
ECE-597: Optimal Control
Homework #1

Due: Tuesday September 11, 2007

Problems

1. (Rectangle of Maximum Perimeter Inscribed in an Ellipse, from Bryson) Show that the
x, y that maximize P = 4(x + y) subject to the constraint

x2

a2
+

y2

b2
= 1

are given by

x =
a2

√
a2 + b2

y =
b2

√
a2 + b2

2. (Rectangular Parallelepiped of Maximum Volume Contained in an Ellipsoid, from Bryson)
Show that the x, y, z that maximize V = 8xyz subject to the constraint

x2

a2
+

y2

b2
+

z2

c2
= 1

are given by

x =
a√
3

y =
b√
3

z =
c√
3

3. Consider the problem of finding the vector x of minimum length that satisfies the equation
Ax = b. Assume this is an underdetermined system, i.e., there are more rows than columns
in A. Show that the optimal x is given by

x = AT (AAT)−1b

4. (General Quadratic Performance Index with Linear Equality Constraints, from Bryson)
Consider the problem of finding the parameter vectors x and u to minimize

L =
1

2

(
xT Qx + uT Ru

)

subject to

x + Gu = c

Assume Q and R are symmetric and are both invertible.

1

i) Form the Hamiltonian and by setting Hx = Hu = 0, solving for λ in each equation, and
then substituting the result into the constraint we get

S =
(
Q−1 + GR−1GT

)−1

x = Q−1Sc

u = R−1GT Sc

ii) Show that Lmin = 1
2
cT Sc.

(Hint: Show that xT Qx = −λT x and uT Ru = −λT Gu, put these into L, and factor out the
λT . Finally, use the fact that S is symmetric.)

Read the Appendix before completing the following problems.

5. Run each of the routines as it is, and verify that you get the correct answer. Try an
initial guess of [1 9 0 0] and [1 1 0 0]. Do you get the correct answers? For most optimization
routines, you need to have a reasonably good starting point or you will find a local minima
instead of a global minima.

6. Modify all three programs to solve the following problem:

Determine the point on the ellipse

(
x

p

)2

+

(
y − r

q

)2

= 1

closest to the parabola

y = sx2

where p = 3, q = 1, r = 2, and s = 0.1. Show all work (computation of derivatives) and
turn in your code (and answers!) You should try a number of different starting points to try
and be sure to find the global minimum. It will probably help if your initial guess satisfies
both equations.

7. We would like to solve the following discrete-time problem:

minimize L(u) = uT Ru

subject to x(k + 1) = φx(k) + γu(k) for k = 0..N − 1

where u = [u0 u1 ... uN−1]
T and φ, γ, x(0), x(N), and N are known.

To solve this, we need to make the problem look a bit more like something we know.
(i) Show that:

x(N) = φNx(0) +
[
φN−1γ φN−2γ ... φγ γ

]
u

= φNx(0) + Mu

2

(ii) Determine an expression for f(u)

(iii) Determine all necessary derivatives the three algorithms

(iv) Implement the problems for all three algorithms, and solve it assuming N = 5, x(0) =

[0 0]T , x(5) = [1.5 − 0.5]T , φ =

[
0 1
1 1

]
, and γ =

[
1
0

]
and R = diag([1 : 5]) Note that

you will have to change fmincon a bit...

Hint: To find M and φN you can use code like

M = gamma;

temp = phi;

for k = 1:N-1

M = [temp*gamma M];

temp = temp*phi

end;

beq = xN-temp*x0

3

Appendix
POP, POPN, and fmincon Routines

Example Consider the problem of trying to find the point on the circle x2 + y2 = 1 closest
to the ellipse (x

a
)2 + (y

b
)2 = 1, where a = 10 and b = 2.

