
   

Working with dBs 
 
This document presents a thorough introduction to the use of decibels in 
calculations and laboratory measurements in EE applications. Read this 
document carefully, for it contains a lot of useful information.  It will be necessary 
to revisit this document several times as you go through your various classes, so 
you may wish to bookmark it or print it out for ready access.  Finally, practice by 
working through the examples.  It is only by practice that this seemingly strange 
convention will become familiar. 
 
Bruce A. Ferguson    
© spring 2004, summer 2005, spring 2007 (revised) 
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Decibel (dB) FAQ 
 

1. What is a decibel (dB), as typically used in electrical engineering? 
A dB is a means of representing a power ratio R, specifically 
RdB=10log10(R). Using dBs to represent such values affords a number of 
advantages, and is the standard in a number of fields. This document 
provides a good introduction to the use of dBs. more info

2. What is a dBm (or dBW)? 
A dBm is a dB representation of a power level relative to 1 mW. The 
standard means of representing a power (level) is to represent that power 
level relative to some known power, such as one mW. Similarly, a dBW is 
a dB representation of a power level relative to 1 W. more info

3. Aren’t dB and dBm or dBW different units? 
No. These are all dB representations of values. The dB “unit” represents a 
power ratio. The dBm “unit” represents a power level relative to 1 mW, 
and dBW represents a power level relative to 1 W. The latter two “units” 
are still power ratios! more info

4. Should I round off a dB value? 
No. Because the dB representation is a nonlinear mapping, rounding 
distorts the values. more info

5. How many digits should be used to report a dB value? 
For normal applications, one digit to the right of the decimal is sufficient. 
Precision applications might require two digits to the right of the decimal.  
more info

6. How should I report errors in dB measurements? 
Do not use percent error. Use dB difference, defined as expected (dB) – 
actual (dB). An error of ±0.5 or ±1 dB is normally considered acceptable. 
more info

7. Where does decibel get its name? 
The decibel was originally used to represent one tenth (deci) of a “bel”, or 
one tenth of the amount of loss encountered by an audio signal 
propagating along a standard telephone cable. more info
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Introduction 
When EEs monitor a signal passing through a system, most often they are 
concerned with its power level as it propagates through the various components 
and subsystems.  Normally, tracking the power level involves multiplication or 
division of power gain and loss ratios representing the action of the various 
components of the system on the signal.   Many times, the signal power can vary 
over a wide range of values - several orders of magnitude - which makes 
representing the signal power at different points a bit inconvenient.  The 
mathematical computations involving multiplication and division of large numbers 
can be cumbersome. 
 
In order to make the calculations easier, in a day when calculators had not been 
invented, a system of logarithmic operations to simplify these multiplicative 
operations was developed.  The decibel itself has its roots in audio engineering, 
where a decibel (meaning 0.1 “bel”) represented the reduction in audio level over 
one tenth of a mile of standard telephone cable. The decibel representation is still 
used today and is standard and convenient in many fields of engineering. The 
way EEs use decibels differs slightly from the original uses of the decibel, and so 
we will investigate its use in detail in this document. 
 

Logarithmic Mathematics 
Decibel representations are based on base 10 logarithms. Logarithms were first 
introduced by John Napier in the early 1600s, and have a number of uses in 
mathematics, science, and engineering. 
 
In order to make the math easier, we often use a logarithmic scale to represent 
values.  There are two chief advantages in working with logarithmic scales: 

1. Multiplication becomes addition:  log(a x b) = log(a) + log(b) and log(a ÷ b) 
= log(a) - log(b) ). 

2. Scales are compressed - if we have values ranging over several orders of 
magnitude, the plot scale is large for linear representations, while 
relatively compressed for logarithmic representation of values. 

 
Both of these advantages come into play when working with decibels. It is 
important to remember that the decibel is a base 10 logarithm, especially when 
working on a calculator or with software packages. To convert between different 
base logarithms, use the following relationship: 
 

( ) ( )
( )

log
log

log
k

b
k

x
x

b
=  
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Definition of decibel (dB) 
The logarithmic scale most often used is one in which the values are represented 
in decibels (dB).  Here, the decibel is defined as a logarithmic representation of a 
unit-less quantity, normally a ratio of two powers.  The logarithmic base (or radix) 
used for dBs is 10: 

( )1010log=dBN N , 
where N refers to the numerical ratio being represented and NdB refers to the 
value in decibels (dB).   Note that other definitions of “dB” exist, but this is the 
definition used for representing electrical signal powers, and therefore it is the 
only valid definition as far as we are concerned. 
 
