
ECE-320 Linear Control Systems
Homework 7

Due: Tuesday October 26, 2004

1 Preparation for Lab

a) Assume we have the plant transfer function
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If the input is u(t) and the output is x(t) we can represent this system with the differential
equation
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ẋ(t) + x(t) = kclgu(t)

Assume q1(t) = x(t) and q2(t) = ẋ(t). Show that in terms of these variables we can write a
state variable description of the system as
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y(t) = [1 0]q(t)

b) Assume we are using state variable feedback of the form u(t) = kpfr(t) − kq(t), so the
new form of the system equations is

q̇(t) = (A−Bk)q + Bkpfr(t)

y(t) = Cq(t)

Assume the input r(t) is a unit step with amplitude Amp. Show that in steady state for y(t)
to equal Amp we must choose the prefilter kpf as (the ECP used kpf for the prefilter)

kpf = −1/[C(A−Bk)−1B]

You must recompute kpf every time you change the state feedback gain vector k!!!

c) Consider the system with transfer function

Gp(s) =
9.29

0.00087s2 + 0.00118s + 1



Determine the state variable model for this system (Find the A, B, C and D matrices.)

Now we need to choose the state feedback gain matrix k. We need to keep a few things in
mind:

• The system must remain stable.

• k1 is multiplying the position of the cart and k2 is multiplying the derivative of the
position, which is not measured directly but is calculated, and tends to be noisy. Hence,
we want k1 > k2.

• To avoid positive feedback, we generally want k1 and k2 to be positive values. (Negative
values will work fine in a simulation, but they tend to not work very well on our systems
in the lab unless they have a small magnitude.)

• We need to try and keep the gains small to keep our motor from not frying.

To determine if the system is stable, we could compute the transfer function for the close
loop system and look at the poles, but you’ll get to do that enough on next weeks homework,
so , we’ll be clever and assume we actually remember something from MA 221. Whenever we
compute the transfer function, the denominator is the determinant of sI − A, which means
the poles of the closed loop system are actually equal to the eigenvalues of the A matrix.
Hence, to determine the closed loop poles when we have state variable feedback, we need to
compute the eigenvalues of A−Bk.

We will use the program state variables 1cart.m on the web site to simulate the state
variable system both on this homework and in lab. The program state variables 1cart.m
has the following input arguments

• the amplitude of the step input (in cm)

• the system A matrix

• the system B matrix

• the system C matrix (D is assumed to be 0)

• the state feedback gain matrix k = [k1 k2].

• the length of time to run the simulation for.



• the filename containing the ECP data. If the ECP data is not yet available, enter ‘’
(two single quotes).

d) By trial and error, find two different values of k so that

• Your system is stable (closed loop poles in the LHP)

• You system has a position error of less than 0.15

• Your system reaches steady state within 1 seconds (the faster the better)

• Your system has as little overshoot as you can manage

• k2 is less than 0.05 and k1 less than 1.0.

Simulate your system and turn in the plots.

An alternative method for determining the state feedback gains is to use the Linear Quadratic
Regulator (LQR) method. The Linear Quadratic Regulator finds the gain k to minimize

J =
∫ ∞

0

[
xT (t)Qx(t) + u(t)Ru(t)

]
dt

where

ẋ(t) = Ax(t) + Bu(t)

u(t) = −kx(t)

Here Q is a (usually diagonal) matrix which penalizes deviations of states from their final
values, and R is a scalar that penalizes gains that produce large control signals. For our
second order systems, we are actually finding the state feedback gains to minimize

J =
∫ ∞

0

[
q11x1(t)

2 + q22x2(t)
2 + Ru(t)2

]
dt

This is very similar to the quadratic optimal control we already discussed in class for a single
input single output system.



The Matlab routine lqr is used to estimate the feedback gains k1 and k2. The arguments to
this routine are

• the A matrix of the system

• the B matrix of the system

• a penalty matrix Q

• a penalty matrix R

(Note there is one more possible argument, but we won’t use it. Type help lqr for more
information). In our case Q is a two by two positive definite matrix, and R is a scalar. Since
Q is most likely a diagonal matrix, it’s easiest to iterate using the following command in
Matlab

> K = lqr(A,B,diag([q11 q22]),R)

where q11 and q22 are the desired diagonal elements of Q and R is a scalar. In general, as R
gets larger (it may have to get very large), the size of the gains goes down. Also if the cart
seems to move too much (i.e. has a large overshoot) we make q11 much larger than q22.

e) Using the LQR method, find two different values of k so that

• Your system is stable (closed loop poles in the LHP)

• You system has a position error of less than 0.15

• Your system reaches steady state within 1 seconds (the faster the better)

• Your system has as little overshoot as you can manage

• k2 is less than 0.05 and k1 less than 1.0.