In order to solve this we need to reformulate the problem using different x’s and y’s for
the ellipse and circle. The optimization routines we will use solves for a vector, so let’s let
u = [x1 x2 y1 y2]

T . We now want to find the point on the unit circle x2
1 + y2

1 = 1 closest to
the ellipse (x2

a
)2 + (y2

b
)2 = 1. The function we want to minimize is the distance (squared)

between points, so

L(u) = (x1 − x2)
2 + (y1 − y2)

2

subject to the constraints

f(u) =

[
f1(u)
f2(u)

]
=

[
f1(u) = x2

1 + x2
2 − 1

f2(u) = (x2

a
)2 + (y2

b
)2 − 1

]

The algorithms we will use need various information, so we’ll compute those things now

Lu =
dL

du
= [2(x1 − x2) − 2(x1 − x2) 2(y1 − y2) − 2(y1 − y2)]

Luu =
d2L

du2
=




∂
∂x1

dL
du

∂
∂x2

dL
du

∂
∂y1

dL
du

∂
∂y2

dL
du




=




2 −2 0 0
−2 2 0 0
0 0 2 −2
0 0 −2 2




fu =
df

du
=

[
df1

du
df2

du

]
=

[
2x1 0 2y1 0
0 2x2

a2 0 2y2

b2

]

fuu =

[
d2f1

du2

d2f2

du2

]
=




∂
∂x1

df1

du
∂

∂x2

df1

du
∂

∂y1

df1

du
∂

∂y2

df1

du
∂

∂x1

df2

du
∂

∂x2

df2

du
∂

∂y1

df2

du
∂

∂y2

df2

du




=




2 0 0 0
0 0 0 0
0 0 2 0
0 0 0 0
0 0 0 0
0 2

a2 0 0
0 0 0 0
0 0 0 2

b2




POP Routine

The POP routine determines the optimal value of a parameter u for a function L when there
are equality constraints f(u) = 0 using a gradient algorithm. In order to use this algorithm,
you must first write a Matlab function that, given the current value of u, determines the
value of L, f , Lu (the derivative of L with respect to u) and fu (the derivative of f with

4

respect to u). For best performance u should be normalized so the change of one unit of
each element of u has approximately equal significance.

This function should look something like this:

function [L, f, Lu, fu] = bobs_pop(u);

... stuff....

return;

The arguments to POP are the following:

• the function you just created (in single quotes)

• the initial guess for the value of u that minimizes L and (hopefully) satisfies f(u) = 0,
though this is not necessary

• the value k, a scalar step size parameter. Choose k > 0 for a minimum, k < 0 for a
maximum. If |k| is too small, convergence will be very slow, while if |k| is too large
the algorithm is likely to overshoot the minimum (or maximum)

• the value of η, where 0 < η ≤ 1. If η is one the constraints are satisfied in one time
step, so smaller values of η allow the program to gradually satisfy the constraints.

• the stopping tolerance. This depends on your problem.

• mxit, the maximum number of iterations to try.

To see an illustration of this routine for this problem, look at bobs pop example.m
and bobs pop example driver.m on the class website.

POPN Routine

The POPN routine determines the optimal value of a parameter u for a function L when
there are equality constraint f(u) = 0 using a Newton-Raphson algorithm. In order to use
this algorithm, you must first write a Matlab function that, given the current value of u,
determines the value of L, f , Lu, fu, Luu, and fuu. For best performance u should be normal-
ized so the change of one unit of each element of u has approximately equal significance. This
algorithm will generally converge quickly if the starting point is close enough to the optimum.

This function should look something like this:

function [L, f, Lu, fu, Luu, fuu] = bobs_popn(u);

... stuff....

return;

5

The arguments to POPN are the following:

• the function you just created (in single quotes)

• the initial guess for the value of u that minimizes L and (hopefully) satisfies f(u) = 0,
though this is not necessary.

• the stopping tolerance. This depends on your problem.

• mxit, the maximum number of iterations to try.

To see an illustration of this routine for this problem, look at bobs popn example.m
and bobs popn example driver.m on the class website.

fmincon Routine (From the Matlab Optimization Toolbox)

fmincon minimizes constrained nonlinear functions, subject to a variety of possible con-
straints. See the Matlab doc files for this function, as well as for optimset, to set some of
the options.

To see an illustration of this routine for this problem, look at bobs fmincon example.m
on the class website.

6

