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Objectives 
A variety of interesting waveforms can be expressed as sums of complex exponentials of 
different frequencies.  The pulse trains used in communication systems, speech waveforms, and 
the waveforms produced by musical instruments can be modeled in this way.  In this lab we will 
explore some analytical techniques for generating waveforms by summing complex 
exponentials. 
 
The two main objectives of this lab are: 

1. Improve your knowledge of programs and functions in MATLAB, and 

2. Write a function that will sum several complex exponential terms. 
 
Pre-Lab 
Do the following before coming to lab.  Record the results in your lab notebook and hand in a 
photocopy of your pre-lab. 

a) Work the following matrix algebra problems by hand: 

1.  
1 2

6 4 2
3 4

5 3 1
5 6

⎡ ⎤
⎡ ⎤⎢ ⎥ =⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

2.  
1 2

6 4 2
3 4

5 3 1
5 6

⎡ ⎤
⎡ ⎤ ⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

b) In MATLAB, a process called implicit type assignment can automatically create a matrix 
when it is called for in a computation.  For example, in the computation below, MATLAB 
would understand that the result of the command cos(x) results in a matrix as shown.  
Find the result of the commands listed by hand. 

  ( ) ( ) ( )
( ) ( )

cos a cos ba b
x ; cos x

cos c cos dc d
⎡ ⎤⎡ ⎤

= = ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

1.  jxe

2.  jxxe

c) Write a function that performs the same task as the following without using a for loop, 
and paste the code and verification that it works in your notebook. 
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function Z=replacez(A) 
%REPLACEZ Function that replaces the positive elements of a matrix with 1 
%  usage: 
%    Z=replacez(A) 
%    A=input matrix whose positive elements are to be replaced with 1 
% 
[M,N]=size(A); 
for i=1:M 
  for j=1:N 
    if A(i,j)>0 
      Z(i,j)=1; 
    else 
      Z(i,j)=A(i,j); 
    end 
  end 
end 

 
MATLAB hint:  The MATLAB logical operators may be helpful in completing this exercise.  Use 
help to understand what these commands do. 
 
Procedure A: Efficient Synthesis of x(t) 
 
The way the program Fourier_Series.m computes ( )x t is very inefficient, and we are going to 
try and speed this up and take advantage of Matlab’s strengths. In what follows, remember we 
want to compute 
 

( ) o

k N
jk t

k
k N

x t c e ω
=

=−

≈ ∑  

 
To do this we need to do the following: 
 
a) Just after the period, T, is defined, write an expression for 0ω , the natural frequency.  

 
b) Define an array [ ]0 0 0 0 0( 1) ... 0 ... ( 1)W N N N N 0ω ω ω ω ω= − − − − − ω   

which we can write as [ ]( 1) ... 1 0 1 ... ( 1) oW N N N N ω= − − − − −  
 

c) In order to use this sum, we need the array   
( 1) 1 0 1 1[ ... ... ]N N NC c c c c c c c− − − − −= N  

What we have is  and the array 0c 1 1[ ... ]N Nc c c c−= . Use these arrays and the properties 
of the coefficients to construct the array . Your method of construction should work for 
any sized array. The Matlab commands fliplr and conj will be very helpful here. 
Constructing C should require one statement in Matlab, and, of course, must occur after 

and are available. 

C

c 0c
 

d) Remove (delete) the following inefficient lines of code 
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        m = 1; 
       est = T*c(1)*conj(feval(@periodic,t))+T*conj(c(1))*feval(@periodic,t); 
      % 
       for i = 2:N 
       m = i; 
      est = est + T*c(i)*conj(feval(@periodic,t)); 
      est = est + T*conj(c(i))*feval(@periodic,t); 
      end; 
      est = est+c0; 
 
e) Now write a routine sum_exp which takes as arguments W, C, and t, where t is an array of the 
times we want to find x at. The command x = sum_exp(C,W,t) should return the vector x 
evaluated at all times t.  To understand how we are going to do this, let’s consider the following 
situation: Assume we want to know ( )x t  at three times and we are going to use up to the second 

harmonic in the Fourier series representation ( 2N = ), so we have  for 

 Assume we have a row vector of the three times 

2

2
( ) o i

k
jk t

i k
k

x t c e ω
=

=−

= ∑
1, 2,3i = [ ]1 2 3t t t t= ,  the row vector 

[ ]0 0 02 0W 02ω ω ω= − − ω  of the required frequencies, and the row vector 

[ ]2 1 0 1 2C c c c c c− −= .  First let’s form  
 

[ ]

