
ECE-597: Optimal Control
Homework #5

Due: October 10, 2007

Read the Appendix before attempting problems 1-4.

1. In this problem we will try some things with Example A.

a) Run the program fop0 example a.m for Example A, using the initial estimate of u
given in the program. Use N = 10 and mxit = 10. Turn in your plot.

b) Comment out the initial estimate, and run the program again for N = 20 by interpolating
the solution it ended with on part (a)

c) Use this initial (unconverged but heading towards a solution) u and run fminunc example a.m
for N = 20 time samples.

d) After each run of fminunc example a.m, double the number of sample points until you
have a solution for at least N = 200. Turn in your plot.

e) Run fop0 example a.m until it converges, and compare with the results from fmin-
unc example a.m. You should not use the same u′s that fminunc example a.m used.
Start with a new initial guess. Your answers should be slightly different. Turn in your plot.

2. Rerun the system in Example A using initial values of x(0) = 2, y(0) = −3 using both
fop0 example a.m and fminunc example a.m.

a) Run fop0 example a.m using N = 20 and mxit = 10. Use the default initial estimate.
Turn in your plot.

b) Using the initial guess from part a, run fminunc example a.m for N = 20, then
N = 100, then N = 200, interpolating you initial as you refine. Turn in your plot.

c) Rerun part a (to get the same initial values), and then run fminunc example a.m for
N = 200. Does the routine find a solution? Turn in your plot.

d) Find the solution using fop0 example a.m. You should not use the same u′s that fmi-
nunc example a.m used. Start with a new initial guess. Your answers should be slightly
different. Turn in your plot.

3. Using initially fpo0 example b.m to find a good initial guess, and then fminunc example b.m,
modify Qf , R, and Q so that x1 is within ±0.1 of 1 for at least half a second. You need to
use N ≥ 100. Turn in your plot.

1



4. In this problem, we will first derive a somewhat complicated analytical solution, and then
simulate the system.

Consider the problem

minimize J =
1

2
(x(tf )− d)2 +

1

2

∫ tf

t0
u(t)2dt

subject to ẋ(t) = ax(t) + bu(t)

where x(t0) = x0, t0, tf , and the desired final point, d are given.

a) Show that the continuous time Euler Lagrange equations are

λ̇ = −aλ

λ(tf ) = x(tf )− d

Hu = u + λb = 0

b) Show that we can use these equations to write

u = γe−at

where

γ = b(d− x(tf ))e
atf

c) Show that the constraint equation becomes

ẋ− ax = bγe−at

and that we can rewrite this as

d

dt

(
e−atx

)
= bγe−2at

d) Integrating the above equation from t0 to t, show that we get

x(t) = x(t0)e
a(t−t0) +

bγ

2a
(ea(t−2t0) − e−at)

e) Show that the above equation can be written

x(t) = x(t0)e
a(t−t0) +

bγ

a
e−at0 sinh(a(t− t0))

f) Evaluating the above expression at the final time tf show that we get

x(tf ) =
x(t0)e

aδ + b2d
2a

(e2aδ − 1)

1 + b2

2a
(e2aδ − 1)
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where δ = tf − t0. At this point, we have an analytical expression for the final value of x(t)
that only depends on known quantities.

g) Using the above expression, show that we can write

γ = beatf

[
d− x(t0)e

aδ

1 + b2

2a
(e2aδ − 1)

]

h) Now we want to simulate the problem using the routines fop0.m and fminunc. We will
examine the specific problem with a = −0.8, b = 0.2, x0 = 1, t0 = 0, tf = 2 and d = −4.0
Plot the analytical and estimated values of the control signals (u) and the states (x). You
must estimate these signals using both fop0.m and fminunc. You may use you final values
from fop0.m as the initial values for fminunc, but I want to be sure you can code both of
these. Show that your estimates agree with the analytical values. Turn in your plots and
you code.

5. In this problem we will derive the continuous time version of the Linear Quadratic tracker
problem, then learn to use Matlab to determine the solution by solving the differential
equations. The solution technique will be very similar to what you did last week for the
discrete-time case. For this problem we want to determine the continuous time control
signal u(t) to minimize the cost

J =
1

2
[y(tf )− r(tf )]

T Qf [y(tf )− r(tf )] +
1

2

∫ tf

o

{
[y(t)− r(t)]t Q [y(t)− r(t)] + u(t)T Ru(t)

}
dt

subject to the constraints

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

x(0) = x0

We also assume all matrices are symmetric and invertible.

a) Determine the Hamiltonian and φ(x(tf )), then show that the Euler-Lagrange equations
lead to

