1.3 Numerical Solution with Gradient Methods

Unless the relations for L(y) and f(y) in Section 1.2 are quite simple, numerical methods
must be used to determine the parameter vector y that minimizes L(y) with f(v) = 0.

POP—A Gradient Algorithm for Parameter OPtimization

with Equality Constraints

A straightforward numerical method is to guess an initial y and then take small steps Ay
in the direction of —HVT = the direction of steepest descent. This will lead to a local
minimum if one exists. If there are several local minima, this method may not find the
global minimum. Choosing the step size requires some experience. If the steps are too large,
the minimum may be overshot; if the steps are too small, it takes many steps to reach the

minimum.
We first state the algorithm and then give a brief derivation.

Enter data

® Guess y.

® Choose k > 0 for a minimum, k < 0 for a maximum.
® Choose 5 so that |Ay| is not too large, 0 < n < L.

® Choose stopping tolerance tol.

Find L, f, Ly, f,, f;,and H,
()L = L(y), f=f(y), L, =L,(y), fy = fi(y.
o fr=fl D

e)7 = —-L_Yf;.

¢ Ho=L,+A"f,.

Find improved value of y
*dy=-nf'f- kH\,T.
® If max(|f], |dy|/./P) < tol, then end.
® Replace y by y + dy and go to ().

This algorithm may be interpreted as finding a small change Ay, to minimize a linear
approximation to AL subject to a quadratic penalty on Ay and a linear approximation to
coming closer to satisfying the constraints f(y) = 0:

AyT Ay

1.35
% (1.35)

n&in AJ =L, Ay+

subject to
Ly =—nf, (1.36)

where L,, f, f, are evaluated at the current estimate of y. y should be normalized so that
a change of one unit of each element of y is approximately of equal significance. n = 1
asks for the constraints to be satisfied in one step, so n < 1 asks only to move part way
toward satisfying the constraints. k is a scalar step-size parameter; we shall say more about

choosing k below.
To solve this linear-quadratic problem, we_adjoin the constraint (1.36) to the perfor-

mance index with a Lagrange multiplier vector A:

AyTAy -
AT E LAy + == 3T + fAy) (1.37)

Assuming that L., f. f, are fixed matrices, take a differential of AJ. For d(AJ) = 0 with
arbitrary d(Ay), it is clearly necessary that

] AyT
L‘.+lrf\.+—]'%—=0, (1.38)

from which
Ay = —k(L, + 17 f,). : (1.39)

Substituting (1.39) into (1.36), we may solve for A7 :

=T LT (1.40)

where
0=ffl, A ==L, fr=flo". (1.41)

£ is the weighted generalized inverse of f,.
Finally, substituting (1.40) and (1.41) into (1.39) gives

Ay = —nfif —kH] (1.42)

where
Ho 2L+ f, . (1.43)

When starting with a possibly poor guess, one can put k = 0 (i.e., ask for no improve-
ment in L) and pick n < 1 to limit the size of [dy] so that the linear approximation is
reasonable. Over a few steps, gradually increase n to 1, and a feasible solution (f =~ 0)
should be obtained, after which 5 = 1 can be used with k # O to minimize L.

k must be chosen by interpolation so that L decreases at a reasonable rate with each
iteration. If |k] is too large, each step will “overshoot” the minimum and L will actually
increase; if |k| is too small, many iterations will be required to reach the vicinity of the
minimum.

Other gradient algorithms are available that do not require the user to interpolate &, and
that converge more rapidly near the minimum (e.g., Refs. Gr, GMSW, and Ln). They use
the successive values of H, to approximate the Hessian H,,; they are called quasi-Newton
algorithms since they tend toward Newton-Raphson (NR) algorithms as the number of
iterations increases. NR algorithms are second-order gradient algorithms (covered in the
nextsection). These algorithms are necessarily more complicated than POP; obviously there
is a trade-off between algorithm complexity and speed of convergence.

Table 1.1 lists a MATLAB function file that implements the POP algorithm.

TABLE 1.1 A MATLAB Code for POP

function [L,y,f]=pop(name,y,k,tol,eta,mxit)

Parameter OPtimization using a generalized gradient algorithm; outputs L
and y (p by 1) are optimum performance index & parameter vector; con-
straints are f=0 where f is (n by 1) with n < p; user must supply a sub-
routine ’name’ that computes L,f,Ly,fy; input y is a guess; y should be
normalized so that a change of one unit in each element of y has roughly
the same significance; k is a scalar step size parameter; stopping cri-
terion is max(fn,dyn)<tol, where fn=norm(f); dyn=norm(dy)/sqrt(p); eta=
fraction of constraint violation to be removed; mxit=max no. iterations.