There are a number of things to note about this definition.  First, there is a 
multiplier of 10 in front of the logarithm.  While it has some historical basis, this is 
to be considered simply part of the definition.  However, it is important to 
remember that the multiplier is 10 only for quantities involving power.  Next, the 
logarithm is base 10 only.  Other radixes may be used to represent values, but 
not for dBs. Finally, note that the argument of the logarithm is a unit-less value.  
This last point is very important in our discussion here. 
 

Representing Values as dBs 
There are a number of values for which it will be good to know the dB 
representation in order to make life easier and to understand the “lingo”.  Simply 
plug the values in the dB expression to create this table (verify a few in your 
head): 
 

( )1010log=dBN N  
 

numerical dB
1.00E-06 -60.0

0.001 -30.0
0.01 -20.0
0.5 -3.0
0.2 -7.0
0.1 -10.0
1 0.0
2 3.0
5 7.0
10 10.0
100 20.0
1000 30.0

1.00E+06 60.0  

 
 
Note that values less than 1 
produce negative dB values, and 
values greater than 1 produce 
positive dB values.  The dB value 
of 1 is zero dB, and the dB value 
of 0 is undefined (but can be 
approximated by -99 dB!). 
 

 
To convert dB values back to linear values, simply invert the definition of decibels 
as follows: 

1010
dBN

N =  
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Be sure to verify a few of the table entries using this relationship as well.  You 
must feel very comfortable with both of the relationships between numerical 
values and dB representations before moving on. 
 
One of the advantages mentioned above was that multiplication was easier using 
logarithms.  Let’s try it using the table above.  The value 2 converts to 3 dB, and 
100 converts to 20 dB.  What should the value 200 convert to?  Using 
multiplication, we see that 200 = 2 x 100.  Using dBs, we find: 
 

( ) ( )
( ) ( )

10 10

10 10

200 10log 200 10log 100 2

10log 100 10log 2 20 3 23 dB

→ = ×

= + = + =
 

 
Below are some more examples of using this multiplicative effect to quickly find 
dB values: 
 

( ) ( )
( ) ( )

( ) ( )

10 10

10 10

6
10 10

50 10log 10 10log 5 10 7 17 dB
1 10log 10 10log 5 10 7 17 dB50
4.0E06 10log 10 10log 4 60 6 66 dB

→ + = + =

→ − − = − − = −

→ + = + =

 

Representing Power Levels using dBs 
There are two ways we typically use dBs: to represent powers (normally average 
powers), and to represent power ratios (gains and losses).  We must be fluent in 
both, and how to combine the two.  Lets look first at how we use decibels to 
represent power values (or express powers in terms of corresponding voltages or 
currents).  Here, we need to recall one important point from the definition of dBs - 
the value we represent must be a unit-less quantity!  To create this unit-less ratio, 
we express the power relative to some standard or reference power.  For 
example, suppose we wish to represent 5 W in terms of deciBels.  First, consider 
the use of a power reference of 1W: 
 

dBWdBWW
WP 799.6)5(log101

5log10 1010 ≅==⎟
⎠
⎞⎜

⎝
⎛=  

 
Here, the appended “W” to the dB unit reminds us that this is a decibel 
representation of a power relative to 1 W (the dBW is called “dB Watts”.) The 
suffix W does not create a new unit!  It is still considered a dB. A more common 
measure is dBm (“dB milliWatts”), or power relative to 1 mW (note that the “W” is 
missing in this unit): 
 

( ) dBmmW
WP 375000log101

5log10 1010 ==⎟
⎠
⎞⎜

⎝
⎛=  

 
and we can relate the power in dBW to power in dBm rather simply: 
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( )10 10 10

10 10

5 1000 5 100010log ( ) 10log 10log 5 1000
1 1 1 1

10log (5) 10log (1000) 30

dBm

dBW

W mW W mWP
mW W W mW

P

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠
= + = +

⋅
 

 
So 5 W may be represented by 7 dBW or 37 dBm, values separated by 30 dB or 
a factor of 1000.  Do not think of dBW and dBm as different units.  They both are 
dBs - the “W” and “m” suffixes are there to remind us of the power reference. 
 
