
 
ECE-320: Linear Control Systems 

Homework 5 
 
Due: Thursday January 14 at the beginning of class   
 
 
1) For the following problem, assume we are using the following control system 
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where the plant is given by 
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For the following controllers, sketch the root locus with arrows showing the direction of travel as k  
increases. If there are any poles going to zeros at infinity, you need to compute the centroid of the 
asymptotes ( cσ )  and the angles of the asymptotes. 
 

 
You may (and should) check your answers with Matlab (use the rlocus command), but you need to do 
this by hand. 
  
a) G s  ( proportional (P) controller) ( )c k=
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kG s  (an integral (I) controller) 
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=G s  (a proportional + integral (PI) controller) Write the centroid cσ as a function of z. 

For what values of z will the two asymptotes be in the right half plane? (For plotting purposes, assume z  
is equal to 2.) 
 
d) G s  (a proportional+derivative (PD) controller)  ( ) ( )c k s z= +
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=G s  (a proportional+integral+derivative (PID) controller) Sketch this for the case 

where both zeros are real and then when both zeros are complex conjugates. 
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)  ( a lead controller, ) Write an expression for p z> cσ as a function of the distance  

between the pole and the zero, l p z= − . What happens to the asymptotes as l  gets larger? (For plotting 
purposes, assume  p is 5 and z is 1.) 
 
 
 
2) For the following problem, assume we are using the following control system 
 
 
 

( )pG s( )cG s+ 
-

 
 
 
 
 
where the plant is given by 
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Want to determine if it is possible to meet the following constraints 
 

•  1secsT ≤
• Steady state error for a unit step input < 0.1 

 
with P, I, PD, and PID (real zeros and complex conjugate zeros) controllers. For each of these 
controllers, you need to 
 

• Sketch the root locus with arrows showing the direction of travel as  increases. If there are any 
poles going to zeros at infinity, you need to compute the centroid of the asymptotes (

k
cσ ) and the 

angles of the asymptotes. 
 

• State whether it is possible, based only on the closed loop pole locations, to meet the constraints. 
If it is necessary to put constraints on , , or to meet the constraints, you must specify them. 
(At this point you can only put conditions on k to meet the steady state  error constraints.) 

k p z

 
• Determine if it is possible for the output to oscillate (nonzero dω ) 
 

You may (and should) check your answers with Matlab (use the rlocus command), but you need to do 
this by hand. 
  
 
 
 



 
 
 
3) For the system shown below, with the lag compensator (z > p): 
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a)  Show that without the lag compensator, 5
2vK =  and the steady state error for a unit 

ramp input is 2
5sse = . 

 
b) Include the lag compensator, with z = 0.1, so the steady state error will be 0.01. 
(Answer: p = 0.0025). 
 
 
 
 
4) Standard root locus form for determining the poles of the closed loop transfer function is  

 
1 ( )kG s 0+ =  

 
 If we want to use the root locus to determine the possible pole locations for the following system,  
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what is G s ?( )



5) For the system shown below: 
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Assume we want to use the lag compensator so that the steady state error for a unit ramp 
is  We will be varying the locations of the pole and zero of the lag compensator 
to accomplish this, and will look at the effects of these changes on both the unit step 
response and the unit ramp response.  For each of the simulations below, run the 
simulation to 35 seconds. For z = 0.1, 0.01, and 0.001 

0.1sse =

• Find the correct value for p to produce the required steady state error. 
• Using Matlab, simulate the unit step response for the original system (without the 

lag compensator) and with the lag compensator. Plot both results on one graph, as 
well as the input signal, using different line styles and a legend. Use the subplot 
command to put this on the top of the page.  

• Using Matlab, simulate the unit ramp response for both the original system and 
the system with the lag compensator. Plot both results on one graph, as well as the 
input signal, using different line styles and a legend. Use the subplot command to 
put this on the bottom of the page.  

 
You should notice that the large the value of z, the quicker the steady state error for a 
unit ramp is reduced. However, this is at the expense of large changes in the step 
response. 
 