0 0 1 0 2

0 0 1 0 2

1 2 3

0 0 1 0 2

0 0 1 0 2

2 2 2
1 1 1
0 0 0

1 1 1
2 2 2

T

j t j t j t
j t j t j t

jW t j t t t
j t j t j t
j t j t j t

ω ω ω
ω ω ω

ω ω ω
ω ω ω

− − −⎡ ⎤ ⎡
⎢ ⎥ ⎢− − −⎢ ⎥ ⎢
⎢ ⎥ ⎢= =
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

0 3

0 3

0 3

0 3

2
1
0

2

ω
ω

ω
ω

− ⎤
⎥− ⎥
⎥
⎥
⎥
⎥⎦

 

 
Then  

0 1 0 2 0 3

0 1 0 2 0 3

0 1 0 2 0 3

0 1 0 2 0 3

2 2 2

1 1 1

1 1 1

2 2 2

1 1 1
T

j t j t j t

j t j t j t

jW t

j t j t j t

j t j t j t

e e e
e e e

e
e e e
e e e

ω ω ω

ω ω ω

ω ω ω

ω ω ω

− − −

− − −

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Finally, by premultiplying by C we will get the desired result. The function sum_exp should 
actually consist of one line of code. 
 

 
f) Plot the following function and the Fourier Series representation of the function using 50 
terms. The function is defined over the period -2 to 4. Include this figure in your lab notebook 
and have it checked off before you go on. The function you should be plotting is  
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0 2
1 1 2

( )
3 2 3
0 3 4

t
t

f t
t
t

1− ≤ < −⎧
⎪ − ≤ <⎪= ⎨ ≤ <⎪
⎪ ≤ <⎩

 

Instructor Verification (see last page) 
 
Procedure B:  Filtering Periodic Signals 
 
One of the reasons for using a Fourier Series representation of a periodic signal instead of a 
different type of representation is that we get a frequency domain representation of the 
original signal ( )x t .  Recall from phasor analysis that if the input to a LTI system is 

0( ) cos( )x t A tω φ= +  the steady state output will be  
 

0 0 0( ) | ( ) | cos( ( ) )y t A H j t H jω ω ω= +∠ φ+  
 

Let’s rewrite the periodic input signal ( )x t  using Euler’s identity, 
 

0 0( ) ( )( )
2 2

j t j tA Ax t e eω φ ω φ+ − += +  

We can rewrite the output as 
 

0 0 0 0( ( )) ( (0 0| ( ) | | ( ) |( )
2 2

j t H j j t H jA H j A H jy t e eω φ ω ω φ ω ))ω ω+ +∠ − + +∠= +  

Using the properties that for a real system 0| ( ) | | ( )H j H j 0 |ω ω= −  (the magnitude is an even 
function) and 0( ) (H j H j 0 )ω ω∠ = −∠ −  (the phase is an odd function) , we get  
 

0 0
0 0

( ) ( )
( ) (0 0| ( ) | | ( ) |( )

2 2

j H j j H j
j t j tA H j e A H j ey t e e

ω ω
)ω φ ωω ω∠ ∠

φ
−

+ − +−
= +  

Now if we recognize the above expression for ( )x t  as its Fourier series representation, with 
coefficients 

1 0 10
2 2

j jAe Aec c c
φ φ−

− = = =  

we can write  
 

0 0 0
1 0 1 0 1 1( ) ( ) ( ) 0j t j t j ty t c H j e c H j e b e b e j tω ω ωω ω− −

− −= − + = + ω  
 

In general then, if ( )x t  has the (finite) Fourier series representation 
 

( ) o

k N
jk t

k
k N

x t c e ω
=

=−

≈ ∑  
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then the steady state output will be given by  
 

( ) o

k N
jk t

k
k N

y t b e ω
=

=−

≈ ∑    where   0( )k kb c H jkω=  

 
We are now ready to modify Fourier_Series.m so we can filter signals. 

 
a) We will start with a simple filter, ( )H j jω ω= . This filter computes the derivative of the 
input. For this filter, determine a new vector  

 
0 0 0[ ( ) ( ( 1) ) ... (0) ... ( ( 1) ) (H H jN H j N H H j N H jN 0 )]ω ω ω= − − − − ω  

 
b) Construct the new vector  (this should be easy to do) 
 

0 ( 1) 0 0 1 0 0[ ( ) ( ( 1) ) ... (0) ... ( ( 1) ) ( )]N N N NB c H jN c H j N c H c H j N c H jNω ω ω− − − −= − − − − ω
 
c) Plot the output vector  using its Fourier series representation. Start with N = 5 and 
gradually increase N until you see what is happening (and you get a good graph). If N becomes 
too large you will not be able to see much. Include a good plot in your lab notebook. Describe 
what you see (think about the derivative of the step function…). Have this part checked off 
before you go on.  

