ECE 300
Signals and Systems
Homework 9

Due Date: The beginning of lab, May 15, 2009

Problems

1. Determine the transfer function H(w) that would produce the following input
loutput relationships. Simplify your answers as much as possible.

a) y(t) = ax(t—b)

b) y(¢) = ax(t + b) + ax(t - b)

C) ¥(O)=x(t)*e u(t-b)

2. Using the duality property, find the corresponding Fourier transform for the
foliowing:

a) g(t) =sinc*(Br)
b) g(¢) =sinc(W¥)
c) g(t)=4(1)

d) (1) = cos(y)

Do not just look up the pairs from the table (though you can use any other pairs
except the one you are trying to find).

3. Consider a linear time invariant system with transfer function given by

H(w) = S5¢7* |w|<2
0 else

2(t-1)
V4

with input x(7) = —8—sinc2( J . The output of the system is y(z).
T

a) Determine X (w).

b) Sketch the spectrum of X(w) (magnitude and phase) accurately labeling the
axes and important points.

c) Sketch the spectrum of H(w) (magnitude and phase) accurately labeling the
axes and important points.

d) Determine y(¢), the output of the system.

Answer y(t) = zQsinc [g (t— 3)] + lgsinc2 [—1— (t— B)J
T /4 T T
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4. Consider a linear time invariant system with impulse response given by

h(t) = —l—sinc(ﬁg) with input x(¢) = isinc (—2—t) cos (t) . The output of the system is
2T 2T V4 T

().

a) Determine X (w).

b) Sketch the spectrum of X (w) (magnitude and phase) accurately labeling the
axes and important points.

c) Determine the energy in x(r)
d) Determine H(w).

e) Sketch the spectrum of H(w) (magnitude and phase) accurately labeling the
axes and important points.

f) Determine y(¢), the output of the system.

g) Determine the energy in y(¢).

5. Find the fraction of the total signal energy (as a percentage) contained
between 100 and 300 Hz in the signal x(¢) given below:

x(t):Ssinc( ! ]+55inc( d j Answer 56%
0.002 0.001

6. In this problem we will go over some of the Fourier series and Fourier
transform results we need to understand impulse sampling.

a) Assume we have periodic function p(r) with Fourier series representation
k=0
pt) = z ckejkw
k=—oo

and we construct the function x_ (¢) = x(¢) p(t) . Show that in the frequency domain
we have

X (o) = kfckX(w_kwo)

b) Show that the Fourier series for the (periodic) impulse train
pl)= 3 5(t~kT,)
k=—

Is given by
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k=0
| 2T
H= Y —e" @ ===
p() k:z_m]:) b T,

¢) Combine the previous two parts to show

k=00
X (@)= —I~X(a)—ka)0)
=T,
7. (Matlab) This problem is a continuation of Problem 6, but you only need to use
the results of that problem. There are three important things you should know
about impulse sampling

* If the original signal x(r) is sampled with an impulse train with period T, (the

time between samples is 7, ) then the spectrum of the original signal, X #3)

(or X(w)), will be replicated every f, :}I-Hz (or w, radians/sec) in the
0

spectrum of the sampled signal, X (f) (or X (w))
e The replicated spectra X(/) (or X(w)) will be scaled by —Tl—

0
* If we want to recover the original signal from the sampled signal, we need
to be able to isolate one instance of the original signal’s spectrum by
lowpass filtering.

The Matlab routine impulse_sampling.m illustrates the effects of sampling the
signal

x(t)=sinc2( ! )
0.0002

using a sampling rate of f, =20,000Hz and then filtering to try and reconstruct

the original signal. You do not need to understand what this routine is doing, you
will only be modifying it a bit and trying to understand what is happening. Run the
routine as it is for parts b, ¢, and d and turn in this plot.

a) Show that for this function X (») = 0.0002A| —2
(27)5000

b) Verify that the spectrum of the replicated signal .X(w) has the correct
bandwidth

c) Verify that the replicated signal X, (w) has maximum amplitude equal to

Timax {| X()]}

0

d) Verify that the signal is replicated every f, = 20,000Hz
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The bottom panel (and the second figure) shows the original signal and the
signal we tried to reconstruct after sampling. If our sampling is effective we
should be able to reconstruct the original signal.

e) Modify the lowpass filter (lines 59 and 60) so that we get a reasonably good
approximation of the original signal. Turn in your plots.

f) Modify the sampling rate (line 31) so you are sampling at 15 kHz, 10 KHz, and
then 7.5 kHz. Turn in your plots. Notice where the replicated signals are located.
Are you able to reconstruct the original signal for these sampling rates?

8. (Matlab/Prelab Problem) A Butterworth filter has the property that it is
maximally flat in the passband. An nth order Butterworth filter has the magnitude
squared response

1

1+[£_J
wP

where o, is the passband frequency. At this frequency the power has been
reduced by one half or 3 dB,

| H(w) ['=

1 1 |
| H(w,)['=——s; = orl0log, |H(a,) P= 1010&0(_2_) — 34B

2n
[0
1+ —"J

a)p

To determine the required order of a filter we often look at the desired stopband
frequency, w, . Usually we want to indicate the minimum required power

difference between the passband and the stopband, A. A is the rejection.Hence
we have

A=20log,, | H(0)|-20log,, | H(®,)|
or

A=-10log,,

a)S

The ratio is called the transition ratio.