Preparation for Lab 5 
 
6) In this problem we are going to be adding a PID controller to your 
closedloop_driver.m  file. Once the PID controller is implemented, we can easily form 
any of the common controllers (P,I, PI,  and PD) by settling coefficients to zero. 
 
You will be using this code and these designs in Lab 5, so come prepared! 
 
a) Get the state variable model files for one of your 1 degree of freedom systems. Since 
you will be implementing these controllers during lab 5, if you have any clue at all you 
and your lab partner will do different systems! 
 
You will need to have closedloop_driver.m load the correct state model into the system! 
 
b) Comment out all of the other controllers, and add the lines 
 
kp = 0.2;      % just a dummy value 
ki = 0.02;     % and even dummer value 

+ 2
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kd = 0.002;  % way stupid value 
 
Gc = tf(kp,1) + tf(ki,[1 0]) + tf([kd 0],[1/50 1]); 
 
Note that we have modified the derivative controller so that it is in series with a one pole 
lowpass filter with pole at 50 (about 8 Hz). This will help smooth out the derivatives. 
 
c) You will need to be able to determine the PID controller coefficients from the 
controller. This is easiest done by equating coefficients. For example, if the PID 
controller is given by 
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show that the coefficients are determined by dk a= , pk ab=  , and ik ac= . 
 
d) Using Matlab's sisotool, design two PID controllers (with complex conjugate zeros, 
one with real zeros) for your system. Initially limit your gains as in the lab 
 

0.5
5

0.01

p

i

d

k
k
k

≤
≤
≤

 

 
Your resulting design must have a settling time of  1.0 seconds or less and must have a 
percent overshoot of 25% or less. Note that sisotool defaults to an input of 1, that's OK 
for design purposes. If you don't know how to get the correct plant transfer function, run 
closedloop_driver.m (with the correct model file) and it will put the correct transfer 
function Gp(s) into your Matlab workspace. 
 
e) Implement the PID controllers in closedloop_driver.m. Be sure the saturation limits 
are set appropriately for your ECP system (rectilinear or torsional). Use a step with 
amplitude 0.5 cm or 10 degrees (convert to radians!)  in your closedloop_driver.m file. 
 
f) Simulate the system. Plot the control effort only out to 0.2 seconds since the control 
effort is usually largest near the initial time. If your control effort reaches its limits, you 
need to go back to part (d) and modify your designs.  If your control effort is not near the 
limit, you can increase the gains, particularly the derivative gain. 
 
g) Run your simulations for 2.0 seconds. Plot both the system output (from 0 to 2 
seconds) and the control effort (from 0 to 0.2 seconds). Put a title on your plot to identify 
kp, ki, and kd. Look at previous code to determine how to do this. Turn in your plot. 
 
Since the PID controllers makes the system a type 1 system, we don't need a prefilter to 
have a steady state error of zero. However, sometimes we can use the prefilter to make 
the transient response a bit nicer, or reduce the control effort. However, this is done at the 
expense of a block outside the control loop, which may be bad. Never the less, we 
continue anyway... 



 
h) Our new transfer function has introduced finite zeros into the closed loop transfer 
function. We now want to use a dynamic prefilter to eliminate these zeros, so long as 
they are in the left half plane. We also need (0) 1pfG = . Hence we have 
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For us, we set the prefilter Gpf(s) to den_Go(end)/num_Go. (This should all be done in 
Matlab! Comment out your old code and add this new code.) This will cancel out the 
zeros of the closed loop system. Your numerator polynomial for Go(s), which is denoted 
as , should be second order. If it is not, be sure you have not removed the lines ( )oN s
 
num_Gp = (abs(num_Gp) > tol*ones(1,length(num_Gp))).*num_Gp; 
 den_Gp = (abs(den_Gp) > tol*ones(1,length(den_Gp))).*den_Gp; 
 
 Rerun part (g) with the dynamic prefiler and turn in your plots. How have the results 
changed?  
   
Turn in your final code! You should have 4 plots to turn in: Two for the PID with real 
zeros (with and without dynamic prefilters) and two for the PID with complex zeros (with 
and without prefilters). 
 


