
1

ECE320 Lab 3: PID and PI Controllers

Overview

In this lab you will be controlling the one degree of freedom systems you previously modeled using PID
and PI controllers with and without dynamic prefilters.

Design Specifications: For each of your systems, you should try and adjust your parameters until
you have achieved the following for a step input with amplitude 1 cm (or 15 degrees, converted to
radians!) :

• Settling time less than 1.0 seconds.
• Percent Overshoot less than 25%

If you system has problems with these amplitudes, try an input amplitude of 0.5 cm (or 10 degrees,
converted to radians).

As a start, you should initially limit your gains as follows:

k p ≤ 0.5
ki ≤ 5
kd ≤ 0.01

Your memo should include six graphs for each of the 1 dof systems you used (two different PID
controllers and one PI controllers with and without dynamic prefilters.) Be sure to include the values
of k p , ki , and kd and whether the PID controller had real zeros or complex conjugate zeros in the
captions for each figure. Your memo should compare the difference between the predicted response
(from the model) and the real response (from the real system) for each of the systems. How does the
use of a dynamic prefilter change the response?

If your model does not represent the response of the system very well, you might try changing the
sampling interval as shown in the Appendix.

For each of your two 1 dof systems you will need to go through the following steps:

Step 1: Set up the 1 dof system exactly the way it was when you determined its model parameters.

Step 2: Modify closedloop_driver.m to read in the correct model file. You may have to copy this
model file to the current folder.

Step 3: Modify closedloop_driver.m to use the correct saturation_level for the system you are using.

2

Step 4: Modify closedloop_driver.m for a PID controller. To do this, comment out all of the other
controllers, and add the lines

kp = 0.2; % just a dummy value
ki = 0.02; % and even dummer value
kd = 0.002; % way stupid value

Gc = tf(kp,1) + tf(ki,[1 0]) + tf([kd 0],[1/50 1]);

Note that we have modified the derivative controller so that it is in series with a one pole lowpass filter
with pole at 50 rad/sec (about 8 Hz). This will help smooth out the derivatives.

Step 5: PID Control (complex conjugate zeros)

• Design a PID controller with complex conjugate zeros using sisotool to meet the design

requirements. Do not try to include the lowpass filter, just use a pole at the origin and two
complex conjugate zeros. Use a constant prefilter (i.e., a number, most likely the number 1)

• Simulate the system using closedloop_driver.m for 1.5 seconds. Your step response should be

similar to that you obtained using sisotool. If the design constrains are not met, or the control
effort hits a limit, redesign your controller (you might also try a lower input signal)

• Compile the correct closed loop ECP Simulink driver (Model210_Closedloop.mdl or
Model205_Closedloop.mdl) , connect to the system, and run the ECP system. Be sure to set the
correct controller personality file first and reset the system using ECPDSPResetmdl.mdl.

• Use the compare1.m file (or a modification of it) to plot the results of both the simulation and

the real system on one nice, neatly labeled graph. You need to include this graph in your
memo. Be sure to include the values of k p , ki , and kd in your memo.

• Change the prefilter in closedloop.mdl to cancel the zeros of the closed loop system and still

have a steady state error of zero. Since the PID controller makes the system a type 1 system, we
don't need a prefilter to have a steady state error of zero. However, sometimes we can use the
prefilter to make the transient response a bit nicer, or reduce the control effort. However, this is
done at the expense of a block outside the control loop, which may be bad. Never the less, we
continue anyway... We also need (0) 1pfG = . Hence we have

(0)()
()

o
pf

o

DG s
N s

=

3

First we need to compute the closedloop transfer function and get the numerator and the
denominator. To do this in Matlab type

Go = feedback(Gc*Gp,1);
[num_Go,den_Go] = tfdata(Go,’v’);

Set they dynamic prefilter, Gpf(s), as follows:

num_Gpre = den_Go(end);
Den_Gpre = num_Go;

This will cancel out the zeros of the closed loop system. Your numerator polynomial for Go(s),
which is denoted as ()oN s , should be second order. If it is not, be sure you have not removed the
lines

num_Gp = (abs(num_Gp) > tol*ones(1,length(num_Gp))).*num_Gp;
den_Gp = (abs(den_Gp) > tol*ones(1,length(den_Gp))).*den_Gp;

• Rerun the simulation, recompile the ECP system, run the ECP system, and compare the

predicted with the measured response. You also need to include this graph in your memo. Be
sure to include the values of k p , ki , and kd in your memo.

Step 5: PID Control (real zeros)

• Design a PID controller with real zeros using sisotool to meet the design specs (you may

have already done this in the homework). Use a constant prefilter (i.e., a number, most
likely the number 1)

• Implement the correct gains into closedloop.mdl

• Simulate the system for 1.5 seconds. If the design constrains are not met, or the control

effort hits a limit, redesign your controller (you might also try a lower input signal)

• Compile the correct closed loop ECP Simulink driver, connect to the system, and run the
system.

• Use the compare1.m file (or a modification of it) to plot the results of both the simulation

and the real system on one nice, neatly labeled graph. You also need to include this graph in
your memo. Be sure to include the values of k p , ki , and kd in your memo.

• Change the prefilter to cancel the zeros of the closed loop system and still have a steady state

error of zero. Rerun the simulation, recompile the ECP system, run the ECP system, and
compare the predicted with the measured response. You also need to include this graph in
your memo. Be sure to include the values of k p , ki , and kd in your memo.

4

Step 6: PI Control

• Design a PI controller using sisotool to meet the design specs. (It may be difficult to meet the
settling time constraint, do the best you can.) Use a constant prefilter (i.e., a number).

• Simulate the system for 1.5 seconds (or long enough to reach steady state). If the design

constrains are not met, or the control effort hits a limit, redesign your controller (you
might also try a lower input signal.) Compile the correct closed loop ECP Simulink
driver, connect to the system, and run the simulation.

• Use the compare1.m file (or a modification of it) to plot the results of both the simulation and

the real system on one nice, neatly labeled graph. You need to include this graph in your
memo. Be sure to include the values of k p , ki , and kd in your memo.

• Change the prefilter to cancel the zeros of the closed loop system and still have a steady state

error of zero. Rerun the simulation, recompile the ECP system, run the ECP system, and
compare the predicted with the measured response. You also need to include this graph in
your memo. Be sure to include the values of k p , ki , and kd in your memo.

5

Appendix

If your model does not seem to work very well at predicting the response of the ECP system, you
might try the following procedure to decrease the sampling interval. However, this may make things
worse!

Starting with Model210_Closedloop (or Model205_Closedloop), click on the yellow block.

You should get the following screen. Click on the large blue block.

Click on the
yellow block

Click on the
blue block

6

You should get the following screen. Set the sample time to 0.001 instead of 0.004.

Click Ok and go back to the main screen (Model210_Closedloop or Model205_Closedloop)

Click on Simulation (on the top row), then click on Configuration Parameters in the new screen.
You should then get to the Configuration screen.

Change this
to 0.001

Click on
Simulation

7

Change the Fixed-step size to 0.001 (the same as you changed it to in the blue block), and then click
ok. Be sure to save Model210_Closedloop.mdl (or Model205_Closedloop.mdl) when you are done.

Change this
to 0.001

