

This chapter provides documentation for TMS320C6000 utilities that can be used to examine various
files from the MS-DOS command line. These programs are provided with DSP/BIOS in the bin
subdirectory. Any other utilities that may occasionally reside in the bin subdirectory and not
documented here are for internal Texas Instruments’ use only.

cdbprint . 3–2
gconfgen . 3–3
nmti . 3–6
sectti . 3–7
sizeti . 3–8
vers . 3–9

Topic Page
3-1

cdbprint
Syntax cdbprint [-a] [-l] [-w] cdb-file

Description This utility reads a .cdb file created with the Configuration Tool and
creates a list of all the objects and parameters. This tool can be used to
compare two configuration files or to simply review the values of a single
configuration file.

The -a flag causes cdbprint to list all objects and fields including those
that are normally not visible (i.e., unconfigured objects and hidden fields).
Without this flag, cdbprint ignores unconfigured objects or modules as
well as any fields that are hidden.

The -l flag causes cdbprint to list the internal parameter names instead of
the labels used by the Configuration Tool. Without this flag, cdbprint lists
the labels used by the Configuration Tool.

The -w flag causes cdbprint to list only those parameters that can also be
modified in the Configuration Tool. Without this flag, cdbprint lists both
read-only and read-write parameters.

Example The following sequence of commands can be used to compare a
configuration file called test62.cdb to the default configuration provided
with DSP/BIOS:

cdbprint ../../include/bios62.cdb > original.txt
cdbprint test62.cdb > test62.txt
diff original.txt test62.txt

cdbprint Prints a listing of all parameters defined in a configuration file
3-2

gconfgen
Syntax gconfgen cdb-file

Description This command line utility reads a .cdb file (e.g. program.cdb) created with
the Configuration Tool, where program is the name of your project, or
program. The utility generates the target configuration files that are linked
with the rest of the application code.

When you save a configuration file, the following files are created.

❏ program.cdb. Stores configuration settings for use by the
Configuration Tool

❏ programcfg.cmd. Linker command file

❏ programcfg.h62. Assembly language header file included by
hellocfg.s62

❏ programcfg.s62. Assembly language source file

❏ programcfg_c.c. Source file to define Chip Support Library (CSL)
structures and properties. See the CSL documentation for more
information.

❏ programcfg.h. Header file to include CSL header files and declare
external variables for CSL objects. See the CSL documentation for
more information.

The .h62 and .s62 extensions are generated for C62, C64, and C67
devices.

This utility is useful when the build process is controlled by a scripted
mechanism, such as a make file, to generate the configuration source
files from the configuration database file (.cdb file). Caution should be
used, however, following product upgrades, since gconfgen does not
detect revision changes. After a product update, use the graphical
Configuration Tool to update your .cdb files to the new version. Once
updated, gconfgen can be used again to generate the target
configuration files.

Example You can use gconfgen from the makefiles provided with the DSP/BIOS
examples in the product distribution. To use gconfgen from the command
line or makefiles, use its full path (TI_DIR\plugins\bios\gconfgen) or add
its folder (TI_DIR\plugins\bios) to your PATH environment variable. (Note
that TI_DIR is the root directory of the product distribution).

*

gconfgen Reads a reads a .cdb file created with the Configuration Tool
Utility Programs 3-3

gconfgen
* Makefile for creation of program named by the
* PROG variable. The following naming conventions
* are used by this makefile:

* <prog>.asm - C62 assembly language source file
* <prog>.obj - C62 object file (compiled/assembled)
* <prog>.out - C62 executable (fully linked program)
* <prog>cfg.s62 - configuration assembly source file
 generated by Configuration Tool
* <prog>cfg.h62 - configuration assembly header file
 generated by Configuration Tool
* <prog>cfg.cmd - configuration linker command file
 generated by Configuration Tool
*

TI_DIR := $(subst \,/,$(TI_DIR))
include $(TI_DIR)/c6000/bios/include/c62rules.mak

*
* Compiler, assembler, and linker options.
*
* -g enable symbolic debugging

CC62OPTS = -g
AS62OPTS =
3-4

gconfgen
* -q quiet run

LD62OPTS = -q * -q quiet run
* Every BIOS program must be linked with:
* $(PROG)cfg.o62 - from assembling $(PROG)cfg.s62
* $(PROG)cfg.cmd - linker command file generated by
* Configuration Tool. If additional linker command
* files exist, $(PROG)cfg.cmd must appear first.
*
PROG = tsktest
OBJS = $(PROG)cfg.obj
LIBS =
CMDS = $(PROG)cfg.cmd
*
* Targets:
*
all:: $(PROG).out
$(PROG).out: $(OBJS) $(CMDS)
$(PROG)cfg.obj: $(PROG)cfg.h62
$(PROG).obj:
$(PROG)cfg.s62 $(PROG)cfg.h62 $(PROG)cfg.cmd ::
$(PROG).cdb $(TI_DIR)/plugins/bios/gconfgen
$(PROG).cdb
.clean clean::
 @ echo removing generated configuration files ...
 @$(REMOVE) -f $(PROG)cfg.s62 $(PROG)cfg.h62
$(PROG)cfg.cmd
 @ echo removing object files and binaries ...
 @$(REMOVE) -f *.obj *.out *.lst *.map
Utility Programs 3-5

nmti
Syntax nmti [file1 file2 ...]

Description nmti prints the symbol table (name list) for each TI executable file listed
on the command line. Executable files must be stored as COFF
(Common Object File Format) files.

If no files are listed, the file a.out is searched. The output is sent to stdout.
Note that both linked (executable) and unlinked (object) files can be
examined with nmti.

Each symbol name is preceded by its value (blanks if undefined) and one
of the following letters:

A absolute symbol

B bss segment symbol

D data segment symbol

E external symbol

S section name symbol

T text segment symbol

U undefined symbol

The letter is upper case if the symbol is external, and lower case if it is
local.

nmti Display symbols and values in a TI COFF file
3-6

sectti
Syntax sectti [-a] [file1 file2 ...]

Description sectti displays location and size information for all the sections in a TI
executable file. Executable files must be stored as COFF (Common
Object File Format) files.