−λ̇(t) = CT QCx(t)− CT Qr(t) + AT λ(t)

u(t) = −R−1BT λ(t)

b) Now assume λ(t) = S(t)x(t)− v(t), so that λ̇(t) = Ṡ(t)x(t) + S(t)ẋ(t)− v̇(t). Show that
by substitution we can eliminate λ(t) and ẋ(t), and end up with the equation (ignoring all
the functions of t)

{
−Ṡx− SA− AT S + SBR−1BT S − CT QC

}
x +

{
−SBR−1BT v + CT Qr + AT v + v̇

}
= 0
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Since this equation must be true for all x, we have

Ṡ(t) = −S(t)A− AT S(t) + S(t)BR−1BT S(t)− CT QC

v̇(t) = −
[
AT − S(t)BR−1BT

]
v(t)− CT Qr(t)

The equation for S(t) is called the Riccati equation, and is very important in optimal control
and anytime you use a Linear Quadratic anything.

c) Show that the boundary conditions for S(t) and v(t) are given by

S(tf ) = CT QC

v(tf ) = CT Qfr(tf )

d) Except for really weenie problems, we can’t solve the Riccati equation analytically. Hence
we must resort to using a differential equation solver. However, most differential equation
solvers want to start with an initial condition and march forward in time. We have no initial
condition but a condition at the end point for both of our differential equations. In order
to use Matlab’s differential equation solvers, we will make a change of variable so we have
initial conditions, and then “time-reverse” the solutions to get what we want (this will be
done for you in the Matlab code). Define

Z(tf − t) = Z(τ) = S(t)

W (tf − t) = W (τ) = v(t)

and show our differential equations for S(t) and v(t) can be transformed to

dZ(τ)

dτ
= Z(τ)A + AT Z(τ)− Z(τ)BR−1BT Z(τ) + CT QC

Z(0) = CT QC

dW (τ)

dτ
=

[
AT − S(tf − τ)BR−1BT

]
W (τ) + CT Qr(tf − τ)

W (0) = CT Qfr(tf )

We can now use Matlab’s differential equation solvers to march forward in time. The code
continuous tracker.m implements a solution to the continuous-time linear tracker prob-
lem, including numerically solving the differential equations for S(t) and v(t). You should
try and understand what is going on in this program in case it shows up on your next exam....

e) The program is set up to control the position of an ECP one-degree of freedom torsional
system. Choose the gains (Q, S, and Qf ) so that

i) the system tracks a ramp (r(t) = 0.7t) as well as possible from 0 to 2 seconds.

ii) the system matches the ramp at 2 seconds, but the “minimum” energy is used
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iii) the system tracks a cosine r(t) = π
30

sin(2πt) as well as possible.

iv) modify the program to use the steady state gain and rerun (iii). This is the gain that
the Matlab routine LQR generates. Turn in all four (neatly labeled) plots.
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Appendix
fop0.m and fminunc

Only very simple problems can be solved analytically. Usually we need to use a numerical
procedure. We will do this using the Mayer formulation of the problem. We have been using
the Bolza formulation. Both of these methods are equivalent, and are just different methods
of looking at the same thing.

In the Mayer formulation, the state vector is augmented by one state q(t) that is the integral
of L up to the final time:

q =
∫ tf

t0
L[x(t), u(t), t]dt

or

q̇(t) = L[x(t), u(t), t]

The Bolza performance index

J = φ[x(tf )] +
∫ tf

t0
L [x(t), u(t), t] dt

becomes the Mayer performance index

J = φ[x(tf )] + q(tf ) = φ̄[x̄(tf )]

where

x̄ =

[
x
q

]

We usually drop the bar on x and φ and the problem is stated as finding a function u(t), t0 ≤
t ≤ tf , to minimize (or maximize)

J = φ[x(tf )]

subject to

ẋ(t) = f [x(t), u(t), t]

with x(0), t0 and tf specified.

We will be utilizing the routines fop0.m and Matlab’s routine fminunc in this assignment.
The routine fop0.m solves continuous-time optimization problems of the form: find the
input sequence u(t), 0 ≤ t ≤ tf to minimize

J = φ[x(tf )] +
∫ tf

0
L[x(t), u(t), t]dt
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subject to the constraints

ẋ(t) = f [x(t), u(t), t]

x(0) = x0 (known)

and tf are known. Note that the program assumes the initial time t0 is zero! Matlab’s
routine fminunc can be made to solve the same problem, does not require knowledge of
derivatives, and is generally a bit more robust, but we have to do a little work first.
We will first give examples using fop0.m, then the same examples using fminunc.

Note that we cannot put any hard terminal constraints on this problem. That is, we cannot
force x(tf ) to be anything in particular. We will get to that next week!