A couple of examples would be nice: 
 

( ) ( )

( ) ( )

( ) ( )

10 10

10 10

10 10

1W1W 10log dBW 10log 1 dBW 0 dBW1W
1W1W 10log dBW 10log 1000 dBm 30 dBm1mW

20mW20mW 10log dBW 10log 20 dBm 13 dBm1mW

→ = =

→ = =

→ = =

 

 
Another dB unit used to represent a power level is the dBV or dBmV, which is a 
power level referenced back to an equivalent rms voltage level which would 
produce that power given a 1 Ω resistance.  Note that dB units are for power 
levels, so we must do some work to represent voltages. Suppose we know a 
signal’s rms voltage.  Given the resistance over which the voltage is developed, 

the average power would be equal to 
2

rmsv
R .  It turns out that many times we 

ignore the resistance value in the calculation, calculating the power developed 
across a 1 Ω resistance.  Thus P = vrms

2. We can represent this signal using dB 
units and a reference of W as follows: 
 

2

1010 log 1
rms

dBW
V WP dW
⎛ ⎞= ⎜ ⎟
⎝ ⎠

BW . 

Now, we could reason that the 1 W reference is just (1 Vrms)2, and rewrite 
 

( )
2

2_ 10 1010 log 20log 11
rms rms

dB X
rmsrms

v vP dBW VV
⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

dBV . 

 
Here, we have used the fact that log(x2) = 2 log(x). The new unit, dBV, is still a 
dB measure of power, but the suffix “V” reminds us that we have referred the 
power back to an equivalent rms voltage.  A similar power level unit is dBmV, 
defined as 
 

1020log 1
rms

dBmV
rms

vP dmV
⎛ ⎞= ⎜ ⎟
⎝ ⎠

BmV . 
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It is important to remember that dBW, dBm, dBV, and dBmV are all dB units of 
power.  Each has a different calculation method and reference, but they are all 
dB units. 
 
Here are some examples of how the powers corresponding to rms voltage 
amplitudes can be expressed in dBV and dBmV units: 
 

( )

( )

( )

rms
rms 10 10

rms

rms
rms 10 10

rms

3
3rms

rms 10 10
rms

5V5V 20log dBV 20log 5 dBV 14dBV1V

0.1V0.1V 20log dBmV 20log 100 dBmV 20 dBmV1mV

0.4x10 mV0.4 V 20log 20log 0.4x10 dBmV 68 dBmV1mV
−

−

⎛ ⎞→ = =⎜ ⎟
⎝ ⎠
⎛ ⎞→ = =⎜ ⎟
⎝ ⎠
⎛ ⎞µ → = = −⎜ ⎟
⎝ ⎠

 

 

Representing Power Ratios using dBs 
When we wish to represent a power ratio, we simply determine the dB value of 
that ratio.  For example, lets look at power gain (or loss) for a circuit: 
 

( )Pin
PoutGp 10log10=  

 
The symbol G is commonly used to represent gain, and here we use the 
subscript “p” to indicate that we are calculating the power gain, defined as the 
ratio of output power to input power.  The power gain of a circuit (or system), a 
unit-less quantity, is often expressed in dBs.   
 
Now, how is this related to voltage gain, which is what we spend much of our 
time calculating in circuits classes?  We need to modify the calculation slightly to 
deal with voltages (assuming proper load matching): 
 

( ) ( )

( )

2

2
2 210 10 10

10

10 log 10log 10log

20log

p

Vout
Pout VoutRG dPin Vin Vin

R
Vout dBVin

⎛ ⎞
⎜ ⎟

= = =⎜ ⎟
⎜ ⎟
⎝ ⎠

=

B
 

 
where the fact that log(x2)=2log(x) has been used.  
 
As an example, suppose we measure the voltage at the input to a subsystem as 
15 V across 50 ohms.  The output voltage, again across a 50 ohm load, is 12 V.  
Calculate the power gain in dBs. 
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The power at the input is V2/R=4.5 W, and the power at the 
output is 2.88 W.  This gives a power gain of 
Gp=2.88/4.5=0.64 -> -1.93 dB.  (Do not round off the result – 
this will be explained later.) This is actually a power loss 
(negative power gain – tricky!).  Let’s try it with voltage:  Gp = 
20log10(Vout/Vin)= -1.93 dB.  Why doesn’t the resistance 
make a difference? 