All values are in hexadecimal. If no file names are given, a.out is
assumed. Note that both linked (executable) and unlinked (object) files
can be examined with sectti.

Using the -a flag causes sectti to display all program sections, including
sections used only on the target by the DSP/BIOS plug-ins. If you omit
the -a flag, sectti displays only the program sections that are loaded on
the target.

sectti Display information about sections in TI COFF files
Utility Programs 3-7

sizeti
Syntax sizeti[file1 file2 ...]

Description This utility prints the decimal number of MADUs required by all code
sections, all data sections, and the .bss and .stack sections for each
COFF file argument. If no file is specified, a.out is used. Note that both
linked (executable) and unlinked (object) files can be examined with this
utility.

All sections that are located in program memory are included as part of
the value reported by the sizeti utility.

sizeti Display the section sizes of an object file
3-8

vers
Syntax vers [file1 file2 ...]

Description The vers utility displays the version number of DSP/BIOS files installed in
your system. For example, the following command checks the version
number of the bios.a62 file in the lib sub-directory.

..\bin\vers bios.a62
bios.a62:
 *** library
 *** "date and time"
 *** bios-c06
 *** "version number"
The actual output from vers may contain additional lines of information.
To identify your software version number to Technical Support, use the
version number shown.

Note that both libraries and source files can be examined with vers.

vers Display version information for a DSP/BIOS source or library file
Utility Programs 3-9

Appendix A

Function Callability and Error Tables

This appendix provides tables describing TMS320C6000 errors and function callability.

A.1 Function Callability Table . A–2
A.2 DSP/BIOS Error Codes . A–8

Topic Page
A-1

Function Callability Table
A.1 Function Callability Table

Function

Interface
(C and/or
Assembly)

Callable
by
Tasks?

Callable
by SWI
Handlers?

Callable by
Hardware
ISRs?

Possible
Context
Switch?

ATM_andi C Yes Yes Yes No
ATM_andu C Yes Yes Yes No
ATM_cleari C Yes Yes Yes No
ATM_clearu C Yes Yes Yes No
ATM_deci C Yes Yes Yes No
ATM_decu C Yes Yes Yes No
ATM_inci C Yes Yes Yes No
ATM_incu C Yes Yes Yes No
ATM_ori C Yes Yes Yes No
ATM_oru C Yes Yes Yes No
ATM_seti C Yes Yes Yes No
ATM_setu C Yes Yes Yes No
C62_disableIER C, assembly Yes Yes Yes No
C62_enableIER C, assembly Yes Yes Yes No
C62_plug C Yes Yes Yes No
C64_disableIER C, assembly Yes Yes Yes No
C64_enableIER C, assembly Yes Yes Yes No
C64_plug C Yes Yes Yes No
CLK_countspms C, assembly Yes Yes Yes No
CLK_gethtime C, assembly Yes Yes Yes No
CLK_getltime C, assembly Yes Yes Yes No
CLK_getprd C, assembly Yes Yes Yes No
DEV_match C Yes Yes Yes No
GIO_abort C Yes No* No* Yes
GIO_control C Yes No* No* Yes
GIO_create C Yes No No No
GIO_delete C Yes No No Yes
GIO_flush C Yes No* No* Yes
GIO_init C Yes No No No
GIO_read C Yes No* No* Yes
GIO_submit C Yes Yes* Yes* Yes
A-2

Function Callability Table
GIO_write C Yes No* No* Yes
HOOK_getenv C Yes Yes Yes No
HOOK_setenv C Yes Yes Yes No
HST_getpipe C, assembly Yes Yes Yes No
HWI_disable C, assembly Yes Yes Yes No
HWI_dispatchPlug none Yes Yes Yes No
HWI_enable C, assembly Yes Yes Yes Yes*
HWI_enter assembly No No Yes No
HWI_exit assembly No No Yes Yes
HWI_restore C, assembly Yes Yes Yes Yes*
IDL_run C Yes No No No
LCK_create C Yes No No Yes*
LCK_delete C Yes No No Yes*
LCK_pend C Yes No No Yes*
LCK_post C Yes No No Yes*
LOG_disable C, assembly Yes Yes Yes No
LOG_enable C, assembly Yes Yes Yes No
LOG_error C, assembly Yes Yes Yes No
LOG_event C, assembly Yes Yes Yes No
LOG_message C, assembly Yes Yes Yes No
LOG_printf C, assembly Yes Yes Yes No
LOG_reset C, assembly Yes Yes Yes No
MBX_create C Yes No No Yes*
MBX_delete C Yes No No Yes*
MBX_pend C Yes Yes* Yes* Yes*
MBX_post C Yes Yes* Yes* Yes*
MEM_alloc C Yes No No Yes*
MEM_calloc C Yes No No Yes*
MEM_define C No No No No*
MEM_free C Yes No No Yes*
MEM_redefine C No No No No*
MEM_stat C Yes No No Yes*
MEM_valloc C Yes No No Yes*
PIP_alloc C, assembly Yes Yes Yes Yes

Function

Interface
(C and/or
Assembly)

Callable
by
Tasks?

Callable
by SWI
Handlers?

Callable by
Hardware
ISRs?

