ECE-300, Quiz #1

1) If
$$z = \frac{2-j}{3+2j}$$
, then the **magnitude** of z , $|z|$, is a) $\frac{\sqrt{5}}{\sqrt{13}}$ b) $\frac{\sqrt{3}}{\sqrt{5}}$ c) $\frac{\sqrt{1}}{\sqrt{5}}$ d) 1

2) If
$$z = \frac{1}{1+i}$$
, then the **phase** of z, $\angle z$, is a) 0° b) 45° c) -45° d) -90°

Problems 3-5 refer to a system with transfer function $H(s) = \frac{10}{s+3}$. Assume the input to this system is $x(t) = 2\cos(3t+30^\circ)$

- 3) In steady state, the **magnitude** of the output will be
- a) $\frac{20}{3}$ b) $\frac{20}{\sqrt{18}}$ c) $\frac{20}{\sqrt{8}}$ d) $\frac{20}{6}$
- 4) In steady state, the **phase** of the output will be a) 30° b) 45° c) -15° d) -45°
- 5) The **bandwidth** (-3 dB point) of the system is
- a) 10 Hz b) 10 radians/sec c) 3 radians/sec d) 3 Hz
- 6) The integral $\int_{-\infty}^{\infty} u(t+1)u(t-2)e^{-t}dt$ can be simplified as

a)
$$\int_{-1}^{\infty} e^{-t} dt$$
 b) $\int_{2}^{\infty} e^{-t} dt$ c) $\int_{-1}^{2} e^{-t} dt$ d) none of these

7) The integral $\int_{-\infty}^{\infty} u(-1-\lambda)e^{-|\lambda|}d\lambda$ can be simplified as

a)
$$\int\limits_{-\infty}^{-1} e^{-|\lambda|} d\lambda$$
 b) $\int\limits_{-1}^{\infty} e^{-|\lambda|} d\lambda$ c) $\int\limits_{1}^{\infty} e^{-|\lambda|} d\lambda$ d) none of these

8) The function x(t) below can best be represented by the function

a)
$$x(t) = 5rect(\frac{t}{2})$$
 b) $x(t) = 5rect(\frac{t-1}{2})$

c)
$$x(t) = 5rect(\frac{t}{4})$$
 d) $x(t) = 5rect(\frac{t-1}{4})$

9) The function x(t) below can best be modeled by the function

a)
$$x(t) = u(t+1) + u(t-1) - u(t-2)$$
 b) $x(t) = u(t+1) + 2u(t-1) - 2u(t-2)$ c) $x(t) = u(t+1) + u(t-1) - 2u(t-2)$ d) $x(t) = u(t+1) + 2u(t-1) - 3u(t-2)$

b)
$$x(t) = u(t+1) + 2u(t-1) - 2u(t-2)$$

c)
$$x(t) = u(t+1) + u(t-1) - 2u(t-2)$$

d)
$$x(t) = u(t+1) + 2u(t-1) - 3u(t-2)$$

10) The function $x(t) = \sin\left(\frac{\pi}{2}t\right)\delta(t-1) + t$ can be simplified as

a)
$$x(t) = 2$$

b)
$$x(t) = 1 + t$$

c)
$$v(t) = \delta(t-1) \pm t$$

a)
$$x(t) = 2$$
 b) $x(t) = 1+t$ c) $x(t) = \delta(t-1)+t$ d) $x(t) = \delta(t-1)+1$

11) The integral $\int_{0}^{10} \delta(\lambda - 1)\delta(\lambda - 2)d\lambda$ can be simplified as

- a) 0
- b) 1
- c) none of these

12) The integral $\int_{-1}^{5} t \delta(\lambda - 2) d\lambda$ can be simplified as a) 2 b) t c) $2\delta(t-2)$ d) $t\delta(t-2)$

- 13) The integral $\int_{-1}^{2} \delta(t-3)dt$ can be simplified as
- a) 1 b) 0 c) 3 d) $\delta(t-3)$

Problems 14-16 refer to the signal shown below, which we want to model as

$$x(t) = A + B\cos(\omega t)$$

- 14) Of the following, which is the best estimate of A?
- a) 0 b) 1 c) 2 d) 3
- 15) Of the following, which is the best estimate of B?
- a) 0 b) 1 c) 2 d) 3
- 16) Of the following, which is the best estimate of ω ?
- a) 1 b) 2 c) $\frac{\pi}{2}$ d) π