( )y t

 
Instructor Verification (see last page) 

 
d) Now we want look at different kinds of filters. Let’s assume we want to use a 10th order  
Butterworth lowpass filter with a frequency cutoff of 20 0ω . Use the help command to look up 
the Matlab function butter. You should return the coefficients in two arrays, i.e. your command 
should be  [Bu,Au] = butter(…..); Note that we are constructing an analog filter here, so read all 
of the description for the butter command. 
 
e)We now again need to find the vector 
 

  0 0 0[ ( ) ( ( 1) ) ... (0) ... ( ( 1) ) (H H jN H j N H H j N H jN 0 )]ω ω ω= − − − − ω  
 

The command freqs will be helpful here. 
 
e) Construct the B vector again, and plot both the input signal ( )x t  and the output signal  on 
the same graph using 50 terms. (You do not need to plot the imaginary part of either signal, it 
gets too messy!) You should see two distinct phenomena. Include this graph and a brief 
discussion of what you see in your lab notebook. Have this part checked off before you go on. 

( )y t

 
Instructor Verification (see last page) 
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f) It will be useful to look at the frequency response (Bode) plot of the filter you are using. To do 
this, you need to first construct a transfer function using the Au and Bu vectors, using Matlab’s 
tf command. The use Matlab’s bode command to plot the frequency response of the filter. Use 
the grid command to put a grid on the graph. Is the cutoff frequency where you think it should 
be? Identify the cutoff frequency on the graph and put the figure in your lab notebook. 
 
g) Estimate the delay between the input and output signals. The easiest way to do this is to 
determine the delay between a point halfway up the left side of ( )f t  (the point (-1,0.5)) and 
location of the same point for the filtered signal (i.e., what value of  has amplitude of 0.5 on the 
filtered signal?) Next estimate the slope of the phase of the filter (only near those frequencies we 
are allowing to pass.) The phase and time delay should be approximately related though the 
relationship  

t

 
dslope t− =  

 We only need to estimate the slope over those frequencies we are interested in, so we’ll use 

[ ]0 0

0 0

( ) ( 20 )
180

20

H j H j
slope

πω ω

ω ω

⎡ ⎤∠ −∠ × ⎢ ⎥⎣ ⎦=
−

 

 
You may not be able to get the phase at 0ω  or 20 0ω  exactly, so you may have to modify the 
formula. You can click on the bode plot and slide the cursor to get accurate readings. Note that 
the phase is not really linear, but we’ll just approximate it this way for now. 
 
h) Change the Butterworth filter order to a 15th and then a 25th order filter. Plot the input and 
output signals on the same plot, and estimate the delay between the input and output signals. Plot 
the frequency response of the filter and estimate the slope of the filter. Make a table showing the 
slope of the phase and the time delay between the input and output (The table should have results 
for all three Butterworth filters.) Note: You do not need to put these plots in your lab book. 
They are just for your use. 
 
i) Modify the Butterworth filter to filter out all components of ( )x t  except for the first harmonic. 
Plot both the input and output, as well as the frequency response of the filter you used, and put 
them in your lab notebook. Be sure to include the parameters you used in the filter. 
 
j) Modify the Butterworth filter to filter out all components of ( )x t  except for the second 
harmonic. Plot both the input and output, as well as the frequency response of the filter you used, 
and put them in your lab notebook. Be sure to include the parameters you used in the filter. 
 
Have this last part checked off and you are done! 
 

Instructor Verification (see last page) 
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        Lab 05 

Instructor Verification Sheet 
 

 
 
Names _________________________________________   
 
 
Date of Lab: __________________ 
 
 
 
Part A-f   Verified:________________________________ 
 
 
Part B-c   Verified:________________________________ 
 
 
Part B-e   Verified:________________________________ 
 
 
Part B-j   Verified:________________________________ 
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