Possible
Context
Switch?
Function Callability and Error Tables A-3

Function Callability Table
PIP_free C, assembly Yes Yes Yes Yes
PIP_get C, assembly Yes Yes Yes Yes
PIP_getReaderAddr C, assembly Yes Yes Yes No
PIP_getReaderNumFrames C, assembly Yes Yes Yes No
PIP_getReaderSize C, assembly Yes Yes Yes No
PIP_getWriterAddr C, assembly Yes Yes Yes No
PIP_getWriterNumFrames C, assembly Yes Yes Yes No
PIP_getWriterSize C, assembly Yes Yes Yes No
PIP_peek C Yes Yes Yes No
PIP_get C, assembly Yes Yes Yes Yes
PIP_put C, assembly Yes Yes Yes Yes
PIP_reset C Yes Yes Yes Yes
PIP_setWriterSize C, assembly Yes Yes Yes No
PRD_getticks C, assembly Yes Yes Yes No
PRD_start C, assembly Yes Yes Yes No
PRD_stop C, assembly Yes Yes Yes No
PRD_tick C, assembly Yes Yes Yes Yes
QUE_create C Yes No No Yes*
QUE_delete C Yes No No Yes*
QUE_dequeue C Yes Yes Yes No
QUE_empty C Yes Yes Yes No
QUE_enqueue C Yes Yes Yes No
QUE_get C Yes Yes Yes No
QUE_head C Yes Yes Yes No
QUE_insert C Yes Yes Yes No
QUE_new C Yes Yes Yes No
QUE_next C Yes Yes Yes No
QUE_prev C Yes Yes Yes No
QUE_put C Yes Yes Yes No
QUE_remove C Yes Yes Yes No
RTDX_channelBusy C Yes Yes No No
RTDX_CreateInputChannel C Yes Yes No No
RTDX_CreateOutputChannel C Yes Yes No No
RTDX_disableInput C Yes Yes No No

Function

Interface
(C and/or
Assembly)

Callable
by
Tasks?

Callable
by SWI
Handlers?

Callable by
Hardware
ISRs?

Possible
Context
Switch?
A-4

Function Callability Table
RTDX_disableOutput C Yes Yes No No
RTDX_enableInput C Yes Yes No No
RTDX_enableOutput C Yes Yes No No
RTDX_isInputEnabled C Yes Yes No No
RTDX_isOutputEnabled C Yes Yes No No
RTDX_read C Yes Yes No No
RTDX_readNB C Yes Yes No No
RTDX_sizeofInput C Yes Yes No No
RTDX_write C Yes Yes No No
SEM_count C Yes Yes Yes No
SEM_create C Yes No No Yes*
SEM_delete C Yes No No Yes*
SEM_ipost C No Yes Yes No
SEM_new C Yes Yes Yes No
SEM_pend C Yes Yes* Yes* Yes*
SEM_post C Yes Yes Yes Yes*
SEM_reset C Yes No No No
SIO_bufsize C Yes Yes Yes No
SIO_create C Yes No No Yes*
SIO_ctrl C Yes Yes No No
SIO_delete C Yes No No Yes*
SIO_flush C Yes No No No
SIO_get C Yes No No Yes*
SIO_idle C Yes No No Yes*
SIO_issue C Yes Yes No No
SIO_put C Yes No No Yes*
SIO_ready C Yes Yes Yes No
SIO_reclaim C Yes Yes* No Yes*
SIO_segid C Yes Yes Yes No
SIO_select C Yes Yes* No Yes*
SIO_staticbuf C Yes Yes No No
STS_add C, assembly Yes Yes Yes No
STS_delta C, assembly Yes Yes Yes No
STS_reset C, assembly Yes Yes Yes No

Function

Interface
(C and/or
Assembly)

Callable
by
Tasks?

Callable
by SWI
Handlers?

Callable by
Hardware
ISRs?

Possible
Context
Switch?
Function Callability and Error Tables A-5

Function Callability Table
STS_set C, assembly Yes Yes Yes No
SWI_andn C, assembly Yes Yes Yes Yes*
SWI_andnHook C, assembly Yes Yes Yes Yes*
SWI_create C Yes No No Yes*
SWI_dec C, assembly Yes Yes Yes Yes*
SWI_delete C Yes No No Yes*
SWI_disable C, assembly Yes Yes No No
SWI_enable C, assembly Yes Yes No Yes*
SWI_getattrs C Yes Yes Yes No
SWI_getmbox C, assembly No Yes No No
SWI_getpri C, assembly Yes Yes Yes No
SWI_inc C, assembly Yes Yes Yes Yes*
SWI_or C, assembly Yes Yes Yes Yes*
SWI_orHook C, assembly Yes Yes Yes Yes*
SWI_post C, assembly Yes Yes Yes Yes*
SWI_raisepri C, assembly No Yes No No
SWI_restorepri C, assembly No Yes No Yes
SWI_self C, assembly No Yes No No
SWI_setattrs C Yes Yes Yes No
SYS_abort C Yes Yes Yes No
SYS_atexit C Yes Yes Yes No
SYS_error C Yes Yes Yes No
SYS_exit C Yes Yes Yes No
SYS_printf C Yes Yes Yes No
SYS_putchar C Yes Yes Yes No
SYS_sprintf C Yes Yes Yes No
SYS_vprintf C Yes Yes Yes No
SYS_vsprintf C Yes Yes Yes No
TRC_disable C, assembly Yes Yes Yes No
TRC_enable C, assembly Yes Yes Yes No
TRC_query C, assembly Yes Yes Yes No
TSK_checkstacks C Yes No No No
TSK_create C Yes No No Yes*
TSK_delete C Yes No No Yes*

Function

Interface
(C and/or
Assembly)

Callable
by
Tasks?

Callable
by SWI
Handlers?

Callable by
Hardware
ISRs?

Possible
Context
Switch?
A-6

Function Callability Table
Note: *See the appropriate API reference page for more information.

TSK_deltatime C Yes Yes Yes No
TSK_disable C Yes No No No
TSK_enable C Yes No No Yes*
TSK_exit C Yes No No Yes*
TSK_getenv C Yes Yes Yes No
TSK_geterr C Yes Yes Yes No
TSK_getname C Yes Yes Yes No
TSK_getpri C Yes Yes Yes No
TSK_getsts C Yes Yes Yes No
TSK_itick C No Yes Yes Yes
TSK_self C Yes Yes Yes No
TSK_setenv C Yes Yes Yes No
TSK_seterr C Yes Yes Yes No
TSK_setpri C Yes Yes Yes Yes*
TSK_settime C Yes Yes Yes No
TSK_sleep C Yes No No Yes*
TSK_stat C Yes Yes* Yes* No
TSK_tick C Yes Yes Yes Yes*
TSK_time C Yes Yes Yes No
TSK_yield C Yes Yes Yes Yes*

Function

Interface
(C and/or
Assembly)

Callable
by
Tasks?

Callable
by SWI
Handlers?

