| Name Solutions Mailbox |
|------------------------|
|------------------------|

## ECE-320 Linear Control Systems Winter 2013, Exam 2

You may only use your computer on the sisotool problem.

You may only use Matlab on this problem.

| Problem 1   | /25  |
|-------------|------|
| Problem 2   | /25  |
| Problem 3-9 | /21  |
| Problem 10  | /29  |
| Total       | /100 |

Mailbox \_\_\_\_\_

1) (25 points) For impulse response  $h(n) = \left(\frac{1}{2}\right)^{n-1} u(n+1)$  and input  $x(n) = \left(\frac{1}{4}\right)^{n+1} u(n-1)$ , determine the system output by evaluating the convolution sum  $y(n) = \sum_{k=0}^{\infty} h(n-k)x(k)$ 

Note: you do not have to simplify your answer, but you must remove all sums and include a unit step function of some sort.

$$A(u) = \sum_{k=-\infty} (\frac{1}{2})_{u-k-1} \frac{A(u-k+1)}{(\frac{1}{2})_{k+1}} \frac{A(u-k+1)=1}{(u-k+1)=1} \frac{A(u-k+1)}{(u-k+1)=1} \frac{A(u-k+1)}{(u-k+1)} \frac{A(u-k+1)}{(u-k+1)} \frac{A(u-k+1)}{(u-k+1)} \frac{A(u-k+$$

$$y(n) = \sum_{k=1}^{n+1} (\frac{1}{2})^{n-1} (\frac{1}{2})^{-k} (\frac{1}{4})^{k} (\frac{1}{4})^{k}$$

$$= (\frac{1}{2})^{n-1} + \sum_{k=1}^{n+1} (\frac{1}{2})^{k} \quad \text{af} \quad l = k-1 \quad l+1 = k$$

$$y(n) = (\frac{1}{2})^{n-1} + \sum_{k=1}^{n} (\frac{1}{2})^{k} = (\frac{1}{2})^{n-1} + \sum_{k=1}^{n} (\frac{1}{2})^{k}$$

$$y(n) = (\frac{1}{2})^{n-1} + \sum_{k=1}^{n} (\frac{1}{2})^{k} = (\frac{1}{2})^{n-1} + \sum_{k=1}^{n} (\frac{1}{2})^{k}$$

- 2) (25 points) For impulse response  $h(n) = \left(\frac{1}{2}\right)^{n-1} u(n)$  and input  $x(n) = \left(\frac{1}{3}\right)^{n+1} u(n-1)$ ,
- a) determine the z-transform of h(n), H(z)
- b) determine the z-transform of x(n), X(z)
- c) determine y(n)

*Hint:* Assume  $Y(z) = z^{-2}G(z)$ , determine g(n) and then y(n)

$$X(z) = Z\left\{ \left(\frac{1}{3}\right)^{n-1} n(n-1) \left(\frac{1}{3}\right)^{2} \right\} = \frac{1}{4} z^{-1} \frac{z}{z^{-1}/3} = \frac{\sqrt{q}}{z^{-1}/3}$$

$$Y_{(2)} = H_{(2)}X_{(2)} = \frac{2}{9}^{2}$$

$$(2-\frac{1}{2})(2-\frac{1}{3})$$

$$\frac{Y(z)}{z} = \frac{2/q}{(z-1/2)(z-1/3)} = \frac{A}{z-1/2} + \frac{13}{z-1/3}$$

$$A = \frac{2/q}{\sqrt{6}} = \frac{12}{9} = \frac{1}{3}$$

$$B = \frac{2/q}{-1} = \frac{-12}{9} = \frac{-4}{3}$$

$$\lambda(5) = \frac{3}{4} \frac{5-1}{5} - \frac{3}{4} \frac{5-1}{5}$$

## Problem 3-9, 3 points each

- 3) Is the following system *controllable*?  $G(s) = \frac{G_{pf}}{(s k_1 k_2)^2}$
- a) Yes b) No c) impossible to determine
- 4) Is the following system *controllable*?  $G(s) = \frac{8G_{pf}}{s^2 + 12s + (k_1 + k_2 + 20)}$
- a) Yes (b) No c) impossible to determine
- 5) Is the following system controllable?  $G(s) = \frac{G_{pf}}{s^2 + (k_2 + k_1 1)s + (k_2 + 2)}$
- (a) Yes b) No c) impossible to determine
- 6) Consider a plant that is unstable but is a controllable system. Is it possible to use state variable feedback to make this system stable?
- a) Yes b) No
- 7) Is it possible for a system with state variable feedback to change the zeros of the plant (other than by pole-zero cancellation)?
- a) Yes b) No
- 8) Is it possible for a system with state variable feedback to introduce zeros into the closed loop system?
- a) Yes b) No
- 9) If a plant has n poles, then a system with state variable feedback with no pole-zero cancellations will have
- a) more than n poles b) less than n poles c) n poles d) it is not possible to tell

| Momo |            |
|------|------------|
| Name | cardino 11 |
|      |            |

Mailbox \_\_\_\_\_

## 10) (29 points) (sisotool problem)

Consider the plant

$$G_p(s) = \frac{50}{s^2 + 10s + 100}$$

Design a PID controller using sisotool with complex conjugate zeros so that

$$T_s \leq 2.0 \sec$$
  
 $P.O. \leq 10\%$ 

In addition, your controller must be designed so that

$$k_p \leq 1.0$$

$$k_i \leq 5$$

$$k_d \leq 0.05$$

Write your final values for  $k_p$ ,  $k_i$ ,  $k_d$ , and the transfer function of the controller in the space below.