Using fop0.m

The program fop0.m utilizes the Euler-Lagrange equations in combination with a gradient
search algorithm to numerically solve the problem. This algorithm also takes into account
the gradients of the functions. It is often easier to make this routine find the minimum than
the fminunc routine. In order to use the routine fop0.m, you need to write a routine that
returns one of three things depending on the value of the variable flg. Note that fop0.m
also uses the routines fop0 f.m and fop0 b.m. The general form of your routine will be as
follows:

function [f1,f2] = bobs_fop0(u,s,t,flg)

Here u is the current input, u(t), and s contains the current state (including the augmented
state), s(t), so ṡ(t) = f(s(t), u(t), t). t is the current time. Your routine should compute the
following:

if flg = 1 f1 = ṡ(t) = f(s(t), u(t), t)
if flg = 2 f1 = φ̄[x̄(tf )] = φ̄[s(tf )], f2 = φ̄s[x̄(tf )] = φ̄[s(tf )]
if flg = 3 f1 = fs, f2 = fu

An example of the usage is:

[tu,ts,la0] = fop0(’bobs_fop0’,tu,tf,s0,k,told,tols,mxit)

The (input) arguments to fop0.m are the following:

• the function you just created (in single quotes).

• tu is an initial guess of times (first column), and control values (subsequent columns)
that minimizes J . If there are multiple control signals at a given time, they are all in
the same row. Note that these are just the initial time and control values, the times
and control values will be modified as the program runs. The initial time should start
at zero.
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• the initial states, s0. Note that you must include and initial guess for the “cumulative”
state q also.

• the final time, tf .

• k, the step size parameter, k > 0 to minimize. Often you need to play around with
this one.

• told, the tolerance (a stopping parameter) for ode23 (differential equation solver for
Matlab)

• tols, the tolerance (a stopping parameter); when |∆u| < tols between iterations, the
programs stops.

• mxit, the maximum number of iterations to try.

fop0.m returns the following:

• tu the optimal input sequence and corresponding times. The first column is the time,
the corresponding columns are the control signals. All entries in one row correspond
to one time.

• ts the states and corresponding times. The first column is the time, the corresponding
columns are the states. All entries in one row correspond to the same time. Note that
the times in tu and the times in ts may not be the same, and they may not be evenly
spaced.

• la0 the Lagrange multipliers

It is usually best to start with a small number of iterations, like 5, and see what happens as
you change k. Start with small values of k and gradually increase them. It is also generally
better to start with a fairly small number of time steps, and then increase the time steps
once you have found an acceptable solution for the reduced number of time steps. It can be
difficult to make this program converge, especially if your initial guess is far away from the
true solution.

Note!! If you are using the fop0.m file, and you use the maximum number of allowed
iterations, assume that the solution has NOT converged. You must usually change the value
of k and/or increase the number of allowed iterations. Try to make k as large as possible
and still have convergence.

Example A From Homework 4, consider the problem

minimize J =
1

2
(x(tf )

2 + y(tf )
2)

subject to ẋ(t) = t + u(t)

ẏ(t) = x(t)
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where x(0) = 1, y(0) = 1, tf = 0.5.

Let’s define the state variables as

s =

[
x
y

]

Note that this problem is already in Mayer form, so q = 0. We then have

ṡ(t) = f(s) =

[
t + u

x

]

and

φ̄[x̄(tf )] = φ̄[s(tf )] = 0.5(x2 + y2)

φ̄s[s] =
[

x y
]

fs =

[
0 0
1 0

]

fu =

[
1
0

]

This is implemented in the routine bobs fop0 a.m on the class web site, and it is run using
the driver file fop0 example a.m.

Example B Consider the tracking problem

minimize J =
1

2
(x1(tf )− r(tf ))

2 Qf +
∫ tf

0

{
1

2
(x1(t)− r(t))2 Q +

1

2
Ru2(t)

}
dt

subject to ẋ(t) = Ax + Bu

where x(0) = 0, tf , Qf , Q, and R are known, and r(t) is a signal we want to track (follow).
For convenience we will assume there are two states.

Let’s define the state variables as

s =




x1

x2

q




Where

q̇(t) =
1

2
(x1(t)− r(t))2 Q +

1

2
Ru2(t)

We have then

ṡ(t) = f(s) =

[
Ax + Bu

1
2
(x1(t)− r(t))2 Q + 1

2
Ru2(t)

]
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and

φ̄[x̄(tf )] = φ̄[s(tf )] =
1

2
Qf (x1 − r)2 + q

φ̄s[s] =
[

Qf (x1 − r) 0 1
]

fs =

[
A 0

Q(x1 − r) 0 0

]

fu =

[
B
Ru

]

This is implemented in the routine bobs fop0 b.m on the class web site, and it is run using
the driver file fop0 example b.m.