Callable by
Hardware
ISRs?

Possible
Context
Switch?
Function Callability and Error Tables A-7

DSP/BIOS Error Codes
A.2 DSP/BIOS Error Codes

Name Value SYS_Errors[Value]

SYS_OK 0 "(SYS_OK)”

SYS_EALLOC 1 "(SYS_EALLOC): segid = %d, size = %u, align = %u"
Memory allocation error.

SYS_EFREE 2
"(SYS_EFREE): segid = %d, ptr = ox%x, size = %u"
The memory free function associated with the indicated memory segment was
unable to free the indicated size of memory at the address indicated by ptr.

SYS_ENODEV 3 "(SYS_ENODEV): device not found"
The device being opened is not configured into the system.

SYS_EBUSY 4 "(SYS_EBUSY): device in use"
The device is already opened by the maximum number of users.

SYS_EINVAL 5 "(SYS_EINVAL): invalid parameter"
An invalid parameter was passed to the device.

SYS_EBADIO 6 "(SYS_EBADIO): device failure"
The device was unable to support the I/O operation.

SYS_EMODE 7
"(SYS_EMODE): invalid mode"
An attempt was made to open a device in an improper mode; e.g., an attempt
to open an input device for output.

SYS_EDOMAIN 8
"(SYS_EDOMAIN): domain error"
Used by SPOX-MATH when type of operation does not match vector or filter
type.

SYS_ETIMEOUT 9 "(SYS_ETIMEOUT): timeout error"
Used by device drivers to indicate that reclaim timed out.

SYS_EEOF 10 "(SYS_EEOF): end-of-file error"
Used by device drivers to indicate the end of a file.

SYS_EDEAD 11 "(SYS_EDEAD): previously deleted object"
An attempt was made to use an object that has been deleted.

SYS_EBADOBJ 12 "(SYS_EBADOBJ): invalid object"
An attempt was made to use an object that does not exist.

SYS_EUSER >=256 "(SYS EUSER): <user-defined string>"
User-defined error.
A-8

This is a draft version printed from file: apirefIX.fm on 10/28/02
Index
A
allocating

empty frame from pipe 2-192
API 1-2
application programming interface 1-2
arg 2-56
Arg data type 1-5
assembly

time 1-3
assembly language

callable functions (DSP/BIOS) A-2
calling C functions from 1-4

atexit 2-394
ATM module 2-2
ATM_andi 2-3
ATM_andu 2-4
ATM_cleari 2-5
ATM_clearu 2-6
ATM_deci 2-7
ATM_decu 2-8
ATM_inci 2-9
ATM_incu 2-10
ATM_ori 2-11
ATM_oru 2-12
ATM_seti 2-13
ATM_setu 2-14
atomic operations 2-218
atomic queue 2-218
atomic queues 2-218
average 2-287

B
background loop 2-134
board

options 2-95
boards

setting 2-95
Boolean values 1-5
buffered pipe manager 2-186
buffers

large 2-72

C
C functions

calling from assembly language 1-4
C_library_stdlib 2-394
C62 module 2-15
C62_disable

main description 2-16
C62_enableIER 2-18
C62_plug

main description 2-22
C64 Module 2-15
C64 module 2-15
C64_disableIER 2-17
C64_enableIER 2-20
C64_plug

main description 2-23
Call User Init Function property 2-96
callability A-2
calling context A-2

ATM functions 2-2
C62 functions 2-15
CLK functions 2-24
DEV functions 2-35
HST functions 2-107
HWI functions 2-114
IDL functions 2-134
LCK functions 2-138
MBX functions 2-159
PIP functions 2-186
PRD functions 2-208
QUE functions 2-217
SEM functions 2-251
SIO functions 2-261
SWI functions 2-299
SYS functions 2-333
TSK functions 2-356

calloc 2-142, 2-394
cdb files 3-3
CDB path relative to .out 2-97
cdbprint utility 3-2
channels 2-107

creating 2-107
Chip Support Library 2-96
Chip Support Library name 2-96
Index-1

 Index
chip type 2-95
class driver 2-63
CLK - Code Composer Studio Interface 2-28
CLK module 2-24

global properties 2-26
in Code Composer Studio 2-28
object properties 2-27
properties 2-26
trace types 2-349

CLK Object Properties 2-27
CLK_countspms 2-29
CLK_F_isr function 2-26
CLK_gethtime 2-30, 2-32
CLK_getltime 2-32
CLK_getprd 2-25, 2-34
clock 2-142
Clock Manager Properties 2-26
clocks

real time vs. data-driven 2-209
comment 2-28, 2-38, 2-61, 2-65, 2-71, 2-103, 2-109
configuration files 3-3

printing 3-2
Configuration Tool 1-4
Configure L2 Cache Control (c6x11 support 2-97
Configure Priority Queues 2-99
context

ATM functions 2-2
C62 functions 2-15
C64 functions 2-15
CLK functions 2-24
DEV functions 2-35
HST functions 2-107
HWI functions 2-114
IDL functions 2-134
LCK functions 2-138
MBX functions 2-159
PIP functions 2-186
PRD functions 2-208
QUE functions 2-217
SEM functions 2-251
SIO functions 2-261
SWI functions 2-299
SYS functions 2-333
TSK functions 2-356

context switch 1-4
conversion specifications 2-340, 2-342, 2-344, 2-

346
count 2-287
counts per millisecond 2-29
CPU Interrupt 2-26
CPU speed 2-95
create function 2-56

