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ECE-320: Linear Control Systems 

Homework 7 

 

Due: Thursday April 28, 2011 at the beginning of class 
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Note that this is the unit step response of the system. 

 

2)  For impulse response 
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3) For impulse response 
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4) (Easy!) For impulse response ( ) ( 2) 3 ( 3( ) 2 )h n nn n       and input 
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6) For impulse response 
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Preparation for Lab 6 (No Maple) 
 

8) In this derivation we will make a state variable model for a regular pendulum (a pendulum hanging 

down) attached to the first cart. It will be easier to measure the parameters for a regular pendulum 

since it is a stable system. In the lab we will initially try and control the regular pendulum. Once this is 

working, we will try to control an inverted pendulum. To go from the model of a regular pendulum to the 

model of an inverted pendulum we use the substitution l l .  

 
Consider the configuration for the regular pendulum shown below: 

 

 
 

The equations of motion for the regular pendulum can be written as 

 

 

2

2

( ) cos( ) sin( ) 0

cos( ) sin( )

J ml ml x mgl

M m x ml ml cx kx F

  

   

   

     
 

 

The mass of the cart is M , the mass at the center of mass of  the pendulum is m , the moment of inertial of the 

pendulum about its center of mass is J , L  is the length of the pendulum, and l is the distance from the pivot to 
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 the center of  mass of the pendulum. The angle  is measured counterclockwise from straight up, x  is the 

 displacement of the first cart (positive to the right), and g is the gravitational constant. 

 

a) Using a small angle/small velocity assumption, show that we can approximate the above equations of  

motion as 

 
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M m x ml cx kx F
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b) We can rewrite the first equation above as 
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1 1
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g
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What is 2

 ? 

c) If we assume the cart is fixed, then 0x   and we have 

 
2 0     

This is the equation for a simple pendulum. If the pendulum is deflected a small angle and released, it will  

oscillate with frequency  . If we measure the period of the oscillations T  how do we find  ? 

 

d) We can rewrite the second equation from  (a) as 
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21
x x x K K F
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Find expressions for 1 , 1 , 1K , and 2K  in terms of m , M , k , c,  and l . If we assume there is no input ( 0F  )  

and the pendulum does not move very much ( 0  ) then we can use the log-decrement method to get initial 

estimates of 1 and 1 . 

 

e) Assuming we apply a step input of amplitude A  to the cart, show that in steady state we get 
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f) Show that 
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We need to measure the gravitational constant in cm, since all other distances are measured in cm. 
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g) Show that 
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We can use this expression to determine 1K  and get better estimates of 1 and 1 . 

 

h) We can rewrite our linearized dynamical equations as 
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By substituting the second equation into the first equation, show that we get 
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and substituting the first equation into the second equation we get 
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i) Defining 1q x , 2q x , 3q  , and 
4q  , show that we get the following state equations 
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j) If we now want to model the inverted pendulum ( l l  to go back to the inverted pendulum), which terms 

 change in the matrices above? 
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k) When we try and fit the frequency response data we see in the lab we will often get an unusual response. To 

understand this response we will analytically try and show what is happening. If you've not screwed up, you 

should have obtained values of 

1

2
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2

2

ml
K

k

k

M m

mgl

J ml














 

 

If we assume that the mass of the cart and pendulum attachment is much larger than the mass at the center of 

mass of the pendulum, then we have M  is much larger than m . Secondly, J is the moment of inertia about the 

center of mass of the pendulum, m is the mass at the center of mass of the pendulum, and l is the distance from 

the pivot to the center of mass of the pendulum. For our systems, the pendulum bars have negligible mass and all 

of the mass is essentially concentrated at the center of mass. Hence 2ml is much larger than J .Using these two 

assumptions, show that 1  . 

 

9) Assuming 1  , show that 
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 
 

 

  
That is, there is a pole/zero cancellation! This is the effect you will often see in lab. 

 

10) Modify Basic_2dof_State_Variable_Model.mdl, and Basic_2dof_State_Variable_Model_Driver.m as 

 necessary to work with the regular pendulum model. (These files and the state model for the regular pendulum 

are available on the course website.) Specifically, you need to  

 

 Set the input of the system to zero (this is a regulator problem, in that we are just trying to hold the 

 pendulum in place) 

 Set the initial value of the pendulum to 0.05 radians and all other initial conditions to zero. 

  Utilize the linear quadratic regulator or pole placement method to control the position of the pendulum 

 and the cart. The goal is to keep the pendulum pointing straight down and keep the cart from moving 

 more than about 2.5 cm in each direction. The control effort should also be less than 0.4 and the system 

 should come to steady state in less than 1.0 seconds.   

 

You will need to turn in you plot, your Simulink code, and your Matlab code.  
 

11) Utilize the results of problem 5 to model the inverted pendulum. The only thing you should need to change 

 is the state model. (The state model is available on the course website.) Specifically, you need to  

 

 Set the input of the system to zero (this is a regulator problem, in that we are just trying to hold the 

 pendulum in place) 

 Set the initial value of the pendulum to 0.05 radians and all other initial conditions to zero. 
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  Utilize the linear quadratic regulator or pole placement method to control the position of the pendulum 

 and the cart. The goal is to keep the pendulum pointing straight up and keep the cart from moving more 

 than about 2.5 cm in each direction. The control effort should also be less than 0.4. Limiting the cart 

 motion is usually the most difficult part. Often your controller for the regular pendulum will work for 

 this part too, but not always. 

 

You will need to turn in your plot for this part. 

 


