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This exam is closed-book in nature. You are not to use a calculator or computer
during the exam.
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1. Periodicity (15 points)
a) Determine if the following function is periodic. If so, find the fundamental period.
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b) Two cosine functions are added together. The frequency for the second is larger than

the first by a factor of Af. Derive a relationship between Af and f that will make the
function x(t) periodic.

x(t) = cos(2rx ft) + cosRr( f + Af )
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2. Graphical Convolution (25 points)
Consider a linear time invariant system with impulse response given by

ht)=e"Put+1)
The input to the system is given by
x(8) =2[u(t) —u(t — D]+ 3[u - 3)—u(r-4)]
Use graphical convolution to determine the intervals of integration and their
corresponding integrals y(¢) = x(¢) * h(t). Use x(t) as the signal to “flip and shift” (i.e.
x(t-A)) for the convolution. DO NOT solve the integrals, just set them up. To get full
credit, you must write out the functions for x and h in the integrals.
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3. Basic Functions (15 points)

Simplify or solve the following functions, giving numerical answers whenever possible.
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4. System Properties (25 points)
a) Using a formal technique, such as the flow graphs used in class, determine whether the

system described by the equation
!

y(t) = J.e‘“_“x(ﬂ,)d/?,
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is time-invariant.
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b) Using a formal technique, such as the flow graphs used in class, determine whether the
system described by the equation

y(1) = t* sin(t) x(t)
Is linear.
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S. Impulse Response (20 points)
a) Determine the impulse response for the system modeled by the differential equation

y(&)=2y(t) = x(t +3)

/@\(f} 2 dh = g(m)
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b) If the input to a particular LTI system is x(r) = u(¢), and the corresponding output of

[

the system is y(r) = (1— er Ju(t) (y(t) is the step response of the system), determine the
output of the system when the input is X, )= A[u(t) u(t ]