D
data channels 2-107

creating 2-107
data transfer 2-186
data types 1-5

Arg 1-5
Boolean 1-5
EnumInt 1-5
EnumString 1-5
Extern 1-5
Int 1-5
Int32 1-5
Numeric 1-5
Reference 1-5
String 1-5

delete function 2-56
den 2-56
DEV Manager Properties 2-37
DEV module 2-35

object properties 2-37
properties 2-37

DEV Object Properties 2-37
DEV_Device structure 2-40
DEV_Fxns 2-37
DEV_FXNS table 2-55, 2-63, 2-66, 2-67, 2-72, 2-74
DEV_Fxns table 2-38
DEV_match 2-40
device 2-52, 2-61, 2-64, 2-65, 2-71
device driver interface 2-35
device drivers 2-37
Device ID 2-38, 2-55, 2-63, 2-66, 2-67, 2-72, 2-74
device object

user-defined 2-37
device table 2-40
devices

empty 2-66
DGN 2-37
DGN driver 2-51
DGN module

object properties 2-52
properties 2-52

DGS 2-37
DGS driver 2-55
dgs.h 2-55
DHL 2-37
DHL driver 2-59
DHL Driver Properties 2-61
DHL module

object properties 2-61
properties 2-61

DHL Object Properties 2-61
DIO driver 2-63
DIO Driver Properties 2-64
DIO module
Index-2

Index
object properties 2-65
properties 2-64

DIO Object Properties 2-65
Directly configure on-device timer registers 2-27
disable

HWI 2-123
LOG 2-149
SWI 2-314
TRC 2-352

disabling
hardware interrupts 2-123
HWI 2-123
interrupt 2-123
LOG 2-149
message log 2-149
software interrupt 2-314
SWI 2-314
TRC 2-352

DMA channel 2-22
dmachan 2-22, 2-23
DNL 2-37
DNL driver 2-66
DOV 2-37
DOV driver 2-67
DPI 2-37
DPI driver 2-69
DPI Driver Properties 2-71
DPI module

properties 2-71
DPI Object Properties 2-71
driver 2-52, 2-61, 2-65
drivers 2-37, 2-52, 2-61, 2-64, 2-71

DGN 2-51
DGS 2-55
DHL 2-59
DIO 2-63
DNL 2-66
DOV 2-67
DPI 2-69
DST 2-72
DTR 2-74

DSP Endian Mode 2-96
DSP Speed In MHz (CLKOUT) 2-95
DSP Type 2-95
DSP/BIOS

modules 1-2
DST 2-37
DST driver 2-72
DTR 2-37
DTR driver 2-74
dtr.h 2-75
Dxx 2-37
Dxx_close 2-41
Dxx_ctrl 2-42

error handling 2-42

Dxx_idle 2-43
error handling 2-43

Dxx_init 2-44
Dxx_issue 2-45
Dxx_open 2-47
Dxx_ready 2-48
Dxx_reclaim 2-45, 2-49

error handling 2-49

E
enable

HWI 2-126
LOG 2-150
SWI 2-316
TRC 2-353

Enable All TRC Trace Event Classes 2-97
Enable CLK Manager 2-27
Enable Real Time Analysis 2-97
enabling

hardware interrupts 2-126
HWI 2-126, 2-133
interrupt 2-126
LOG 2-150
message log 2-150
software interrupt 2-316
SWI 2-316
TRC 2-353

endian mode 2-95, 2-96
enumerated data type 1-5
EnumInt data type 1-5
EnumString data type 1-5
environ 2-394
environment

getting 2-105
setting 2-106

Error Codes A-8
error handling

by Dxx_close 2-41
by Dxx_ctrl 2-42
by Dxx_idle 2-43
by Dxx_reclaim 2-49
error codes A-8

Execution Graph 2-28
exit 2-394
Extern data type 1-5
Extern object 1-5

F
files

.h 2-15
flush 2-43
Index-3

 Index
fprintf 2-142
frame

getting from pipe 2-195
peeking in pipe 2-203
putting in pipe 2-204

free 2-142, 2-394
function 2-28
function names 1-5
functions

list of 1-6

G
gconfgen utility 3-3
generator 2-51
generators 2-52
getenv 2-142, 2-394
GIO module 2-77

object properties 2-80
properties 2-80

GIO_abort 2-81
GIO_control 2-82
GIO_create 2-83
GIO_delete 2-85
GIO_flush 2-86
GIO_init 2-87
GIO_read 2-88
GIO_submit 2-90
GIO_write 2-92
global settings 2-94, 2-95
Global Settings Properties 2-95

H
hardware interrupt 2-114

callable functions A-2
hardware interrupts 2-114

disabling 2-123
enabling 2-126

hardware timer counter register ticks 2-25
high-resolution time 2-25, 2-30
hook functions 2-101
HOOK module 2-101

object properties 2-103
properties 2-103

HOOK_getenv 2-105
HOOK_setenv 2-106
host channels

creating 2-107
host data interface 2-107
host link driver 2-59
HST module 2-107

in Host Channel Control 2-111

object properties 2-108
properties 2-108

HST object
adding a new 2-59

HST_getpipe 2-112
HWI dispatcher 2-26
HWI module 2-114

in Execution Graph 2-122
object properties 2-119
properties 2-118
statistics units 2-287
trace types 2-349

HWI_disable 2-123
vs. instruction 1-3

HWI_dispatchplug 2-124
HWI_enable 2-126
HWI_enter 2-127
HWI_exit 2-130
HWI_restore 2-133

I
i16tof32/f32toi16 2-57
i16toi32/i32toi16 2-57
IDL module 2-134

in Execution Graph 2-136
object properties 2-136
properties 2-135

IDL_run 2-137
IDRAM0 memory segment 2-178
IDRAM1 memory segment 2-178
IER 2-16, 2-17, 2-18
Init Fxn 2-38, 2-55, 2-63, 2-66, 2-67, 2-72, 2-74
initialization 2-101
input stream 2-263
Instructions/Int 2-27
Int data type 1-5
Int32 data type 1-5
Interrupt Enable Register 2-16, 2-17, 2-18
Interrupt Service Fetch Packet 2-22, 2-23
interrupt service routines 2-114
Interrupt Service Table 2-22, 2-23
IPRAM memory segment 2-178
ISPF 2-22
ISRs 2-114
IST 2-22

L
L2 MAR 0-15 - bitmask used to initialize MARs 2-98
L2 Mode - CCFG(L2MODE) 2-98
L2 Requestor Priority - CCFG(P) 2-99
L2ALLOC queues 2-99
Index-4