Using fminunc

Matlab’s routine fminunc (find the minimum of an unconstrained multivariable function) is
a routine that finds the minimum of a function J(u), assuming there are no constraints on
u. For this routine you do not need to determine the step size, and you do not need to have
knowledge of derivatives either. It is a more general routine than fop0.m, but that also
makes it a little more awkward to use. Since it does not solve the Euler-Lagrange equations
or use derivative information, it can be very difficult to find a solution unless you have a
good idea of the solution before you begin!

This routine is very well suited to the Mayer form of the problem, however. We need to
be able to write our function

J(x) = φ[x(tf )] +
∫ tf

0
L [x(t), u(t), t] dt

as

J(x̄) = φ[x(tf )] + q(tf ) = φ̄[x̄(tf )] = φ̄[s]

where s is governed by the dynamic equations

ṡ(t) = f(s(t), u(t), t)

In order to determine the final values, we will need to integrate the equations forward in
time using a numerical integration routine.

Example A (Again) Consider the problem

minimize J =
1

2
(x(tf )

2 + y(tf )
2)

subject to ẋ(t) = t + u(t)

ẏ(t) = x(t)

where x(0) = 1, y(0) = 1, tf = 0.5.
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Let’s define the state variables as

s =

[
x
y

]

Note that this problem is already in Mayer form, so q = 0. We then have

ṡ(t) = f(s) =

[
t + u

x

]

and

φ̄[x̄(tf )] = φ̄[s(tf )] = 0.5(x2 + y2)

This problem is solved using the code fminunc example a.m which is available on the
class website. This is the basic file that sets everything up, invokes fminunc with the func-
tion (fminunc a) that will compute φ̄, and then plots the results. The routine fminunc a
utilizes one of Matlab’s build in functions for integrating a differential equation forward in
time (we used ode45, there are other choices depending on your differential equation). The
function ode a contains the state variable description of the equation we need to solve. Note
that the arrays times and ut are optional arrays we pass to the function. They contain all of
the time values and the corresponding control values. When Matlab calls this routine using
its solver (ode45 in this case) it only passes one time value (t) and the corresponding state
value (s). In order to determine which value of u to use we need to interpolate. Finally, once
the problem has bee solved, the differential equation is solved once more so we can plot the
optimal control vector and the corresponding states. Note: If fminunc claims it has not
converged, often you need to change the tolerance, tolfun.

Example B (Again) Consider the tracking problem

minimize J =
1

2
(x1(tf )− r(tf ))

2 Qf +
∫ tf

0

{
1

2
(x1(t)− r(t))2 Q +

1

2
Ru2(t)

}
dt

subject to ẋ(t) = Ax + Bu

where x(0) = 0, tf , Qf , Q, and R are known, and r(t) is a signal we want to track (follow).
For convenience we will assume there are two states.

Let’s define the state variables as

s =




x1

x2

q




Where

q̇(t) =
1

2
(x1(t)− r(t))2 Q +

1

2
Ru2(t)
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We have then

ṡ(t) = f(s) =

[
Ax + Bu

1
2
(x1(t)− r(t))2 Q + 1

2
Ru2(t)

]

and

φ̄[x̄(tf )] = φ̄[s(tf )] =
1

2
Qf (x1 − r)2 + q

This problem is solved using the code fminunc example b.m which is available on the class
website. The only thing different is that we need to again use interpolation to determine the
corresponding value of r(t) in the routine ode b.

Interpolation

For both methods of solving the problem, we utilize a method of interpolation as we
refine the number of sample points. The basic idea is as follows:

• Try and initially solve the problem using only a few sample points, say between 10 and
20 for most problems.

• Guess an initial (optimal) control sequence, as well as other parameters.

• After each optimization attempt, the resulting times and control values are saved to a
file (old ut).

• Once you have results that seems to be converging, comment out your initial guess and
uncomment the part of the code that reads in old ut and uses the time sequence and
control sequence your last run ended with.

• Once you have a solution for a few sample points, use the existing solution to interpolate
an initial solution for more points. Usually this works fastest if your new number of
sample points is limited to twice the original number of sample points.

• Note that if your solution starts to diverge, stop the program before it writes to the
file by hitting (control c). If your computer is not hung up this will stop your code.

• Right now the program is set up to show your original and the new interpolated points.

• Both of the programs have been set up to write and interpolate the solutions the same
way. However, the fop0.m routine determines the number of sample points it will
ultimately end up with, while we have set up fminunc to use the number of sample
points we choose.

• fop0.m is a pretty good choice for finding an initial solution estimate, even if if has
not completely converged.
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