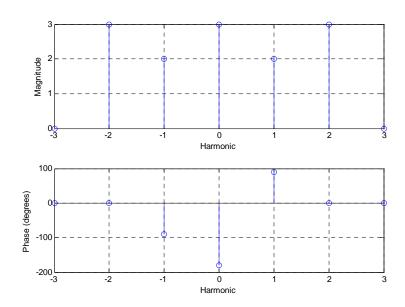
ECE-300, Quiz #5

1) Assume x(t) is a periodic function with Fourier series representation $x(t) = \sum_{i=1}^{n} c_{ik}^{x} e^{jk\omega_{o}t}$. x(t)is the input to an LTI system with output $y(t) = 3\dot{x}(t-2)$. The Fourier series coefficients c_k^y are related to the c_k^x in which of the following ways


a)
$$c_k^y = 3jk\omega_0 e^{+jk\omega_0^2} c_k^x$$
 b) $c_k^y = -3jk\omega_0 e^{-jk\omega_0^2} c_k^x$ c) $c_k^y = 3jk\omega_0 e^{-jk\omega_0^2} c_k^x$ d) $c_k^y = -3jk\omega_0 e^{+jk\omega_0^2} c_k^x$

b)
$$c_{i}^{y} = -3 ik\omega_{0}e^{-jk\omega_{0}^{2}}c_{i}^{x}$$

c)
$$c_k^y = 3jk\omega_0 e^{-jk\omega_0^2} c_i$$

d)
$$c_k^y = -3jk\omega_0 e^{+jk\omega_0^2} c_k^x$$

Problems 2-4 refer to the following spectrum plot for a signal x(t) with fundamental frequency $\omega_o = 2$. All angles are multiples of 90 degrees.

- 2) What is the average value of x(t)?
- a) 13 b) $\frac{13}{7}$ c) $\frac{13}{5}$
- e) -3

d) 3

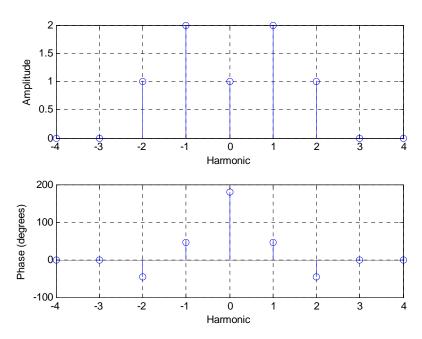
- 3) What is the average power in x(t)? a) 13 b) $\frac{13}{7}$ c) 35

4) If x(t) is the input to a system with transfer function

$$H(\omega) = \begin{cases} 2 & 1 < |\omega| < 3 \\ 0 & else \end{cases}$$

the output y(t) in steady state will be

a)
$$12\cos(2t)$$


b)
$$4\cos(2t + 90^{\circ})$$

c)
$$8\cos(t+90^{\circ})$$

a)
$$12\cos(2t)$$
 b) $4\cos(2t+90^{\circ})$ c) $8\cos(t+90^{\circ})$ d) $8\cos(2t+90^{\circ})$ e) $6\cos(2t)$

e)
$$6\cos(2t)$$

Problems 5-7 refer to the following plot (all angles are multiples of 45 degrees)

- 5) Is this a valid spectrum plot for a real valued function x(t)? a) Yes b) No
- 6) Assuming the magnitude portion of the spectrum is correct, what is the average power in x(t)?
- a) 4 b) 7 c) 11 d) 12
- 7) Assuming the plot is a valid spectrum plot for a real valued function x(t), the average value of x(t) is
- a) 1 b) 2 c) $\frac{7}{4}$ d) -1

Problems 8-10 refer to the following Fourier series representation of a periodic signal

$$x(t) = 2 + \sum_{k=-\infty}^{k=\infty} \frac{2}{2+jk} e^{\frac{jkt}{2}}$$

8) If x(t) is the input to a system with transfer function

$$H(\omega) = \begin{cases} 2 & |\omega| < 0.4 \\ 0 & else \end{cases}$$

the output y(t) in steady state will be

- a) 0 b) 3 c) 6 d) $1.79\cos(\pi t 26.6^{\circ})$ e) $6 + 3.58\cos(\pi t 26.6^{\circ})$

9) If x(t) is the input to a system with transfer function

$$H(\omega) = \begin{cases} 2 & |\omega| > 0.4 \\ 0 & else \end{cases}$$

the output y(t) in steady state will be

- a) 2x(t) b) 2x(t)-3 c) 2x(t)-6
- d) none of these

10) If x(t) is the input to a system with transfer function

$$H(\omega) = \begin{cases} 0 & 0.4 < |\omega| < 0.6 \\ 2 & else \end{cases}$$

the output y(t) in steady state will be

- a) $1.79\cos(0.5t 26.6^{\circ})$ b) $3.58\cos(0.5t 26.6^{\circ})$
- c) $2x(t)-1.79\cos(0.5t-26.6^{\circ})$ d) $2x(t)-3.58\cos(0.5t-26.6^{\circ})$