Index
large buffers 2-72
LCK module 2-138

object properties 2-139
properties 2-138

LCK_create 2-140
LCK_delete 2-141
LCK_release 2-144
LCK_seize 2-142
LgInt type 2-341, 2-343, 2-345, 2-347
LgUns type 2-341, 2-343, 2-345, 2-347
localcopy 2-57
lock 2-138
LOG module 2-145

in Code Composer Studio 2-148
object properties 2-146
properties 2-146

LOG_disable 2-149
LOG_enable 2-150
LOG_error 2-151, 2-154
LOG_event 2-152
LOG_printf 2-155
LOG_reset 2-158
logged events 2-349
low-resolution clock 2-25
low-resolution time 2-24, 2-30, 2-32

M
MADU 2-169
mailbox 2-160

clear bits 2-304, 2-307
decrement 2-309, 2-311, 2-313, 2-317, 2-331
get value 2-319
increment 2-321
set bits 2-323, 2-325

malloc 2-142, 2-394
Max L2 Transfer Requests 2-99
maximum 2-287
MBX module 2-159

in Code Composer Studio 2-161
object properties 2-160
properties 2-160

MBX_create 2-162
MBX_delete 2-163
MBX_pend 2-164
MBX_post 2-165
MEM module 2-166

in Code Composer Studio 2-178
object properties 2-176
properties 2-169

MEM_alloc 2-179
MEM_calloc 2-179, 2-180, 2-185
MEM_define 2-181

MEM_free 2-182
MEM_NULL 2-169, 2-170, 2-361
MEM_redefine 2-183
MEM_stat 2-184
MEM_valloc 2-179, 2-180, 2-185
MHz 2-95
Microseconds/Int 2-27
Minimum Addressable Data Unit 2-169
minit 2-142
Mode 2-62
Modifies

definition of 1-3
modifies 1-3
modules 1-2

ATM 2-2
CLK 2-24
DEV 2-35
GBL 2-94
GIO 2-77
HOOK 2-101
HST 2-107
HWI 2-114
IDL 2-134
LCK 2-138
list of 1-2
LOG 2-145
MBX 2-159
MEM 2-166
PIP 2-186
PRD 2-208
QUE 2-217
RTDX 2-235
SEM 2-251
SIO 2-261
STS 2-286
SWI 2-299
SYS 2-333
TRC 2-349
TSK 2-356

modules, C62 2-15
modules, C64 2-15
multiprocessor application 2-71

N
naming conventions 1-2

properties 1-4
nmti utility 3-6
notifyReader function

use of HWI_enter 2-117
null driver 2-66
num 2-56
Numeric data type 1-5
Index-5

 Index
O
Object Memory 2-26
Object memory 2-61, 2-64
on-chip timer 2-24
on-device timer 2-25
operations

list of 1-6
output stream 2-263
overlap driver 2-67

P
packing/unpacking 2-55
Parameters 2-39, 2-55, 2-63, 2-66, 2-67, 2-72, 2-74
parameters

listing 3-2
vs. registers 1-3

period register 2-34
period register property 2-34
PIP module 2-186

in Code Composer Studio 2-191
object properties 2-189
properties 2-189
statistics units 2-287

PIP_alloc 2-192
PIP_free 2-194
PIP_get 2-195
PIP_getReaderAddr 2-197
PIP_getReaderNumFrames 2-198
PIP_getReaderSize 2-199
PIP_getWriterAddr 2-200
PIP_getWriterNumFrames 2-201
PIP_getWriterSize 2-202
PIP_peek 2-203
PIP_put 2-203, 2-204, 2-206
PIP_setWriterSize 2-207
pipe driver 2-69
pipe object 2-112
pipes 2-186
postconditions 1-3
posting

SWI module 2-299
SWI_post 2-327

posting software interrupts 2-300, 2-327
PRD module 2-208

in Code Composer Studio 2-211
object properties 2-210
properties 2-209
statistics units 2-287
trace types 2-349

PRD register 2-26, 2-27
PRD_getticks 2-212
PRD_start 2-213

PRD_stop 2-215
PRD_tick 2-216
Preconditions 1-3

definition of 1-3
preconditions 1-3
printf 2-142
printing configuration file 3-2
priorities 2-301
Program Cache Control 2-97
properties

CLK module 2-26
CLK object 2-27
DEV module 2-37
DEV object 2-37
DGN module 2-52
DGN object 2-52
DHL module 2-61
DHL object 2-61
DIO module 2-64
DIO object 2-65
DPI module 2-71
GIO module 2-80
GIO object 2-80
global 2-95
HOOK module 2-103
HOOK object 2-103
HST module 2-108
HST object 2-108
HWI module 2-118
HWI object 2-119
IDL module 2-135
IDL object 2-136
LCK module 2-138
LCK object 2-139
LOG module 2-146
LOG object 2-146
MBX module 2-160
MBX object 2-160
MEM module 2-169
MEM object 2-176
naming conventions 1-4
PIP module 2-189
PIP object 2-189
PRD module 2-209
PRD object 2-210
QUE module 2-218
QUE object 2-219
RTDX module 2-236
RTDX object 2-237
SEM module 2-252
SEM object 2-252
SIO module 2-263
STS module 2-289
STS object 2-289
SWI module 2-302
Index-6

Index
SWI object 2-302
SYS module 2-334
SYS object 2-335
TSK module 2-360
TSK object 2-363

Q
QUE module 2-217

object properties 2-219
properties 2-218

QUE_create 2-220
QUE_delete 2-222
QUE_dequeue 2-223
QUE_empty 2-224
QUE_enqueue 2-225
QUE_get 2-226
QUE_head 2-227
QUE_insert 2-228
QUE_new 2-229
QUE_next 2-230
QUE_prev 2-231
QUE_put 2-232
QUE_remove 2-233
queues 2-218

R
rand 2-142
read data 2-188
realloc 2-142, 2-394
recycling

PIP 2-194
recycling frame 2-194
Reference data type 1-5
registers

in Assembly Interface 1-3
modified 1-3
vs. parameters 1-3

resetting
LOG 2-158
message log 2-158

RTA Control Panel 2-28
RTDX Mode 2-236
RTDX module 2-235

object properties 2-237
properties 2-236

RTDX_bytesRead 2-249
RTDX_channelBusy 2-238
RTDX_CreateInputChannel 2-239, 2-240
RTDX_CreateOutputChannel 2-239, 2-240
RTDX_disableInput 2-241, 2-242, 2-243, 2-244
RTDX_disableOutput 2-241, 2-242, 2-243, 2-244

