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ECE-420: Discrete-Time Control Systems 
Homework 3 

 
Due: Thursday September 20 in class  
Exam 1, Friday September 21 

 
1)  For each of the following transfer functions, determine if the system is asymptotically stable, and if 
so, the estimated 2% settling time for the system based on the pole locations. Assume the sampling 
interval is 0.1T =  seconds. (Read sections 1.9 and 1.10 from the notes for help) 
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Scambled Answers: 0.50, 0.58 , 1.15, 0.25, two unstable systems 
  
2) For the following system, assuming the closed loop systems are stable, determine the prefilter gain 

pfG  that will result in zero steady state error for a unit step input. Are any of these systems type one 
systems? 
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Answers:  7.5, 9.47, one is type one (so the prefilter has value 1) 
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3)  Consider the continuous-time plant with transfer function  
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We want to determine the discrete-time equivalent to this plant, ( )pG z , by assuming a zero order hold is 
placed before the continuous-time plant to convert the discrete-time control signal to a continuous time 
control signal.  
  
Show that if we assume a sampling interval of T , the equivalent discrete-time plant is 
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Note that we have poles were we expect them to be, but we have introduced a zero in going from the 
continuous time system to the discrete-time system. 
 
 
 
 
4) In this problem assume the feedback configuration shown in Problem 2. 
 
a) Assume 
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If the plant is equal to 3 and we want all of the closed loop poles at -0.5, then the controller and closed 
loop transfer functions are 
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b) Assume  
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If the plant is equal to 2
0.5z −

and the closed loop poles are at -0.5 and -0.333, then the controller and the 

closed loop transfer function are 
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5) (sisotool) The file DT_PID.mdl is a Simulink model that implements a discrete-time PID controller. 
It is somewhat unusual in that the plant is represented in state-variable form, but this is the usual form 
we will be using in this class. The Simulink model looks like the following:  
 

 
The file DT_PID_driver.m is the Matlab file that runs this code. We will be utilizing Matlab’s sisotool 
for determining the pole placement and the values of the gains. 
 
Before we go on, we need to remember the following two things about discrete-time systems: 
 

• For stability, all poles of the system must be within the unit circle. However, zeros can be 
outside of the unit circle. 

 
• The closer to the origin your dominant poles are, the faster your system will respond. However, 

the control effort will generally be larger. 
 
The basic transfer function form of the components of a discrete-time PID controller are as follows: 
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PI Controller: To construct a PI controller, we add the P and I controllers together to get the overall 
transfer function: 
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In sisotool this will be represented as  
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In order to get the coefficients we need out of the sisotool format we equate coefficients to get:  
 

,p i pK Ka K K K= − = −  
 
PID Controller: To construct a PID controller, we add the P, I,  and D controllers together to get the 
overall transfer function: 
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In order to get the coefficients we need out of the sisotool format we equate coefficients to get:  
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For the PID controller, we can have either two complex conjugate zeros or two real zeros. 
 
Note that these calculations are pretty much done for you in the driver file DT_PID_driver.m 
 

The file DT_PID_driver implements a controller for the default  plant 3 2
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assuming a sampling interval of 0.1sT =  seconds. 
 

You may want to read the review of sisotool at the end of this homework before going on. 
 
 
For the remainder of this problem, you are to  design two controllers for the plant
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 assuming a sampling interval of 0.1 seconds.  

 
A) Modify the default plant in the Matlab program DT_PID_driver.m and run the program. This 

program is set up to implement a P controller for the default plant with gain 0.0116. It will put the 
value of the transfer function for the system, ( )pG z , in your workspace. 

B) Start sisotool and load in the transfer function. It is easiest to get the parameters you need if you use 
the pole-zero form of the controller. To do this type  

 
Edit → SISO Tool Preferences → Options and click on zero/pole/gain. 
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C) Use sisotool to determine a PI controller so the system has a settling time less than 2.5 seconds and 
a percent overshoot less than 15%. The control effort must also be within the allowed bounds, 
though this may be different than that output by sisotool since sisotool always assumes a step of 
value 1. Print out the root locus plots and the step response using DT_PID_driver.m and print out 
the graph. Include the values of , ,p ik k and dk with your graph. 
 

D) Use sisotool to determine a PID controller (I would suggest real zeros, but it is up to you!) so the 
system has a settling time less than 2.5 seconds and a percent overshoot less than 15%. The control 
effort must also be within the allowed bounds. Print out the root locus plots and the step response 
using DT_PID_driver.m and print out the graph. Include the values of , ,p ik k and dk with your 
graph. 
 