@,

a) Show that we can write
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A
ln[l()“’ »1}
n=——=
wp
Note that n must be an integer, so we always round up (to the next larger
integer).

b) For @, =10 rad/sec, w, =20rad/sec, and A=18dB, determine the required

Butterworth filter order for this filter. (Remember it must be an integer). Using the
Table at the end of this problem, plot the Bode plot of your Butterworth filter and
verify that all frequencies @ > w, have magnitude (power) less than A__ .Matlab’s

tf command and Bode commands will be really useful here. Note that you can
click on the curve on the Bode plot to read it more accurately. Turn in your plot.

¢) Matlab’s command r = pole(H), where H is the transfer function of the
Butterworth filter, returns the poles of the transfer function in the array r. Using
Matlab’s commands abs and angle, relate the magnitude of the poles to @,,
then plot the pole locations in the complex plane on a circle with radius @, . (Note

that angle returns angles in radians, and you probably want angle in degrees.)
Note that the pole locations are all separated by an angle 8. What is this angle?

d) For w, =15 rad/sec, o, =35rad/sec, and A =28dB, determine the required

Butterworth filter order for this filter. (Remember it must be an integer). Using the
Table at the end of this problem, plot the Bode plot of your Butterworth filter and

verify that all frequencies @ > @, have magnitude (power) less than A,

Matlab’s tf command and Bode commands will be really useful here. Turn in
your plot.

e) Matlab’s command r = pole(H), where H is the transfer function of the
Butterworth filter, returns the poles of the transfer function in the array r. Using
Matlab’s commands abs and angle, relate the magnitude of the poles to @,,

then plot the pole locations in the complex plane on a circle with radius @, . (Note

that angle returns angles in radians, and you probably want angle in degrees.)
Note that the pole locations are all separated by an angle 8. What is this angle?
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n denominator(s)

1 24

@,

NI D 71 G
a)p (!)p

2
3 2
3 S ) [P Y A
w, @, @,
4 3 2
4 S s3] 2| +3.4142) 5| 126131 2 |41
C()P Cl]p a)p C!)p

5 4 3 2
512 432361 2| +52361 - | +5.2361] 2| £3.2361] - |+1
Cl)p a)p Q)p C()p (Up

Table 1: Denominators of Buterworth filter for filter orders 1-5. The numerator for
the Butterworth filter is 1.

Spring 2009



@

® 2966 = i rg- 4 4 —

@ 7 1) = anrb) Fo L)
c///w) = Z{w)@fwé’ Fa X\/mb e
= & Yef"‘%{w Q“Wl{g X

— )
= 2erceSll) T M{ﬁdéﬂ

..«)*LJ Ia

@;ft) =) ¥ e Twrp-b)
ja} Jre) = Xlw) Of/fe“éa[é~é)}

oo S
s —£ \ y _ 'W>ZR
= o{/f’é)e"’wi/f‘: fe I
-~
9 “ L
- 6—(/7‘;;%) é’/m: €~(/f/\“’>)° _ e—«ée —yeabs
~(r4je) g 1#yu 4D
_¢ el —b L e
ov e ) 2 em e ) = et L,
L -8 B .
7)% e am:wé)} - e 5@’9“’4’
(1)
)
W
So Wi = L 6"5 gk |




)

o) 9 ) = snc® (3t)

TN

Qrcrm Hee ‘t’oL(a) f
%(H‘:B = —A(v%>é_;> G//W> = Wsine® 5\’%—“)
jat) =6 () = st“f(% f><~> Ga(w) :zﬁﬁ,/w) = o7 JZ[”;{%)

]

= so W = AT R

w
2

32 (t) = QWE\SI%QE QRt) &S GL[WB = 2’\?% (gf%%) [

o [;gc?[gt)C_‘% é%/z’;%’;>‘

é) 3 1t) = sme (w'e)

f

kﬁmm 'Hu {\OL(Q
g' (t):f@at(%\ <D G,(wv = VSmme <;§‘ \,Q>

by chuelty

9}2(9 =G = TSMG.GEW t> € B,1w) =27 31 ()= 2 eect (‘:ﬁ‘?

T

ng:’zr:W

W =
2%




Z(@ 3@ = Sie)

e the bable
G =l €D Gud =T S
L? OQMOQA‘B,
12 G =27 €3G - 27D ~20

\ > <> }

@ ?th = oS (Dot)
‘ED““ @,@) = @S(Tw) = i@dwrrée'jwré—b ;‘Hz\): —"Zg(£+T§ Ti*S{é.T)