RTDX_enableInput 2-241, 2-242, 2-243, 2-244
RTDX_enableOutput 2-241, 2-242, 2-243, 2-244
RTDX_isInputEnabled 2-245, 2-246
RTDX_isOutputEnabled 2-245, 2-246
RTDX_read 2-247
RTDX_readNB 2-248
RTDX_write 2-250

S
SBSRAM memory segment 2-178
SDRAM0 memory segment 2-178
SDRAM1 memory segment 2-178
sections

in executable file 3-7
sectti utility 3-7
SEM module 2-251

in Code Composer Studio 2-252
object properties 2-252
properties 2-252

SEM_count 2-253
SEM_create 2-254
SEM_delete 2-255
SEM_ipost 2-256
SEM_new 2-257
SEM_pend 2-258
SEM_post 2-259
SEM_reset 2-260
semaphores 2-252
signal generator 2-51
signed integer

maximum 2-9
minimum 2-9

single-processor application 2-71
SIO module 2-261

properties 2-263
SIO_bufsize 2-267
SIO_create 2-268
SIO_ctrl 2-271
SIO_delete 2-272
SIO_flush 2-273
SIO_get 2-274
SIO_idle 2-275
SIO_issue 2-276
SIO_ISSUERECLAIM streaming model

and DPI 2-70
SIO_put 2-278
SIO_ready 2-279
SIO_reclaim 2-50, 2-280
SIO_segid 2-282
SIO_select 2-48, 2-283, 2-285
sizeti utility 3-8
software interrupt

callable functions A-2
Index-7

 Index
disabling 2-314
enabling 2-316
posting 2-327

software interrupts 2-299
split driver 2-72
sprintf 2-142
srand 2-142
stack

execution 2-302
stack overflow check 2-366
stackable driver 2-55
Stacking Device 2-50
starting periodic function 2-213
statistics

units 2-287, 2-349
status codes (DSP/BIOS) A-8
std.h 2-394
stdlib.h 2-394
stopping periodic function 2-215
streams 2-263
strftime 2-142
String data type 1-5
STS manager 2-235, 2-286
STS module 2-286

in Statistics View 2-291
object properties 2-289
properties 2-289

STS_add 2-293
STS_delta 2-294
STS_reset 2-296
STS_set 2-297
SWI module 2-299

disabling interrupts 2-314
enabling interrupts 2-316
in Code Composer Studio 2-303
object properties 2-302
posting interrupt 2-327
properties 2-302
statistics units 2-287
trace types 2-349

SWI_andn 2-304
SWI_andnHook 2-307
SWI_dec 2-309, 2-311, 2-313, 2-317, 2-331
SWI_disable 2-314
SWI_enable 2-316
SWI_getmbox 2-319
SWI_getpri 2-320
SWI_inc 2-321
SWI_or 2-323
SWI_orHook 2-325
SWI_post 2-327
SWI_raisepri 2-328
SWI_restorepri 2-329
SWI_self 2-330
switch context

functions that cause A-2
symbol table 3-6
SYS module 2-333

object properties 2-335
properties 2-334

SYS_abort 2-336
SYS_atexit 2-337
SYS_EALLOC A-8
SYS_EALLOC status A-8
SYS_EBADIO A-8
SYS_EBADIO status A-8
SYS_EBADOBJ A-8
SYS_EBADOBJ status A-8
SYS_EBUSY A-8
SYS_EBUSY status A-8
SYS_EDEAD A-8
SYS_EDEAD status A-8
SYS_EDOMAIN A-8
SYS_EDOMAIN status A-8
SYS_EEOF A-8
SYS_EEOF status A-8
SYS_EFREE A-8
SYS_EFREE status A-8
SYS_EINVAL A-8
SYS_EINVAL status A-8
SYS_EMODE A-8
SYS_ENODEV A-8
SYS_ENODEV status A-8
SYS_error 2-179, 2-180, 2-185, 2-220, 2-268, 2-

313, 2-338
SYS_ETIMEOUT 2-49, A-8
SYS_ETIMEOUT status A-8
SYS_EUSER 2-338, A-8
SYS_EUSER status A-8
SYS_exit 2-339
SYS_OK 2-41, A-8
SYS_OK status A-8
SYS_printf 2-340, 2-342, 2-344, 2-346
SYS_putchar 2-348
system 2-334
system clock manager 2-24

T
target board 2-95
task

callable functions A-2
task switch 2-19, 2-21
tasks

on demand 2-52
TDDR register 2-27
templates 2-37
tick

advancing counter 2-216
Index-8

Index
getting count 2-212
timer 2-24
timer interrupt 2-32
Timer Selection 2-27
total 2-287
trace types 2-349
transform function 2-55, 2-56
transform functions 2-55
transformer driver 2-74
transformers 2-74
TRC

disabling 2-352
enabling 2-353

TRC module 2-349
in DSP/BIOS analysis tools 2-350

TRC_disable 2-352
TRC_enable 2-353
TRC_query 2-354
true/false values 1-5
TSK module 2-356

in Code Composer Studio 2-365
object properties 2-363
properties 2-360
statistics units 2-287

TSK_checkstacks 2-366
TSK_create 2-367
TSK_delete 2-370
TSK_deltatime 2-372
TSK_disable 2-374
TSK_enable 2-375
TSK_exit 2-376
TSK_getenv 2-377
TSK_geterr 2-378
TSK_getname 2-379
TSK_getpri 2-380
TSK_getsts 2-381
TSK_itick 2-382
TSK_self 2-383
TSK_setenv 2-384
TSK_seterr 2-385
TSK_setpri 2-386
TSK_settime 2-387
TSK_sleep 2-389
TSK_stat 2-390

