Phasor Review

Two sinusoids with frequency $\omega = 2\pi$ are represented in the phasor domain as

$$\mathbf{V}_1 = 5\sqrt{2} \angle 45^{\circ} \text{ and } \mathbf{V}_2 = \frac{10}{1+j}$$

Using phasor manipulation, express each of the following combinations as a cosine function. You should only need a calculator on number 3 for basic arithmetic operations.:

- 1) $V_1 + V_2$
- 2) V_1V_2
- 3) $V_1 2V_2$

Phase Review

Given that $x(t) = A\cos(\omega_0 t)$ answer the following questions:

- 4) If A=5 and $\omega_0 = 2\pi$ find the phase shift of x(t-2) in degrees.
- 5) If A=5 and $\omega_0 = \frac{\pi}{3}$ find the phase shift of x(t-2) in degrees. Why does the same time delay create a different phase shift?
- 6) If A=5 and $\omega_0 = 2\pi$ find the phase shift of x(t+3.5) in degrees.
- 7) If A=5 and $\omega_0 = \omega$, where ω is a variable representing the frequency, plot the phase shift of x(t-2) as a function of frequency.

The next few questions operate in reverse. If $x_1(t) = A\cos(\omega_0 t)$ and $x_2(t) = A\cos(\omega_0 t - \theta)$:

- 8) If A=4, $\omega_0 = 2\pi$, and $\theta = 45^\circ$, what is the equivalent time delay, t_0 , that satisfies $x_2(t) = x_1(t t_0)$.
- 9) If A=4, $\omega_0 = 2\pi 100$, and $\theta = 45^\circ$, what is the equivalent time delay, t_0 , that satisfies $x_2(t) = x_1(t t_0)$.
- 10) If A=4, $\omega_0=2\pi 100$, and $\theta=-90^\circ$, what is the equivalent time delay, t_0 , that satisfies $x_2(t)=x_1(t-t_0)$.

Complex Number Review

11) If $z = \frac{2-j}{3+2i}$, then the **magnitude** of z, |z|, is

a)
$$\frac{\sqrt{5}}{\sqrt{13}}$$
 b) $\frac{\sqrt{3}}{\sqrt{5}}$ c) $\frac{\sqrt{1}}{\sqrt{5}}$ d) 1

12) If $z = \frac{1}{1+j}$, then the **phase** of z, $\angle z$, is

- a) 0° b) 45° c) -45° d) -90°
- 13) The **magnitude** of z = j is
- a) 1 b) -1 c) 0 d) none of these
- 14) The **phase** of z = -1 is
- a) 0° b) 45° c) 90° d) 135° e) 180° f) none of these
- 15) The **magnitude** of $z = (2+j)e^{j\omega t}$ is
- a) $\sqrt{3}$ b) $\sqrt{3}e^{j\omega t}$ c) $\sqrt{5}$ d) $\sqrt{5}e^{j\omega t}$ e) none of these

16) If z is a complex number with complex conjugate z^* , and we know |z| = 2, then $|z^*|$ is equal to

a) -2 b) 2 c) it is not possible to determine

17) If z is a complex number with complex conjugate z^* , and we know $\angle z = 45^\circ$, then $\angle z^*$ is equal to

a) 45° b) -45° c) it is not possible to determine

18) Using Euler's identity, we can write $\cos(\omega t)$ as

a)
$$\frac{e^{j\omega t} + e^{-j\omega t}}{2}$$
 b) $\frac{e^{j\omega t} - e^{-j\omega t}}{2}$ c) $\frac{e^{j\omega t} + e^{-j\omega t}}{2j}$ d) $\frac{e^{j\omega t} - e^{-j\omega t}}{2j}$

19) Using Euler's identity, we can write $\sin(\omega t)$ as

a)
$$\frac{e^{j\omega t} + e^{-j\omega t}}{2}$$
 b) $\frac{e^{j\omega t} - e^{-j\omega t}}{2}$ c) $\frac{e^{j\omega t} + e^{-j\omega t}}{2j}$ d) $\frac{e^{j\omega t} - e^{-j\omega t}}{2j}$