You should have four graphs for this problem, two root locus plots and two step response plots. The 
values of , ,p ik k and dk should be included with each graph. 
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Sisotool (Brief) Example 
 
Run the Matlab program DT_PID_driver.m. This program is set up to implement a P controller with 
gain 0.0116. It will put the value of the transfer function for your system, ( )pG z , in your workspace. 
Now we are ready for sisotool. 
 
Getting Started 
 

• Type sisotool in the command window 
• Click  close when the help window comes up 
• Click on  View, then Design Plots Configuration, and turn off all plots except the Root Locus 

plot (set the Plot Type to Root Locus for Plot 1, and set the Plot Type to None for all other 
Plots)  

 
Loading the Transfer Function 
 

• In the SISO Design window, Click on file → import. 
• We will usually be assigning Gp(z) to block G (the plant). Under the System heading, click on 

the line that indicates G, then click on Browse.  
• Choose the available Model that you want assigned to G (Click on the appropriate line) and then 

click on Import, and then on Close. 
• Click OK on the System Data (Import Model) window 
• Once the transfer function has been entered, the root locus is displayed. Make sure the poles and 

zeros of your plant are where you think they should be.  
 
 
 
 
Generating the Step Response 
 

• Click on Analysis →  Response to Step Command (the system is unstable at this point) 
• You will probably have two curves on your step response plot. To just get the output, type 

Analysis → Other Loop Responses. If you only want the output, then only r to y is checked, 
and then click OK. However, sometimes you will also want the r to u output, since it shows the 
control effort for P, I, and PI controllers. 

• You can move the location of the pole in the root locus plot by putting the cursor over the pink 
button and holding the left mouse button down as you move the pole locations. You should note 
that the step response changes as the pole locations change. 

• The bottom of the root locus window will show you the closed loop poles corresponding to the 
cursor location if you hold down the left mouse button. However, if you need all of the closed 
loop poles you have to look at all of the branches. 
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Entering a Compensator (controller): We will implement a PI controller here 
 

• Click on Designs, then Edit Compensators.  
• Right click in the Dynamics window to enter real poles and zeros. You will be able to changes 

these values very easily later. Since we want a PI controller, we need a pole to be a 1 and we 
need to be able to change the value of the zero. For now assume the zero is at -1. 

• Look at the form of C to be sure it's what you intended, and then look at the root locus with the 
compensator. 

• You can again see how the step response changes with the compensator by moving the locations 
of the zero (grab the pink dot and slide it) and moving the gain of the system (grab the squares 
and drag them). Remember we need all poles and zeros to be inside the unit circle for stability! 

• Move the pole and zero around until the zero is approximately -0.295 and the gain is 
approximately 0.0563. You should get a figure like that shown in Figure 1. 

 

 
 

Figure 1. Discrete-time example with w PI controller. 
 
Adding Constraints 

• Right Click on the Root Locus plot, and choose Design Requirements then either New to add 
new constraints, or Edit to edit existing constraints. 

• At this point you have a choice of various types of constraints. 
• Remember these constraints are only exact for ideal second order systems!!!!! 
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Printing/Saving the Figures: 
 
To save a figure sisotool has created, click File → Print to Figure 
 
Odds and Ends : 
 

You may want to fix the axes. To do this, 
 

• Right click on the Root Locus Plot 
• Choose Properties 
• Choose Limits 
• Set the limits and turn the Auto Scale off 

 
You may also want to put on a grid, as another method of checking your answers. To do this, right 
click on the Root Locus plot, then choose Grid 

 
It is easiest if you use the zero/pole/gain format for the compensators. To do this 
click on  Edit → SISO Tool Preferences → Options and click on zero/pole/gain. 

 
 


	ECE-420: Discrete-Time Control Systems
	Homework 3
	Due: Thursday September 20 in class
	Exam 1, Friday September 21
	1)  For each of the following transfer functions, determine if the system is asymptotically stable, and if so, the estimated 2% settling time for the system based on the pole locations. Assume the sampling interval is  seconds. (Read sections 1.9 and ...
	a)      d)
	b)         e)
	c)       f)
	Scambled Answers: 0.50, 0.58 , 1.15, 0.25, two unstable systems
	2) For the following system, assuming the closed loop systems are stable, determine the prefilter gain  that will result in zero steady state error for a unit step input. Are any of these systems type one systems?
	a)
	Answers:  7.5, 9.47, one is type one (so the prefilter has value 1)
	3)  Consider the continuous-time plant with transfer function
	We want to determine the discrete-time equivalent to this plant, , by assuming a zero order hold is placed before the continuous-time plant to convert the discrete-time control signal to a continuous time control signal.
	Show that if we assume a sampling interval of , the equivalent discrete-time plant is
	Note that we have poles were we expect them to be, but we have introduced a zero in going from the continuous time system to the discrete-time system.
	4) In this problem assume the feedback configuration shown in Problem 2.
	a) Assume

