ECE-597: Optimal Control Homework #1

Problems

A122

B 123

C 1.2.19

D 1.2.20

See the End for more problems

Matlab

Example Consider the problem of trying to find the point on the circle 22 + y? = 1 closest
to the ellipse (£)? 4 (%)* = 1, where a = 10 and b = 2.

In order to solve this we need to reformulate the problem using different z’s and y’s for
the ellipse and circle. The optimization routines we will use solves for a vector, so let’s let
u =[xy T2 Y1 yQ]T. We now want to find the point on the unit circle 2% + y# = 1 closest to
the ellipse (£2)* + (%)* = 1. The function we want to minimize is the distance (squared)

b
between points, so

Lu) = (x1—22)°+ (11 — 12)°
subject to the constraints

o - (4] [t

The algorithms we will use need various information, so we’ll compute those things now

dL
L, = du 2(z1 — 22) —2(w1 — 22) 201 —y2) —2(1 — 12)]
el 2 -2 0 0
L 2L =l 2 2 0 o0
e T2 %% B 0 0 2 =2
6%% 0 0 -2 2
“ du % | 0 2(% 0 21%

r_0 dfi 7 _ -
ozr1 du
_0 dfi
Oxo du
df1
Oy1 du

d?f1 0 dfi
_ 2 _ Jy2 du _
f wu C?é“fz - o df72 -
2 oxy d
a o dis
Ozo du
_0_dfs
Oyy du
&' dfs

L Oy2 du

cCoOocoCc oo oN
o ofjhvho oo oo
eNoNoNoNol CNoNo)

Iy o000 O O

POP Routine

The POP routine determines the optimal value of a parameter u for a function L when there
are equality constraint f(u) = 0 using a gradient algorithm. In order to use this algorithm,
you must first write a Matlab function that, given the current value of u, determines the
value of L, f, L, (the derivative of L with respect to u and f, (the derivative of f with
respect to u). For best performance u should be normalized so the change of one unit if each
element of u has approximately equal significance.

This function should look something like this:

function [L, f, Lu, fu] = bobs_pop(u);
. stuff....

return;
The arguments to POP are the following:

e the function you just created (in single quotes)

e the initial guess for the value of u that minimizes L and (hopefully) satisfies f(u) = 0,
though this is not necessary

e the value k, a scalar step size parameter. Choose k > 0 for a minimum, £ < 0 for a
maximum. If |k| is too small, convergence will be very slow, while if |k| is too large
the algorithm is likely to overshoot the minimum (or maximum)

e the value of 17, where 0 < n < 1. If n is one the constraints are satisfied in one time
step, so smaller values of n allow the program to gradually satisfy the constraints.

e the stopping tolerance. This depends on your problem.

mait, the maximum number of iterations to try.

To see an illustration of this routine for this problem, look at bobs_pop_example.m
and bobs_pop_example_driver.m on the class website.

POPN Routine

The POPN routine determines the optimal value of a parameter u for a function L when
there are equality constraint f(u) = 0 using a Newton-Raphson algorithm. In order to
use this algorithm, you must first write a Matlab function that, given the current value of
u, determines the value of L, f, Ly, fu, Lus, and f,,. For best performance u should be
normalized so the change of one unit if each element of u has approximately equal significance.
This algorithm will generally converge quickly if the starting point is close enough to the
optimum.

This function should look something like this:

function [L, f, Lu, fu, Luu, fuu] = bobs_popn(u);
. stuff....

return;
The arguments to POPN are the following:

e the function you just created (in single quotes)

e the initial guess for the value of u that minimizes L and (hopefully) satisfies f(u) = 0,
though this is not necessary.

e the stopping tolerance. This depends on your problem.

e muxit, the maximum number of iterations to try.

To see an illustration of this routine for this problem, look at bobs_popn_example.m
and bobs_popn_example_driver.m on the class website.

fmincon Routine (From the Matlab Optimization Toolbox)

fmincon minimizes constrained nonlinear functions, subject to a variety of possible con-
straints. See the Matlab doc files for this function, as well as for optimset, to set some of
the options.

To see an illustration of this routine for this problem, look at bobs_fmincon_example.mon
the class website.

E Run each of the routines as it is, and verify that you get the correct answer. Try an initial
guess of [1 9 00] and [1 1 0 0]. Do you get the correct answers? For most optimization
routines, you need to have a reasonably good starting point or you will find a local minima
instead of a global minima.

F Modify all three programs to solve the following problem:
Determine the point on the ellipse

closest to the parabola

where p = 3, ¢ = 1, r = 2, and s = 0.1. Show all work (computation of derivatives) and
turn in your code (and answers!) You should try a number of different starting points to try
and be sure to find the global minimum. It will probably help if your initial guess satisfies
both equations.

G We would like to solve the following discrete-time problem:
minimize L(u) = u’ Ru
subject to z(k + 1) = ¢z(k) + yu(k) for k =1..N

where u = [ug uy ... uy_1]" and ¢, 7, 2(0), z(N), and N are known.
To solve this, we need to make the problem look a bit more like something we know.
(i) Show that:

p(N) = ¢"Na(0) + [V 'y 6" 2y L dy o] u
= ¢"2(0) + Mu
(ii) Determine an expression for f(u)

(iii) Determine all necessary derivatives the three algorithms

(iv) Implement the problems for all three algorithms, and solve it assuming N = 5, z(0) =
00", 2(5) =15 —0.5]", ¢ = l (1) 1], and v = [(1]] and R = diag([1 : 5]) Note that
you will have to change fmincon a bit...

Hint: To find M and ¢ you can use code like

M = gamma;
temp = phi;

for k = 1:N-1
M = [temp*gamma M];
temp = temp*phi
end;
beq = xN-temp*x0

