Name	Mailbox

ECE-320 Linear Control Systems Winter 2012, Exam 1

No calculators or computers allowed, except for Problem 6 when you should use Matlab's sisotool.

You must simplify your answers as much as possible, or points will be deducted.

Problem 1	/24
Problem 2	/12
Problem 3	/8
Problem 4	/8
Problem 5	/24
Problem 6	/24
Total	/10

1) (24 points) Consider the following simple feedback control block diagram. The plant is $G_p(s) = \frac{3}{s+5}$. The input is a unit step.

- a) Determine the settling time, steady state error for a unit step input, and the bandwidth of the plant alone (assuming there is no feedback)
- **b)** Assuming a proportional controller, $G_c(s) = k_p$, determine the closed loop transfer function, $G_0(s)$
- c) Assuming a proportional controller, $G_c(s) = k_p$, determine the value of k_p so the steady state error for a unit step is 1/4, and the corresponding settling time for the system.
- d) Assuming a proportional controller, $G_c(s) = k_p$, determine the value of k_p so the settling time is 4/11 seconds, and the corresponding steady state error.
- e) Assuming a proportional controller, $G_c(s) = k_p$, determine the value of k_p so the bandwidth is 17 rad/sec.

(b)
$$G_0(4) = \frac{3k_0}{5+5+3k_0}$$

©
$$e_{5} = \frac{5}{5+3} = \frac{4}{4} + \frac{5}{5+15} = \frac{4}{50} = \frac{4}{5} = \frac{7}{5}$$

2) (12 points) For the following questions, refer to the following graph showing the input and output of a second order system. For this system the input is a step of amplitude 2. (You can leave your answers as fractions.)

a) What is the static gain of the system? $\mathcal{K} \cdot 2 = 8$ $\mathcal{K} = 4$

b) What is the percent overshoot? $90 = \frac{14-8}{8} \times 100\% = \frac{6}{8} \times 100\% = \boxed{75\%}$

c) What is the steady state error? $e_{55} = 2 - 8 = -6$

3) (8 points) For the following systems, assume $G_c(s) = \frac{1}{s+2}$ and $G_p(s) = \frac{1}{s+5}$

- a) Determine the position error constant K_p $K_p = L$ = lim G_{c} = lim G_{c} = lim = l
- b) Determine the steady state error for a unit step input.

4) (8 points) For the following systems, assume $G_c(s) = \frac{3}{s}$ and $G_p(s) = \frac{1}{s+4}$

a) Determine the velocity error constant K_v .

b) Determine the steady state error for a unit ramp input.

- 5) (24 points) For a system with the transfer function $H(s) = \frac{1}{(s+1)(s+2)^2}$
- a) Determine the impulse response h(t)

$$H(8) = \frac{1}{(8+1)(8+3)^2} = \frac{A}{8+1} + \frac{B}{4+2} + \frac{C}{(8+2)^2}$$
 $X = 1$ $C = -1$ $C = -1$ $C = -1$ $C = -1$

$$A = 1$$
 $C = -1$
 $x = -1$ $C = -1$

$$A(t) = (e^{-t} - e^{-2t} + e^{-2t})u(t)$$

b) Determine the unit step response.

$$Y_{(8)} = \frac{1}{\$(\$+1)(\$+2)^2} = \frac{A}{\$} + \frac{B}{\$+1} + \frac{C}{\$+2} + \frac{D}{(\$+2)^2}$$

$$A = \frac{1}{4}$$

$$D = \frac{1}{2}$$

$$y(t) = (4 - e^{-t} + 3 e^{-2t} + 4 t e^{-2t}) y(t)$$

6) (24 points) (sisotool problem)

Consider the plant

$$G_p(s) = \frac{100}{s^2 + 2s + 20}$$

Design a PID controller using sisotool with <u>complex zeros</u> so that

$$T_s \leq 1.0 \sec$$

$$P.O. \leq 10\%$$

In addition, your controller must be designed so that

$$k_p \leq 0.5$$

$$k_i \leq 1$$

$$k_{p} \leq 0.5$$

$$k_{i} \leq 5$$

$$k_{d} \leq 0.1$$

Write your final values for $k_{_{p}}$, $k_{_{d}}$, and the transfer function of the controller in the space below.

$$k_p =$$

$$k_i =$$

$$k_d =$$

$$G_c(s) =$$