TSK_tick 2-391
TSK_time 2-392
TSK_yield 2-393

U
u16tou32/u32tou16 2-56
u32tou8/u8tou32 2-56
u8toi16/i16tou8 2-57
Underlying HST Channel 2-62
underscore 2-28, 2-38

in function names 1-4
units for statistics 2-287
unsigned integer 2-10

maximum 2-8, 2-10
minimum 2-8

Use high resolution time for internal timings 2-27
User Init Function property 2-96
USER traces 2-349
utilities

cdbprint 3-2
gconfgen 3-3
nmti 3-6
sectti 3-7
size 3-8
vers 3-9

V
vecid 2-22, 2-23
vers utility 3-9
version information 3-9
vfprintf 2-142
vprintf 2-142
vsprintf 2-142

W
write data 2-188
Index-9

	IMPORTANT NOTICE
	Read This First
	About This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Related Documentation
	Trademarks

	Contents
	Figures
	Tables
	API Functional Overview
	DSP/BIOS Modules
	Naming Conventions
	Assembly Language Interface Overview
	DSP/BIOS TextConf Overview
	List of Operations

	Application Program Interface
	ATM Module
	ATM_andi
	ATM_andu
	ATM_cleari
	ATM_clearu
	ATM_deci
	ATM_decu
	ATM_inci
	ATM_incu
	ATM_ori
	ATM_oru
	ATM_seti
	ATM_setu

	C62 and C64 Modules
	C62_disableIER
	C64_disableIER
	C62_enableIER
	C64_enableIER
	C62_plug
	C64_plug

	CLK Module
	CLK_countspms
	CLK_gethtime
	CLK_getltime
	CLK_getprd

	DEV Module
	DEV_match
	Dxx_close
	Dxx_ctrl
	Dxx_idle
	Dxx_init
	Dxx_issue
	Dxx_open
	Dxx_ready
	Dxx_reclaim
	DGN Driver
	DGS Driver
	DHL Driver
	DIO Adapter
	DNL Driver
	DOV Driver
	DPI Driver
	DST Driver
	DTR Driver

	GIO Module
	GIO_abort
	GIO_control
	GIO_create
	GIO_delete
	GIO_flush
	GIO_init
	GIO_read
	GIO_submit
	GIO_write

	Global Settings
	HOOK Module
	HOOK_getenv
	HOOK_setenv

	HST Module
	HST_getpipe

	HWI Module
	HWI_disable
	HWI_dispatchPlug
	HWI_enable
	HWI_enter
	HWI_exit
	HWI_restore

	IDL Module
	IDL_run

	LCK Module
	LCK_create
	LCK_delete
	LCK_pend
	LCK_post

	LOG Module
	LOG_disable
	LOG_enable
	LOG_error
	LOG_event
	LOG_message
	LOG_printf
	LOG_reset

	MBX Module
	MBX_create
	MBX_delete
	MBX_pend
	MBX_post

	MEM Module
	MEM_alloc
	MEM_calloc
	MEM_define
	MEM_free
	MEM_redefine
	MEM_stat
	MEM_valloc

	PIP Module
	PIP_alloc
	PIP_free
	PIP_get
	PIP_getReaderAddr
	PIP_getReaderNumFrames
	PIP_getReaderSize
	PIP_getWriterAddr
	PIP_getWriterNumFrames
	PIP_getWriterSize
	PIP_peek
	PIP_put
	PIP_reset
	PIP_setWriterSize

	PRD Module
	PRD_getticks
	PRD_start
	PRD_stop
	PRD_tick

	QUE Module
	QUE_create
	QUE_delete
	QUE_dequeue
	QUE_empty
	QUE_enqueue
	QUE_get
	QUE_head
	QUE_insert
	QUE_new
	QUE_next
	QUE_prev
	QUE_put
	QUE_remove

	RTDX Module
	RTDX_channelBusy
	RTDX_CreateInputChannel
	RTDX_CreateOutputChannel
	RTDX_disableInput
	RTDX_disableOutput
	RTDX_enableInput
	RTDX_enableOutput
	RTDX_isInputEnabled
	RTDX_isOutputEnabled
	RTDX_read
	RTDX_readNB
	RTDX_sizeofInput
	RTDX_write

	SEM Module
	SEM_count
	SEM_create
	SEM_delete
	SEM_ipost
	SEM_new
	SEM_pend
	SEM_post
	SEM_reset

	SIO Module
	SIO_bufsize
	SIO_create
	SIO_ctrl
	SIO_delete
	SIO_flush
	SIO_get
	SIO_idle
	SIO_issue
	SIO_put
	SIO_ready
	SIO_reclaim
	SIO_segid
	SIO_select
	SIO_staticbuf

	STS Module
	STS_add
	STS_delta
	STS_reset
	STS_set

	SWI Module
	SWI_andn
	SWI_andnHook
	SWI_create
	SWI_dec
	SWI_delete
	SWI_disable
	SWI_enable
	SWI_getattrs
	SWI_getmbox
	SWI_getpri
	SWI_inc
	SWI_or
	SWI_orHook
	SWI_post
	SWI_raisepri
	SWI_restorepri
	SWI_self
	SWI_setattrs

	SYS Module
	SYS_abort
	SYS_atexit
	SYS_error
	SYS_exit
	SYS_printf
	SYS_sprintf
	SYS_vprintf
	SYS_vsprintf
	SYS_putchar

	TRC Module
	TRC_disable
	TRC_enable
	TRC_query

	TSK Module
	TSK_checkstacks
	TSK_create
	TSK_delete
	TSK_deltatime
	TSK_disable
	TSK_enable
	TSK_exit
	TSK_getenv
	TSK_geterr
	TSK_getname
	TSK_getpri
	TSK_getsts
	TSK_itick
	TSK_self
	TSK_setenv
	TSK_seterr
	TSK_setpri
	TSK_settime
	TSK_sleep
	TSK_stat
	TSK_tick
	TSK_time
	TSK_yield

	std.h and stdlib.h functions

	Utility Programs
	cdbprint
	gconfgen
	nmti
	sectti
	sizeti
	vers

	Function Callability and Error Tables
	Function Callability Table
	DSP/BIOS Error Codes

	Index

