2.2 Numerical Solution with Gradient Methods

Only very simple problems can be solved in terms of tabulated functions. Hence, in this
section, we consider algorithms for numerical solution. We shall do this using the Mayer
Jormulation of the problem instead of the Bolza formulation of (2.1) to (2.3). These two
formulations are exactly equivalent, but the Mayer form yields simpler expressions, that

—————————makes-iteasier tocode fornumerical selutiong—— ————————————————— —— —————————
In the Mayer formulation the state vector of (2.1) and (2.2) is augmented by one state
Xy+1(7) that is the cumulative sum of L to step i, i.e.,
X1+ 1) = X1 () + LX), u(i), i1, %01(0) =0 .

Thus the performance index (2.3) becomes

T = $lx(N)] + X, 01 (N) 2 B[E(N)] ,

- A X
X = .
Xn+1

Dropping the bar on x and ¢, the problem may be stated as finding a vector sequence

where

u(@),i =0, ---, N — 1, to minimize (or maximize)
#lx(N)], (2.44)

subject to
XG4 1) = flxG), u(i)] , (2.45)

where u is (n. x N), both f and x are (n x 1), and x(0), N are specified.

We first describe an iterative gradient algorithm DOPO (for Discrete OPtimization with
0 terminal constraints). It requires a subroutine that calculates fi @, ¢y, fi, and f,
and selection of a step-size parameter k. A MATLAB implementation of DOPO is listed in
Table 2.1.

Then we describe the use of the MATLAB command FMINU (for Function MINimiza-
tion Unconstrained) to solve this problem. This code does not require the selection of a
step-size parameter. Furthermore it does not require the analytical gradients ¢,, fi, f.
since it will calculate them numerically. However the code will run faster for big problems
if these gradients are provided.

Finally, in Section 2.5, we describe a shooting algorithm, which is a multiple interpo-
lation algorithm for sequencing the EL equations backward to match the specified initial
conditions. This algorithm yields a precise solution, but it converges only if the initial guess
of the final state is very good; such a guess can be provided by DOPO or FMINU.

DOPO—Discrete OPtimization with 0 Terminal Constraints

This is a simplified version of the POP algorithm of Section 1.3 since there are
“no constraints” in the sense of that algorithm; simply replace L by ¢ and y by u 2
[(0)- - u(N — D]T. This is a first-order gradient algorithm, which starts with an initial
guess of u(i), finds J and the gradient of J with respect to u(7), then changes u(i) by a small
amount du(i) in the direction of the negative gradient, and iterates until the magnitude of
u(i) becomes small. A more detailed description is given below.

® Enter x(0), ty, k, tol, and a guess of u(i), i =0, - - - , N — 1. choose k > 0 if
minimizing. & < 0 if maximizing.

(*) Sequence forward. Compute and store x(i).

® Evaluate ¢[x(N)] and set AT(N) = ¢, .

¢ Sequence backward. Compute and store the pulse response sequence H,(i).
Fori=N-~1,---,0:

H()=21"G + DfG), (2.46)
AMay=26G+DfG) . (2.47)

IADLE &. | A MATLAB Code tor DOPO

function [u,s,1a0]=dop0(name,u,s@,tf,k,to],mxit)

Discrete OPtim. with 0 term. Constraints, tf specified, nc controls.
Inputs: name must be in single quotes: function file "name’ computes
s(i+1)= f(s(i),u(i))for flg=1, (phi,phis) for flg=2, and (fs,fu)

for f1g=3; u(nc,N) = estimate of optimal u; s@(ns,1) = initial state:

tf = final time; k = step size parameter; u should be normalized so
that the elements of du are roughly the same size; stopping criterion
is max(dua) < tol; mxit = max no iterations; outputs (u,s) = improved
% (u,s) histories; la® = optimal lambda(@) for possible use with a

% shooting algorithm.

% BASIC version 1984; MATLAB version 1994; rev. 1/8/98

%

R 3R 3R |38 58 a¢ 2

if nargin<7, mxit=10; end;
ns=length(s0); [nc,N]=size(u); s=zeros(ns,N+1); dum=zeros(nc,1):
la=zeros(ns,1); Hu=zeros(N,nc); dua=1; it=0; dt=tf/N; s(:,1)=s0;
disp(’ Iter. phi dua’);
while norm(dua)>tol,
% Forward sequencing and store state histories x(:,1):
for i=1:N, s(:,i+1)=feva1(name,u(:,1),5(:,i),dt,(i—l)*dt,l); end
% Performance index phi and b.c. for backward sequence phis:
[phi,phis]:feva](name,dum,s(:,N+1),dt,N*dt,2); la=phis’;
% Backward sequencing and store Hu(i);
for i=N:-1:1
[fs,fu]:feva1(name.u(:,i),s(:,i),dt,(i—l)*dt,3);
Hu(i, :)=la’*fu; Ta=fs’*la;
end; Ta@=la;
% New u(i):
for j=1:nc,
du(g, :)=-k*Hu(:,j)’; dua(j):norm(du(j,:))/sqrt(N);
end; u=u+du;
disp([it phi dua]l);
if it>mxit, break, end; it=it+l;
end

ra

¢ Compute Au(i) and Atgpe. Fori =0,... N -1

Auli)y = —kH! (i) , (2.48)
1 N—1
Agry = | = 2:6 AuT (i) Auli) . (2.49)
® If Aug,, < tol then stop.
® Compute new u(i):
u(i) < u(i) + Au(iy (2.50)

® Goto (%).

A code for implementing the DOPO algorithm in MATLAB is listed in Table 2.1. The data
for the problem being solved are put into a subroutine “name” that gives the f functions,
the performance index ¢ and its gradient ¢,, and the derivatives f;, fu. Note that MATLAB
starts sequences with i = 1 where we have used i = 0 above.

Example 2.2.1—DVDP for Max Range with Gravity

this s the same example solved analytically in Example 2.1.1. The subroutine used is listed
below.

function [fl,fZ]:dvdp@(ga,s,dt,t,ﬂg)

% s=[v x]'; ga=gamma; t in units of tf, v in g(tf), x in g(tf) 2.
%

v=s(1); x=s(2);

if flg==1,
fl=s+dt*[sin(ga); v*cos(u)+dt*sin(2*ga)/4]; % fl = f
elseif flg==2,

fl=x; f2=[0 1]; % fl = phi, f2 = phis
elseif fig==3,

f1=[1 0; dt*cos(ga) 1]; % fl = fs
f2=dt*[cos(ga); -v*sin(ga)+dt*cos(2*ga)/2]; % 2 = fu
end

An edited MATLAB diary using DOPO is shown below. It took only five iterations to
bring du, below .0001. It takes a little practice to learn how to select the step-size parameter
k. Start with small values and put mxit=3 so that the code runs only three steps and stops;
gradually increase k until dua and ¢ increase instead of decreasing (for a minimization
problem); k is then too large and you will overshoot the minimum; decrease & by a small
amount so that dua and ¢ decrease and dua is a reasonable size (i.e., one could expect
linear prediction from one step to the next to be fairly accurate).

% Script e02.2.1.m; DVDP for max xf with gravity;
%
ga=[1:-.25:0]; so=[0 0]’; tf=1; k=-7; tol=5e-5;
[ga,s]=dop0(’dvdp0’,ga,s@,tf,k,to1);
Iter. phi dua
7} 0.2780 @.3553

6.0000 0.3157 0.0000
ga=[1.4137 1.0996 .7854 .4712 .1571]
s=[0 .3566 .9836 1.8709 2.9486; © .4341 .8246 1.1245 1.2457]

