ECE-300, Quiz #3

- 1) The integral $\int_{0}^{\infty} u(t+1)u(t-2)e^{-t}dt$ can be simplified as
- a) $\int_{-1}^{\infty} e^{-t} dt$ b) $\int_{2}^{\infty} e^{-t} dt$ c) $\int_{-1}^{2} e^{-t} dt$ d) none of these
- 2) The integral $\int_{-\infty}^{\infty} u(-1-\lambda)e^{-|\lambda|}d\lambda$ can be simplified as

a)
$$\int_{-\infty}^{-1} e^{-|\lambda|} d\lambda$$
 b) $\int_{-1}^{\infty} e^{-|\lambda|} d\lambda$ c) $\int_{1}^{\infty} e^{-|\lambda|} d\lambda$ d) none of these

- 3) Consider an unknown system. When the input to the system is $x(t) = 2\cos(2t)$ the output of the system is $y(t) = 2\cos(2t) + \cos(4t)$. Is the system **linear**?
- a) Yes b) No c) Can't tell, not enough information
- 4) The **impulse response** for the system below is

a)
$$h(t) = e^{-2t}u(t)$$
 b) $h(t) = e^{t^2}u(t)$ c) $h(t) = 2e^{-t}u(t)$ d) $h(t) = e^{-t^2}u(t)$

$$\dot{y}(t) + 2y(t) = x(t)$$
 $\dot{y}(t)$

5) The **impulse response** of an LTI system is shown below:

Is the system **causal**?

a) Yes b) No

6) Assume the **impulse response** of an LTI system is h(t). If the input to this system is $x(t) = \delta(t) + 2\delta(t-2)$, the system output will be

a)
$$y(t) = u(t) + 2u(t-2)$$
 b) $y(t) = h(t)u(t) + 2h(t-2)u(t-2)$ c) $y(t) = h(t) + 2h(t-2)$

7) The unit step response of a system is $s(t) = e^{-t}u(t)$. The impulse response of this system is

a)
$$h(t) = -e^{-t}u(t)$$
 b) $h(t) = -e^{-t}u(t) + \delta(t)$ c) $h(t) = -e^{-t}u(t) + e^{-t}$ d) $h(t) = -te^{-t}u(t)$

For Problems 8-11, consider the system modeled by the differential equation

$$\dot{y}(t) + t^2 y(t) = \sin(t)x(t)$$

- 8) Is the model **linear**?
- a) Yes b) No
- 9) Is the model **time-invariant**? a) Yes
- b) No
- 10) Is the system **memoryless**? a) Yes b) No
- 11) Is the system **causal**?
- a) Yes b) No

12) Assume we know a system is a linear time invariant (LTI) system. We also know the following input x(t) – output y(t) pair:

If the input to the system is now $x_{new}(t)$

Which of the following best represents the output of the system?

- a) $y_a(t)$ b) $y_b(t)$ c) $y_c(t)$ d) $y_d(t)$

