Name: Solutions

 Problem 1
 _____/10

 Problem 2
 _____/20

 Problem 3
 ______/10

 Problem 4
 ______/25

 Problem 5
 ______/25

 Problem 6
 _______/10

ECE 597: Probability, Random Processes, and Estimation Exam~#1

Thursday March 31, 2016

No calculators or computers allowed.

1) (10 points)) Assume we have a random variable X that takes on the values 1 and 0 with the probabilities

$$P(\mathbf{X} = 1) = \frac{2}{3}$$
$$P(\mathbf{X} = 0) = \frac{1}{3}$$

We now construct the new random variable Y as

$$\mathbf{Y} = 2\mathbf{X} + 3$$

Determine $\mu_{\mathbf{Y}}$ and $\sigma_{\mathbf{Y}}^2$

$$P(Y=5) = \frac{2}{3} \qquad P(Y=3) = \frac{1}{3}$$

$$M_{Y} = \frac{5 \cdot \frac{2}{3} + 3 \cdot \frac{1}{3}}{3} = \frac{10}{3} + \frac{3}{3} = \frac{13}{3} = \frac{11}{3} = \frac{11}{3}$$

$$E[Y] = \frac{5^{2} \cdot \frac{7}{3} + 3^{2} \cdot \frac{1}{3}}{3} = \frac{50}{3} + \frac{9}{3} = \frac{59}{3}$$

$$C_{Y}^{2} = E[Y] - M_{Y}^{2} = \frac{59}{3} - \frac{13}{3}^{2} = C_{Y}^{2}$$

2) (20 points) Assume we have the joint density

$$f_{\mathbf{X},\mathbf{Y}}(x,y) = 2ye^{-x} \quad 0 \le y \le 1, \ 0 \le x < \infty$$

Note: The ranges of X and Y are different

- a) Determine the marginal density $f_{\mathbf{X}}(x)$
- b) Determine the marginal density $f_{\mathbf{Y}}(y)$
- c) Are X and Y independent? Why or why not?
- d) Determine E[Y|X]

a)
$$f_{X}(x) = \int_{0}^{1} zy e^{-x} dy = e^{-x} \int_{0}^{1} zy dy = e^{-x} \left[y^{2} \right]_{0}^{1} = \left[e^{-x} = f_{X}(x) \right]_{0}^{1}$$

b)
$$f_{y|y} = \int_{0}^{\infty} 2ye^{-x}dx = 2y \int_{0}^{\infty} e^{-x}dx = 2y \left[-e^{-x} \right]_{0}^{\infty} = \left[2y = f_{y}(y) \right]_{0}^{\infty}$$

d)
$$f_{Y|X}(y|x) = \frac{f_{X|Y}(x|y)}{f_{X}(x)} = f_{Y}(y)$$

$$E[Y|X] = \int_{0}^{1} y f_{Y|X}(y|X) dy = \int_{0}^{1} f_{(2y)}(y) dy = \int_{0}^{1} 2y^{2} dy = \frac{2}{3}y^{3} \Big|_{0}^{1} = \frac{2}{3}y^{3}$$

3) (10 points) Assume \underline{X} and \underline{W} are random vectors, not necessarily of the same size. Assume also that K_{XX} , K_{WW} and K_{WX} are known. Now we make a new random vector

$$\mathbf{Y} = A\mathbf{X} + B\mathbf{W} + C$$

where A and B are constant matrices (not necessarily of the same size), and C is a constant vector. Determine an expression for K_{YY} in terms of these known quantities ONLY. Do not assume the means are zero.

Hint:
$$(FG)^T = G^T F^T$$

The two formulas may (or may not) be useful in the following problem.

The general formula for a multidimensional Gaussian density is

$$f_{\underline{\mathbf{X}}}(\underline{x}) = \frac{1}{(2\pi)^{\frac{n}{2}} \left[det(K_{\mathbf{X}\mathbf{X}})^{\frac{1}{2}} \right]} exp \left\{ -\frac{1}{2} (\underline{x} - \underline{\mu})^T K_{\mathbf{X}\mathbf{X}}^{-1} (\underline{x} - \underline{\mu}) \right\}$$

The inverse of a 2 x 2 matrix is given as

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

4) (25 points) Assume the random vector $\underline{\mathbf{X}} = [\mathbf{X}_1 \ \mathbf{X}_2]^T$ has the Gaussian density given by

$$f_{\underline{\mathbf{X}}}(\underline{x}) = \frac{1}{2\pi\sqrt{1}} exp\left\{-\frac{1}{2}\left[(x_1-1)^2 - 2(x_1-1)x_2 + 2x_2^2\right]\right\}$$

Determine μ and K_{XX}

5) (25 points) Assume \underline{X} is a zero mean random Gaussian vector with covariance

$$K_{\mathbf{XX}} = \begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix}$$

Assume we form the random vector Y using the transformation

$$Y = AX$$

where

$$A = \left[\begin{array}{cc} 1 & 2 \\ -2 & 1 \end{array} \right]$$

- a) Determine the resulting marginal pdf's, $f_{\mathbf{Y_1}}(y_1)$ and $f_{\mathbf{Y_2}}(y_2)$.
- b) If the mean value of X had been $\mu_{X} = \begin{bmatrix} 1 & -1 \end{bmatrix}^{T}$, determine the resulting mean value of Y

$$K_{yy} = AK_{xx}A^{T}$$

$$B = AK_{xx} = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 7 & 14 \\ -4 & 2 \end{bmatrix}$$

$$K_{yy} = BA^{T} = \begin{bmatrix} 7 & 14 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 35 & 0 \\ 0 & 10 \end{bmatrix}$$
or
$$B = K_{xy}A^{T} = \begin{bmatrix} 2 & 2 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 7 & -4 \\ 14 & 2 \end{bmatrix}$$

$$K_{yy} = AB = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 7 & -4 \\ 14 & 2 \end{bmatrix} = \begin{bmatrix} 25 & 0 \\ 0 & 10 \end{bmatrix}$$

$$K_{yy} = \frac{1}{350} \begin{bmatrix} 10 & 0 \\ 0 & 35 \end{bmatrix} = \begin{bmatrix} \frac{1}{35} & 0 \\ 0 & 10 \end{bmatrix} \qquad My = AMx = 0$$

$$F_{y} = \frac{1}{2\pi\sqrt{350}} e^{-\frac{1}{2}} \begin{bmatrix} 9 & \sqrt{3} \\ \sqrt{3} \end{bmatrix} \begin{bmatrix} \sqrt{35} & 0 \\ 0 & \sqrt{10} \end{bmatrix} \begin{bmatrix} \sqrt{35} & 0 \\ \sqrt{10} \end{bmatrix}$$

6) (10 points) Assume we have an experiment where the random variable X is assumed to follow a *uniform* density, i.e.,

$$f_{\mathbf{X}}(x) = \frac{1}{\theta} \quad 0 < x \le \theta$$

Assume we preform the experiment n times with outcomes x_1, x_2, \ldots, x_n , What is the maximum liklihood estimate of θ based on these observations?

Hint: Taking derivatives here will not help, you are going to have to think about this. You don't need to really do any math to come up with the answer.

L(6) = 1

so for the nobservations, the minimum value of this moral (x, ... Xn)