R R R R R R R XX

it=0; dyn=1; fn=1; p=length(y);

disp(’ it L fn dyn’)

while max(fn,dyn) > tol
[L,f,Ly,fyl=Ffeval(name,y); fn=norm(f); fyi=Ffy’'/(fy*fy'); lat=-Ly*fyi;
Hy=Ly+lat*fy; dy=-eta*fyi*f-k*Hy’; dyn=norm(dy)/sqrt(p);
disp([it L fn dyn]); y=y+dy; if it> mxit, break, end; it=it+l;

end

Example 1.3.1—Max Velocity of a Sailboat
This is a numerical solution of Problem 1.2.7. The subroutine containing L. f, L. f,)is
listed below.

function [L,f,Ly,fy]l=slbt(y)

% Sailboat max velocity; L = V; y = [V,Wr,al,th,ps]’,

%

V=y(1); Wr=y(2); al=y(3); th=y(4); ps=y(5); sa=sin(al); ca=cos(al);

st=sin(th); ct=cos(th); sp=sin(ps); cp=cos(ps); sat=sin(al+th);

cat=cos(al+th); L=V; Ly=[1 0 0 @ 0];

f=[V"2-Wr 2*sa*st; Wr 2-V 2-1+2*V*cp; Wr*sat-sp];

fy=[2*V -2*Wr*sa*st -Wr"2*ca*st -Wr 2*sa*ct 0; -2*(V-cp) 2*Wr 0 0
-2*V*sp; ... @ sat Wr*cat Wr*cat -cp];

An edited diary is listed below that solves the probiem using POP. It took 28 iterations
to bring the norms of f and dy below .00005.

% Script e01.3_.1.m for gradient solution of Ex. 1.3.1;
%
y=[.51 .5 .5 1.5]"; k=-1.2; tol=le-5; eta=1l; mxit=50;
[L,y,f]l=pop(’slbt’,y,k,tol,eta,mxit);
it L fn dyn
0 ©.5000 0.2385 0.0733
1 0.5793 0.0149 0.0263
27 0.5931 0.0000 0.0000
28 0.5931 0.0000 0.0000
y'=[.5931 1.0057 .6307 .6307 1.2798]; f=le-9*[.1183 .0627
.0065]"

1.5 Numerical Solution with Newton-Raphson
Methods

First-order gradient algorithms like those in Section 1.3, approximate the L and f functions
locally with osculating hyperplanes. Newton-Raphson (NR) algorithms approximate the L
and f functions locally with osculating quadric surfaces, i.e., they use the Hessian as well

. e o e e
u2 -
-~ - -7
e
e
//

// Initial
/ guess
|
\ Ve
\ yd

\\ / /

\) /
N]
NN l\
N\
N TS Level curves of /
Ne osculating elliptic /
~ paraboloids ,/
S~ 7
~ L < Wa -~ < > U
~ S~ ~— ~ \’ - - -~

— ——

FIGURE 1.24 Typical Convergence of an NR Algorithm with Two Decision Parameters

as the gradient at the test point. Figure 1.24 is a sketch of the typical convergence of an NR
algorithm with two decision parameters »; and u;. Starting from an initial guess, each step
fits an elliptic paraboloid to the local data and goes to the minimum of that surface (in this
case, the center of the elliptical cross-section) for the next step.

Simple NR algorithms work only if the Hessian is positive definite (so that the quadratic
hypersurface is a hyperelliptic paraboloid). This is a serious drawback, since, in many
problems, it is difficult to find an initial guess where the Hessian is positive definite.

Another drawback is the extra time spent in determining and entering the second-
derivative data into the algorithm, and the extra time necessary to compute the Hessian at
each step.

However, the big advantage of NR algorithms over gradient algorithms is their rapid
convergence to a precise solution if the initial guess is such that the Hessian is positive-
definite.

Many algorithms are now available that are more efficient and more user friendly than
the simple versions presented above and below, that combine the advantages of gradient
and NR algorithms, e.g., NPSOL (Ref. GMSW) and the MATLAB Optimization Toolbox

(Ref. Gr).

POPN—Parameter Optimization with Equality Constraints;
a Newton-Raphson Algorithm

The NR derived here finds the parameter vector y to minimize or maximize L(y) subject to
f(y) = 0, where the dimension of f is less than the dimension of y.

Starting with an initial guess of y, a differential of (1.44) gives

T
d(AHWI[H.\- rl+[ayf A*T][?;y ’;]}[Z{ﬁg]

At a minimum, d(A H) = 0 for arbitrary d(Ay) and d(AX), which requires that

Hvy f\T Ay _ HVT
[ﬂ oJlar]” L1

Equation (1.60) is easily solved for Ay and AA.
The NR algorithm is summarized below.

¢ Guess y and set it = 0.
() f = fy), L=L().
* fy=5H0) Ly=Ly).
® If it = Othen
)‘T = ‘Ly . f* ,
where
T2 AT
which is the weighted generalized inverse of f,.
® H =L, +ATf,.
e If norm(g) < tol then end, where

og
>
| — |
=
—

® Hy,, = Hyy(y) = Ly + Y ki fyiy'

Ay | _ _ Hy, fyT - HvT
AX £ 0 1
® Replace yby y + Ay and A by A + A, Set it =it + 1.
Go to (*).