;03\,@ = ;'_‘%Lg(m) e ~ﬂlé~>g,@ - cos (‘rw\

%y O&ua[ﬁé
oD =G (D = 05 (Te)€> 6,0 = 279, (-2) = TE(-047) + 70T

Tz o

|

\ﬁ?o‘t) &2 T g((})-v-"b*%ﬂ g(\.,\)-fvdo\ A_Ji

g(\/(;)&v\iw‘l\n

‘]E(Av\cfé( 1N




#3 W) = ‘? <’ 2’ (21) /7l/w> ;Se 1* Jufs2
‘ | ) edce
e for K = sin? (2f)e> Zw=z ({7’3
$o __X/w> = L‘fi(?) e‘“a
2 )
b) ‘X(wv)
b'
>,
. 4 % \*“%;@2 =
5 [0 \( 250D
S
e -
-2 : 2 © “ QC‘]QX - s
ab - % Y0
| K% 1O \
2' \ —‘2 \>b3 3“‘)
(e = -3
¢y = jovect (% > »o_/L( \]
Ve (’Uﬁ \ <« V\)S}hC(W%\ W =
) S8 (D 3- -
—
\ %@ = ’jﬂ‘j;m(~ (&- D) b Gime (i (t- 335
Kj




@ b)) = L smc zi.l) ) = 4 smc(zz‘) LoSe)
7 I

27

~,

s ) =T m&ﬁ%}

\7

(()*‘) 4 wect <vu -y

For ¥z = xq@ws(é) Xsf“‘b 7 fect >J

2{:

‘°> m(@} gicub zZ 0

- . S
CBEX:L% ;Uboﬁﬁ»g\foM%—g(iJw]:l 2+4‘?*Zl:f‘i:
~1 ¥

287 3 20y

Db = Loen (552
for 1o = s ($,) i) = amesct (4 LQB ar ech 1)

For 2= L B0 U = e .
. 2
for ’Qg ey = “Q\z l£-2) Halw) = e Hatw) 7 g@dj{@e "= Hie) i

e) oo X i)
H i \
-V ‘ \/ {,\) (( = ~a
2 pL
,33.»0

) Vi) = 2 ceet (LW)e

e = 4L ogine -2
@Tﬁ = Sine <£’_{_‘_\_}\




50 SHEETS
22-142 100 SHEETS

22-144 200 SHEETS

22-141

Py
EXIPAT

e 300

‘/Xl‘(ﬁ = Ssihe &"T

\ + S smC gl
oo D100

)

: (‘mnpu'é'a fi\ﬂ 7 %J—dxﬁ«is; Lwa(cwe@w 100 auved 20¢c Ha

3\
ﬁ:r She (v\)t <> 1 vyect (MJ )
W 2TW
.
-Q\M W = 5%';01‘ 2 o0 e W = 5. ock = (00 O
; X{@ = _S__‘_ fect W 3 S (ed )
" o) T SO & fovo Y Y Ooe,
|
| = 0.0 Cect [ 2 r 0.005 vect [ =1 >
2\ sed 2| doe
A
. Y
R / o el
s \ Vo
~ ' , S
t s / 7 ] // S ‘ 000
-2(: s p0O ~2112<d AT 250 2SO0 A
“2f1 34
‘ AT SOV —2 s @ o
j — — NN/ - N =2, 2 .
Eptul = ;LTT 1 X )] 0 :Lxr z 8@.00.;)‘/(03— 2 S (0. 0s) Aw
| —~2ated —2TS g =Ty -
j - )ﬁ XQO(%\lCO)@POOS}l 2. (Mi‘v’l’id) (O«D\S)zl
27
i SNy A — Y
= 2250 (0wos) F 2250 (b.axs) = (00\7\5 = Cipto ‘)
‘ —2 s 2910V
Frant = L Vool goed + 2\ (01T dw
\ 2T :
‘ -2MJvo ~2T2¢0
‘ — 1 Am. (2o (o,oo§)z+-2(2/ﬁ(«\30> ( 0.0s)
‘ y d-looD ew
‘ = 9.€oX0cx) F 2( /5o (O’OK) l - N
| > S
J /‘47/,0':: ©.02d O SO0

ar’28



pr)z =xe’ T

z;m)fnf@*?f@ /R) - Zq ?%”“‘"’3

lmm-AEerza [; 7 S - W.,sl

® /0 == Su-cn) uple Sl pndT,
), =

| e A

I T T chzL ) 8’9 ')mcaﬂ ’9 /To o

f“_’. Dot » S e et i b bttt Bn e et o n e =



(#D

X)) = Sc’hcz (,Bt:—oeoz' :S\ﬁcl (\B‘t\ , % 2 oo

@

o =
X(W) - Jg_ﬂ_(?},’g) = pooo2 _ [ \/2/3—(;0007)

£00 = [0 0doty (sooo méco(,\giﬁeﬁ\

Y 0 &, XD < O
&) o= /Fa —~ 20,000 " D CopoS ey = m ;CLD »»»»»
@ w?roflv




x(1)

[H(f)| dB

Final
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IH(f)| dB
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Sampling Rate fs =20 kHz, Lowpass Cutoff Frequency fC =6 kHz
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Sampling Rate fS = 15 kHz, Lowpass Cutoff Frequency fC =6 kHz
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Sampling Rate fs = 10 kHz, Lowpass Cutoff Frequency fC =6 kHz
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Sampling Rate fs = 7.5 kHz, Lowpass Cutoff Frequency fc =6 kHz
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