
ECE-521 Control Systems II

Laboratory 3
System Modelling, Controller Design, and the Real World

Preview In this Lab you will first obtain a second order model of your spring/mass/damper
system, design a controller for it, implement the controller on the real system, and then com-
pare the predicted response with the actual response. You will probably make at least two
observations during this lab:

• models are not perfect, they are just guides

• real motors have real limits, which can make designing more difficult

You will go through the following steps:

1. Estimate an initial second order system model using time domain analysis (using either
the log dec or fit programs).

2. Measure the frequency response (make one measurement at 1Hz, 2Hz, ..., 7 Hz, and at
least 4 points near the resonant peak)

3. Use the fit bode command to estimate the gain of the system.

4. Use the opt fit bode command to fine tune the system model.

5. Determine the closed loop system gain kclg (to be described below)

6. Design P, I, PI, PD, and PID controllers using the model developed above and Matlab’s
sisotool

7. Implement the controller design on the system and examining the step response. Export
the step response of the real system and edit the data so Matlab can read it. Use the
program closed loop response to plot both the predicted closed loop response (based
on the system model) and the true closed loop response (the real system).

8. Tweak the parameters on your controllers to see if they improve the performance on the
real system.

9. Examine the response of your controllers to other types of inputs.

Since we are going to be implementing real controllers, it is very likely the motors are going to
become unhappy at some point. You will know they are unhappy if you hear a buzzing. You need
to be prepared to shut off the system quickly when this happens. Also, if your systems appear
to unstable (usually identifiable as oscillations growing in magnitude), shut off the system.



Pre-Lab

1) Print out this lab and read it.

In what follows, assume we have the unity feedback system shown below. Gc(s) is the controller
that you will be implementing, ωn and ζ are estimates obtained using either time-domain or
frequency domain methods, and kclg is the system closed loop gain. Note that we are modelling
the motor as contributing only a gain to the system, and we are lumping both the plant’s gain
and the motor gain together into one parameter.

-
½¼

¾»
- Gc(s) -

kclg
1

ω2
n
s2+ 2ζ

ωn
s+1

-

6

+
-

2) Show that for

Gc(s) = kp

the steady state output yss due to a step input of amplitude A is given by

yss =
Akpkclg

1 + kpkclg

which can be rewritten as

kclg =
yss

kp

1

A− yss

This is the expression we will use to estimate the closed loop system gain kclg.

3) Show that for a PD controller

Gc(s) = k(s + z)

the position error is given by

ep =
1

1 + kkclgz



4) The standard form for a PID controller is

Gc(s) = kp + ki
1

s
+ kds

show that

a) for a PID controller in the form Gc(s) = k(s+z1)(s+z2)/s, kp = k(z1+z2), ki = kz1z2, kd = k

b) for a PI controller in the form Gc(s) = k(s + z)/s, kp = k, ki = kz, kd = 0

c) for a PD controller in the form Gc(s) = k(s + z), kp = kz, ki = 0, kd = k

We generally need to keep the kp, ki and kd less than about 0.1. (Sometimes I have
used a ki of about 9) You need to use the above relationships when choosing where
the poles and zeros of your controllers should be.



Estimating the Closed Loop Gain kclg

0. Set the units

Click Setup → User Units and set the units to cm.

1. Setting up the controller

Click Setup → Control Algorithm. Be sure the system is set for Continuous Time. Select
PID under Control Algorithm. Click on Setup Algorithm. Be sure Feedback is from
Encoder 1. Set kp to a small number (less than or equal to 0.05) and be sure kd = 0 and
ki = 0. Then click OK. Next Click Implement Algorithm. The click OK.

2. Setting up the closed loop trajectory

Click Command → Trajectory. Select Step and click on Setup. Select Closed Loop Step
and set Step Size to 1 to 2 cm. Be sure to record this step size (we’ll refer to the amplitude as
A below). Set the Dwell Time to something like 2000 ms, this is the time the system will be
recording data. Finally click OK, then OK and you should be back to the main menu.

3. Executing the closed loop step

Click Command Execute. A menu box will come up with a number of options, and a big
green Run button. Click on the Run button. When the system has finished collecting data,
a box will appear indicating the how many sample points of data have been collected. (If you
have hit a stop, the system stops recording data. This usually means you’re input amplitude
was too large or kp was too large. ) Click on OK to get back to the main menu.

4. Determining the steady state value

Click Plotting → Setup Plot, or just Plotting Data → Plot Data. Look at the steady
state value (yss). You may need to change the dwell time if your system has not reached steady
state.

5. Estimating the closed loop gain

Estimate the closed loop gain kclg using the formula derived in the prelab: kclg = yss

kp

1
A−yss

.

You need to go through this procedure at least three times for each configuration. You must
use at least two different values of kp and two different values of input amplitude A. If none of
the steady state values is larger than 0.4 cm, increase either kp or A. Average the three results
to get your kclg (they should be similar). For the trials I’ve run, I’ve got kclg between 10 and
20. Your’s may be outside this range though.



6. Estimating the transfer function

The final plant transfer function we will use is then

G(s) =
kclg

1
ω2

n
s2 + 2ζ

ωn
s + 1

where ωn and ζ were found previously. This is the transfer function to be used in both Mathlab’s
sisotool and in the closed loop response program.

Designing and Implementing the Controllers

For each of the controller types, you should attempt to

• produce a position error of less than 0.15

• reach steady state within 5 seconds (the faster the better)

• have as little overshoot as you can manage

I represent management, which means I expect things which may not be possible. If you cannot
meet these vague criteria, do the best you can with each controller type to meet the criteria.

Here are some general ideas:

1. Use Matlab’s sisotool program to design the controllers.

2. Try and keep all kp and kd gains less than about 0.1 (it’s OK if they are larger, just be
prepared for the motor to buzz and the controller to not work) Look at the prelab for the
relationships between the controller poles and zeros and kp, ki and kd.

3. Be aware that you enter the control parameters in the order kp, kd, then ki

4. Be sure to zero out the gains you are not using (i.e., if you are using a PI controller, be
sure kd is set to zero)

5. You may need to reset the controller often, such as every time you want to implement
a new controller. Click Utility → Reset Controller. Only do this before you have
implemented a controller.

6. You may need to rephase the motor. Click Utility → Rephase Motor

7. Be sure to Implement the controller you have designed.

8. Try and track a step with an input amplitude of 1 cm.

9. Try and track at least two different inputs (ie., a sinusoid, a ramp, a parabola .. not
another step of a different amplitude) once your system is designed. Do not worry about
whether your controller works for these other inputs.



Memo

Your memo should compare (briefly) the response of the model and the response of the real sys-
tem for the different types of controllers. You should also indicate if any of the controllers could
not be made to work, and why. Finally you should have some description of the configuration
of the system you were trying to control.

You should include the following items as attachments. Most of these are figures which should
have reasonable captions.

• The step response of the time-domain model.

• The initial frequency response of the system.

• The optimized frequency response of the system.

• The data used to determine the closed loop gain.

• The final model of the system.

• The predicted and actual response of the system to each of the different controllers.

• The response of the system to different inputs.