Simulate your systems and turn in your plot.

As the order of the system gets larger (we will eventually be making all three carts move), it
becomes much more difficult to find values of the feedback gain k by trial and error, and the
LQR method is much better.
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a) show that without the lag compensator, Kv = 2, and ev = 1/2

b) Include the lag compensator, with z = 0.01, so the steady state velocity error will be 0.01,
ev = 0.01. (Ans: p = 0.0002)

3 For the system shown below:
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a) show that without the lag compensator, ep = 0, Kv = 5/2, and ev = 2/5

b) Include the lag compensator, with z = 0.01, so the steady state velocity error will be 0.01,
ev = 0.01. (Ans: p = 0.00025)



In the following problem, you need to simulate the closed loop system, given an open loop
transfer function. Assume we have chosen values for z and p. Then to do the simulations in
Matlab type something like:

G = tf(1,[1 4 3 0]);

To = feedback(G,1); % original system with unity feedback

Gc = tf([1 z],[1 p]);

Tc = feedback(G*Gc,1); % compensated system with unity feedback

t = [0:0.01:35];

ustep = ones(1,length(t));

uramp = t;

%

% do the step response

%

yo = lsim(To,ustep,t);

yc = lsim(Tc,ustep,t);

%

orient tall % makes the figure take up the page, you might try orient landscape

%

subplot(2,1,1);

plot(t,yo,’:’,t,yc,’-’,t,ustep,’.-’);

grid; legend(’Original’,’With Lag’,’Step’);

title(’Step Response’); xlabel(’Time (s)’);

%

% do the ramp response

%

yo = lsim(To,uramp,t);

yc = lsim(Tc,uramp,t);

%

subplot(2,1,2);

plot(t,yo,’:’,t,yc,’-’,t,uramp,’.-’);

grid; legend(’Original’,’With Lag’,Ramp’);

title(’Ramp Response’); xlabel(’Time (s)’);



4 For the system shown below:

-
½¼

¾»
- Lag - 1

s(s2+4s+3)
-

6

+
-

a) Show ep = 0, Kv = 1/3, and ev = 3.

b) Add a lag compensator in series with the plant in the feedforward loop. Show that
Kv = z/3p when this lag compensator is included in the system.

c) If we want ev = 0.1 and z = 0.1, find the correct value for p. Plot, using Matlab,
the step response for the original system and the system with the lag compensator on the
same plot. Be sure to also plot the input signal. Then plot, using Matlab, the ramp re-
sponse for the original system and the system using the lag compensator on the same plot.
Be sure to also plot the input signal. For both plots, examine the response out to 35 seconds.

d) If we want ev = 0.1 and z = 0.01, find the correct value for p. Plot, using Matlab,
the step response for the original system and the system with the lag compensator on the
same plot. Be sure to also plot the input signal. Then plot, using Matlab, the ramp re-
sponse for the original system and the system using the lag compensator on the same plot.
Be sure to also plot the input signal. For both plots, examine the response out to 35 seconds.

e) If we want ev = 0.1 and z = 0.001, find the correct value for p. Plot, using Matlab,
the step response for the original system and the system with the lag compensator on the
same plot. Be sure to also plot the input signal. Then plot, using Matlab, the ramp re-
sponse for the original system and the system using the lag compensator on the same plot.
Be sure to also plot the input signal. For both plots, examine the response out to 35 seconds.

Note: You should notice that, for large z, the steady state velocity error is reduced much
more quickly than with the smaller z, but the step response is also much worse. If the z is
small, it takes much longer for the velocity error to be reduced, but the step response is not
very different from that of the original system. You should have 6 graphs to turn in.
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a) Show that the sensitivity of the closed loop system to kclg is

ST
kclg

(s) =
s2 + 2ζωns + ω2

n

s2 + 2ζωns + ω2
n(1 + kpkclg)

b) Show that the sensitivity of the closed loop system to ζ is

ST
ζ (s) =

−2ζωns

s2 + 2ζωns + ω2
n(1 + kpkclg)

c) Show that the sensitivity of the closed loop system to ωn is

ST
ωn

(s) =
2s2 + 2ζωns

s2 + 2ζωns + ω2
n(1 + kpkclg)

d) Plot the sensitivity of the closed loop system to these parameters as a function of fre-
quency for ω = 1 to 100 rad/sec for nominal values kp = 0.02, kclg = 9, ωn = 27, and
ζ = 0.1 All curves should be on one graph with different line types and a legend. To which
parameter is the system most sensitive at low frequencies? At high frequencies?

If T = 2s
s2+2s+10

, we can plot the magnitude of the frequency response with the following

T = tf([2 0],[1 2 10]);

w = logspace(0,2,1000);

[M,P] = bode(T,w);

Mdb = 20*log10(M(:));

semilogx(w,Mdb); grid;