(1.59)

(1.60)

In the POPN algorithm above, if we replace H,, by I/k, where k is a positive scalar,

we obtain the POP algorithm of Section 1.3.
A MATLAB file is listed in Table 1.2 that implements this algorithm.

Example 1.5.1—Max Velocity of a Sailboat Using POPN

This is a numerical solution of Example 1.3.1 using POPN. The subroutine containing L, f
and their derivatives with respect to y is listed below. The first part of this subroutine is
identical to the subroutine used in the example for POP, so it could also be used with POP

to get a convex approximation for use with POPN.

TABLE 1.2 POPN—A MATLAB Newton-Raphson Code

function [L,y,ev,evec]=popn(name,y,tol,mxit)

% Parameter OPtimization with equality constraints using a

% Newton-raphson algorithm. L is optimum performance index, output y is
% optimum parameter vector; fn = norm(f); Hyn=norm(Hy); (ev,evec)=

% (eigvals, eigvecs) of Hessian; mxit=max no. iterations input y is

% guess of parameter vector; stopping criterion is max(fn,Hyn) < tol;

% subroutine ’'name’ contains L,f,Ly, fy,Lyy, fyy.

%
format compact; it=0; fn=1; Hyn=1; p=Tength(y);
disp(’ it L fn Hyn')

while max([fn Hyn]) > tol
(L, f,Ly,fy,Lyy, fyyl=feval(name,y); fn=norm(f); n=length(f);
if it==0, lat=-Ly*fy'/(fy*fy’'); end; Hy=Ly+lat*fy; Hyn=norm(Hy);
Hyy=Lyy; for 1i=1:n, Hyy=Hyy+lat (i) *fyy ([1+p*(i-1):i*p],:); end
A=[Hyy fy’; fy zeros(n)1; dv=-A\[Hy';f1; y=y+dv([1l:p]);
lat=Tat+dv([p+1:n+p])’; disp([it L fn Hyn]):
if it>mxit, break, end; it=it+l;
end
%
% Finds generalized eigenvalues and eigenvectors of Hessian:
B=diag([ones(1,p) zeros(1,n)]); [X,D]=eig(A,B); ev=diag(D)’:
ev=ev([1+2*n:n+p]); evec=real (X([1:p], [1+2*n:n+p]));

function [L,f,Ly,fy,Lyy,fyy]l=s1bt2(y)

% Subroutine for Example 1.5.1; sailboat max velocity using POPN,
an NR

% code; L=V; y=[V Wr al th ps]’.

%

V=y(1); Wr=y(2); al=y(3); th=y(4); ps=y(5); sa=sin(al);
ca=cos(al);

st=sin(th); ct=cos(th); p=sin(ps); cp=cos(ps); sat=sin(al+th);

cat=cos(al+th);

L=V; Ly=[{1 0 @ 0 0];

f=[V"2-Wr"2*sa*st; Wr"2-V"2-1+2*V*cp; Wr*sat-sp];

fy=[2*V -2*Wr¥*sa*st -Wr 2*ca*st -Wr 2*sa*ct @; -2*(V-cp) 2*Wr 0
@ ... -2*V*sp; @ sat Wr*cat Wr*cat -cp];

Lyy=zeros(5);

f1=[2 0 0 0 @; 0 -2*st*sa -2*Wr*ca*st -2*Wr*sa*ct 9: 0 0 Wr 2*
sa¥st ... -Wr'2%ca*ct 0; 0 0 0 Wr™2*sa*st 0; 0 0 0 0 0];

fyy=f1+f1’-diag(diag(f1));

f2=[-2 0 0 0 -2*sp; 0 2 @ @ 0; zeros(2,5); @ 0 @ @ -2*V*cp];

fyy([6:10],:)=f2+F2’ -diag(diag(f2));

f3=[0 0 00 0; 0 0 cat cat 9; 0 @ -Wr*sat -Wr*sat 0; @00 -Wr*sat
9; ... 200 0 sp];
fyy([ll:lS],:)=F3+f3'—diag(d1ag(f3));

An edited MATLAB diary solving the problem using POPN is shown below. It took only
four iterations to bring the norms of f and of H, below 1078, Note the two generalized
eigenvalues are negative (indicating a maximum). The difficult part of using this algorithm
is in selecting an initial guess for which the eigenvalues are negative. In an unfamiliar
problem, it may be necessary to first use POP to get close to the maximum.

y=[.6 1 .6 .6 1.3]"’; tol=1e-8; mxit=10;
[L,y,ev]:popn(’sTth’,y,to1,mxit);
it L fn Hyn
0 0.6000 0.0375 0.0050
1.0000 ©.5915 0.0007 0.0039
2.0000 9.5931 0.0000 0.0005
3.0000 0.5931 0.0000 0.0000
4.0000 0.5931 0.0000 0.0000
y'=[.5931 1.0057 .6308 .6308 1.27971; ev=-.2081 -.707%

