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Problem 1 /10
Problem 2 /20
Problem 3 /10
Problem 4 /25
Problem 5 /25
Problem 6 /10

ECE 597: Probability, Random Processes, and Estimation
Eram #1

Thursday March 31, 2016

No calculators or computers allowed.



1) (10 points)) Assume we have a random variable X that takes on the values 1 and
0 with the probabilities

Wl — Wl b

‘We now construct the new random variable Y as

Y = 2X+43

Determine uy and 0%




2) (20 points) Assume we have the joint density

fxy(z,y) = 2y 0<y<1, 0<z<o00

Note: The ranges of X and Y are different

a) Determine the marginal density fx(x)

b) Determine the marginal density fy(y)

c) Are X and Y independent? Why or why not?
d) Determine E[Y|X]
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3) (10 points) Assume X and W are random vectors, not necessarily of the same
size. Assume also that Kxx, Kww and Kwx are known. Now we make a new

random vector

Y = AX+BW+(C
where A and B are constant matrices (not necessarily of the same size), and C is a
constant vector. Determine an expression for Kvvy in terms of these known quanti-

ties ONLY. Do not assume the means are zero.

Hint: (FG)T = GTFT
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The two formulas may (or may not) be useful in the following problem.

The general formula for a multidimensional Gaussian density is

|
fx(@) = (2m)% [det(Kxx)?

o {-3e-w Kkie-w)

The inverse of a 2 x 2 matrix is given as

a b7 1 d —b
c d  ad—bc| —¢ a




4) (25 points) Assume the random vector X = [X; X,]" has the Gaussian density
given by

fx(z) = 27“/. exp{ ! [(xl —1)2 —2(x; — 1)zp + 213}}

Determine p and KXX
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5) (25 points) Assume X is a zero mean random Gaussian vector with covariance

3 2
Kxx = {2 6]

Assume we form the random vector Y using the transformation

where

R

a) Determine the resulting marginal pdf’s, fy,(y:) and fy,(y).

b) If the mean value of X had been ux = [ 1 -1 ]T, determine the resulting mean
value of Y
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6) (10 points) Assume we have an experiment where the random variable X is
assumed to follow a uniform density, i.e.,

fx(z) = % 0<az<¥

Assume we preform the experiment n times with outcomes z1,z3,...,2,, What is
the maximum liklihood estimate of § based on these observations?

Hint: Taking derivatives here will not help, you are going to have to think about this. You don’t
need to really do any math to come up with the answer.
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