Name	CM	
------	----	--

ECE 300 Signals and Systems

Exam 3 19 MAY, 2009

This exam is closed-book in nature. You are not to use a calculator or computer during the exam. Do not write on the back of any page, use the extra pages at the end of the exam.

 Problem 1
 ______/ 45

 Problem 2
 ______/ 25

 Problem 3
 ______/ 30

Exam 3 Total Score: _____ / 100

1. (45 points) Random Fourier transform problems.

a) (10 points) If
$$x(t) = \frac{2}{2 + j(t-2)}$$
, determine $X(\omega)$

b) **(10 points)** If
$$X(\omega) = rect\left(\frac{2\omega - 2}{3}\right)$$
, determine $x(t)$

c) (10 points) If x(t) and y(t) are related through the relationship $\dot{y}(t) = x(t-b) \star e^{-t}u(t-c)$ determine the transfer function for the system. d) (10 points) If we have the Fourier transform pair $x(t) \leftrightarrow X(\omega)$, use the definition of the Fourier transform or inverse Fourier transform to show $tx(t) \leftrightarrow j \frac{dX(\omega)}{d\omega}$ if the Fourier transform of tx(t) exists. In this problem you are to prove this relationship from the Fourier transform (or inverse Fourier transform) definitions.

e) (5 points) If $X(\omega) = \frac{1}{T} \operatorname{sinc}\left(\frac{2\omega T}{\pi}\right)$ determine the location of the first nulls.

2. (25 points) The periodic function x(t) is defined over one period ($T_0 = 4$ seconds) as

$$x(t) = \begin{cases} 2 & -2 \le t \le 0 \\ 0 & 0 \le t \le 2 \end{cases}$$

Determine the complex Fourier series coefficients, $c_{\scriptscriptstyle k}$.

Be sure to simplify your answer as much as possible and use a <u>sinc</u> function if appropriate. Recall that $1 = e^0$.

3. (**30 points**) Assume $x(t) = 4\operatorname{sinc}\left[\frac{1}{\pi}(t-2)\right]\cos(4(t-2))$ is the input to an LTI system with transfer function $H(\omega) = \begin{cases} \frac{1}{\pi}e^{-j\omega 3} & |\omega| < 4\\ 0 & else \end{cases}$

- a) Determine the Fourier transform $X(\omega)$ of x(t)
- b) Accurately sketch the magnitude and phase of $X(\omega)$
- c) Determine the system output y(t)

Name	CM

Name	CM
------	----

Name	 CM	

Name ______ CM_____

Some Potentially Useful Relationships

$$E_{\infty} = \lim_{T \to \infty} \int_{-T}^{T} |x(t)|^{2} dt = \int_{-\infty}^{\infty} |x(t)|^{2} dt$$

$$P_{\infty} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^{2} dt$$

$$e^{jx} = cos(x) + jsin(x)$$
 $j = \sqrt{-1}$

$$\cos(x) = \frac{1}{2} \left[e^{jx} + e^{-jx} \right] \qquad \sin(x) = \frac{1}{2j} \left[e^{jx} - e^{-jx} \right]$$

$$\cos^{2}(x) = \frac{1}{2} + \frac{1}{2}\cos(2x)$$
 $\sin^{2}(x) = \frac{1}{2} - \frac{1}{2}\cos(2x)$

$$\operatorname{rect}\left(\frac{t-t_0}{T}\right) = u\left(t-t_0 + \frac{T}{2}\right) - u\left(t-t_0 - \frac{T}{2}\right)$$