Filtering Review

Problems 20-22 refer to a system with transfer function $H(s) = \frac{10}{s+3}$. Assume the input to this system is $x(t) = 2\cos(3t + 30^\circ)$

- 20) In steady state, the **magnitude** of the output will be
- a) $\frac{20}{3}$ b) $\frac{20}{\sqrt{18}}$ c) $\frac{20}{\sqrt{8}}$ d) $\frac{20}{6}$
- 21) In steady state, the **phase** of the output will be
- a) 30° b) 45° c) -15° d) -45°
- 22) The **bandwidth** (-3 dB point) of the system is
- a) 10 Hz b) 10 radians/sec c) 3 radians/sec d) 3 Hz
- 23) Assume $x(t) = 3\cos(2t-5)$ is the input to a system with transfer function

$$H(j\omega) = \begin{cases} 3e^{-j2\omega} & |\omega| < 3\\ 2 & else \end{cases}$$

the output y(t) in steady state will be

- a) $y(t) = 6\cos(2t-5)$ b) $y(t) = 9\cos(2t-5)$
- c) $y(t) = 9\cos(2t-5)e^{-j4}$ d) $y(t) = 9\cos(2t-9)$
- 24) Assume $x(t) = 2\cos(3t)$ is the input to system with transfer function $H(j\omega) = 2e^{-j\omega}$. In steady state the output of the system will be
- a) $y(t) = 4\cos(3t)e^{-j\omega}$ b) $y(t) = 4\cos(3t)e^{-j3}$ c) $y(t) = 4\cos(3t-3)$
- d) $y(t) = 4\cos(3t+3)$ e) none of these

25) Assume $x(t) = 2\cos(t) + 5\sin(2t) + 6\sin(3t)$ is the input to a system with transfer function $H(j\omega) = 3\Pi\left(\frac{\omega}{5}\right)$. In steady state the output of the system will be

a)
$$y(t) = \left[2\cos(t) + 5\sin(2t) + 6\sin(3t)\right] \left[3\operatorname{rect}\left(\frac{\omega}{5}\right)\right]$$

- b) $y(t) = 6\cos(t) + 15\sin(2t) + 18\sin(3t)$
- c) $y(t) = 6\cos(t) + 15\sin(2t)$
- d) none of these

26) Assume $x(t) = 2\cos(3t) + 4\cos(5t)$ is the input to a system with transfer function given by

$$H(j\omega) = \begin{cases} 2 & 4 < |\omega| < 6 \\ 0 & else \end{cases}$$

The output of the system in steady state will be

a)
$$y(t) = 4\cos(3t) + 8\cos(5t)$$

b)
$$y(t) = 8\cos(5t)$$

c)
$$y(t) = 4\cos(3t)$$

d) none of these

27) Assume $x(t) = \cos(t) + \cos(5t) + \cos(9t)$ is the input to a system with transfer function given below:

The output of this system in steady state will be

a)
$$y(t) = 4\cos(t) + 4\cos(5t)$$
 b) $y(t) = 4\cos(t) + 2\cos(5t) + \cos(9t)$

c)
$$y(t) = 4\cos(t) + 2\cos(5t)$$
 d) none of these

28) The following figure displays the magnitude and phase of a transfer function H(s) as a function of frequency ω . The input to this system is $x(t) = 2\cos(3t + 30^{\circ})$. Determine an expression for the **output** of the system in steady state.

Answers:

- 1) $10\cos(2\pi t 0^\circ)$ 2) $50\cos(2\pi t 0^\circ)$ 3) $15.81\cos(2\pi t 108^\circ)$
- 4) -720° or 0° 5) -120° 6) 1260° or 180°

7)

8)
$$t_0 = \frac{1}{8}$$
 9) $t_0 = \frac{1}{800}$ 10) $t_0 = -\frac{1}{400}$

Complex Number Review: 11) b 12) c 13) a 14) e 15) c 16) b 17) b 18) a 19) d

Filtering Review: 20) b 21) c 22) c 23) d 24) c 25) c 26) b 27) c

28) $y(t) \approx 4.7 \cos(3t - 15^{\circ})$ (This is the same problem as 20 and 21)