Complex Number Review

1) If $z = \frac{2-j}{3+2i}$, compute the **magnitude** of z, |z|

2) If $z = \frac{1}{1+i}$, compute the **phase** of z, $\angle z$

3) If $z = \frac{1+j}{1-i}$, compute the **phase** of z, $\angle z$

4) If $z = \frac{2-j}{3+2i}$, compute the **complex conjugate** of z, z^*

5) If $z = \frac{1}{1+i\omega}e^{j\theta}$, compute the **complex conjugate** of z, z^*

6) If $z = \frac{1}{1+i\omega}e^{j\theta}$, compute the **magnitude** of z, |z|

- 7) We can write $e^{jk\pi}$ as
- a) 1 b) $(-1)^k$ c) 0
- **8)** We can write j in polar form as

 a) $e^{j\pi}$ b) $e^{-j\pi}$ c) $e^{j\frac{\pi}{2}}$ d) $e^{-j\frac{\pi}{2}}$ **9)** We can write -1 in polar form as

 a) $e^{j\pi}$ b) $e^{-j\pi}$ c) $e^{j\frac{\pi}{2}}$ d) $e^{-j\frac{\pi}{2}}$

Phasor Review

Assume $x_1(t) = 10\cos(5t + 45^\circ)$ and $x_2(t) = 5\sin(5t + 45^\circ)$. Express these in phasor notation, and then express the following as a single sinusoid:

10)
$$y(t) = x_1(t)x_2(t)$$

11)
$$y(t) = \frac{x_1(t)}{x_2(t)}$$

Sines and Cosines Review

Problems 12-14 refer to the signal shown below, which we want to model as $x(t) = A + B\cos(\omega t)$.

- 12) What is A? (your answer should be an integer)
- 13) What is B? (your answer should be an integer)
- **14**) What is ω ?

Euler's Identity Review

The following series of questions refer to the diagram below.

15) Given a vector in the complex plane expressed as a magnitude, r, and angle, θ , which statement best expresses the real and imaginary components of this vector?

- a) $r\sin(\theta) + jr\sin(\theta)$ b) $r\cos(\theta) + jr\sin(\theta)$
- c) $r\cos(\theta) + ir\cos(\theta)$ d) $r\sin(\theta) + ir\cos(\theta)$

16) If this vector is given by the function $z(t) = 5e^{j\frac{\pi}{4}t}$, what is the angle, θ , of the vector when t=4 seconds?

a) 90 degrees b) 45 degrees c) -90 degrees d) 180 degrees e) none of these

17) If this vector is given by the function $z(t) = 5e^{j\frac{\pi}{4}t}$, what is the angle, θ , of the vector when t=0 seconds?

a) π radians b) 2π radians c) $-\frac{\pi}{2}$ radians d) $\frac{\pi}{2}$ radians e) none of these

18) If this vector is given by the function $z(t) = 5e^{j\frac{\pi}{4}t}$, what is the magnitude, r, of the vector when t=0 seconds?

a) 1 b) 5 c) 0 d) $\frac{\pi}{4}$ e) none of these

19) If you add two vectors $(r,\theta) + (r,-\theta)$, the sum is:

a) purely real b) purely imaginary c) has both real and imaginary components d) not enough information

20) If you subtract two vectors (r,θ) - $(r,-\theta)$, the difference is:

a) purely real b) purely imaginary c) has both real and imaginary components d) not enough information

Answers:

1)
$$\frac{\sqrt{5}}{\sqrt{13}}$$
 2) -45° 3) $+90^{\circ}$ 4) $z^* = \frac{2+j}{3-2j}$ 5) $z = \frac{1}{1-j\omega}e^{-j\theta}$ 6) $|z| = \frac{1}{\sqrt{1+\omega^2}}$

7)
$$b(-1)^k$$
 8) $e^{j\frac{\pi}{2}}$ 9) $e^{j\pi}$ or $e^{-j\pi}$ 10) $Y = 50 \angle 0^o$, $y(t) = 50\cos(5t)$

11)
$$Y = 2\angle 90^\circ$$
, $y(t) = 2\cos(5t + 90^\circ)$ 12) $A = 2$ 13) $B = 3$ 14) $\omega = \pi$

15)
$$r\cos(\theta) + jr\sin(\theta)$$
 16) 180 degrees 17) 0 or 2π radians 18) 5

19) purely real 20) purely imaginary