 
Returning to the power gain computation above, we can see how using 
logarithms to convert multiplication to addition happens: 
 

( )10 10 1010log 10log ( ) 10log ( )

34.59 36.53 1.93

p
ref ref

dBm dBm

Pout PinPoutG Pin P P

Pout Pin
dBm dBm dB

= = −

= −
= − = −

 

 
and multiplication is transformed to addition.  
 

Signal Propagation 
Suppose that we wish to determine how much signal power should arrive at a 
certain location, given the gains and losses along its path.  This is where the use 
of dBs really shows its advantages.   
 
Suppose a system is constructed as shown below.  A power source (transmitter) 
is connected to a series of losses (cables) and gains (amplifiers), and this system 
finally delivers some power to the destination (receiver). 
 

 
element    

# 
 

type 
power loss 

ratio 
power 

gain ratio 
power  

loss dB 
power 

gain dB 
1 connector 1/2  3.01  
2 loss 1/100  20  
3 connector 1/2  3.01  
4 amplifier  100  20 
5 connector 1/2  3.01  
6 loss 1/100  20  
7 connector 1/2  3.01  

source cable 
loss

cable 
loss

connector amplifier 

receiver

3 7 51 4
62 
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There are a number of questions which might be asked concerning this system.  
For example, it is important to know the total system gain (loss), that is, the 
power gain (loss) in propagating from source to destination. The system might 
represent connectors, cable losses, and an amplifier, as shown. 
 
Working with linear power gains, the total gain is the multiplication of all of the 
power losses and gains expressed as ratios: 
 

sys i
i

G G=∏ , 

 
where each term Gi refers to the gain of the stage i.  Here, it is important to note 
that in this context, losses and gains are considered the same sort of term. A 
gain of less than 1 represents a loss. Using the values from the example 
diagram, we find the total loss to be 
 

1 1 1 1 1 1 1100
2 100 2 2 100 2 1600sysG = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ =  

 
Working in dBs, the system gains in dBs are added together.  However, there is 
a convention which is important to note.  The loss terms are normally reported as 
a positive quantity.  This is so the power relationship can be expressed in the 
following form: 
 

, ,dest dB source dBP P G L= + −  
 

It is suggested that the system gain first be computed in dBs.  For this example: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ), 3.01 20 3.01 20 3.01 20 3.01 32.04sys dBG d= − + − + − + + − + − + − = − B  
 
The system has a negative dB value for gain, which indicates an overall system 
loss. Changing this to a positive quantity in keeping with convention, we would 
say the total system loss is 32.04 dB. In common practice, factors of 2 are 
approximated as 3 dB, so the system loss would be 32 dB.  This quantity agrees 
with the quantity calculated above by multiplication (verify this!). 
 
Another question we might ask is, given that the receiver requires -20 dBm of 
average power to operate correctly, what is the required source power?  To find 
this, simply add 32 dB to the -20 dBm required receiver power to find that the 
required source power is +12 dBm. 
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dB “Units” 
At this point, a confusing issue must be addressed.  Many students think that 
combining dBs and dBms in one equation results in a violation of some units 
convention. Specifically, let’s look at the power relationship: 
 

, ,

20 12 32
rcvr dBm source dBm sysP P L

dBm dBm dB
= −

− = −
 

 
Some would say, “The units don’t match!”  Don’t be misled. Each of the terms in 
the equation is unitless, and is expressed in dBs!  On the left hand side of the 
equal sign is a power level referenced to 1 mW.  On the right hand side of the 
equal sign is a power level referenced to 1 mW and a change in level.  Now, 
intermixing dBW and dBm would be inappropriate – can you explain why? 
 

Rounding Decibel Values 
When we first start working with decibels, we are tempted to try to “round off” 
values as we would with linear values.  However, the use of the logarithmic scale 
(which is nonlinear) distorts the result of rounding.  The appropriate number of 
digits to use to express powers and gains in dBs normally varies a bit with 
application, but a few examples will serve to demonstrate the effect. 
 
Suppose we have a power gain Gp of 3.50 dB.  In linear terms, this is  
 

, 3.5
10 10

, 10 10 2.238721
p dBG

p linG = = =  
 
What happens if I represent Gp as 3 dB, or 4 dB?  The value 3 dB is equivalent to 
1.995262, but that is so close to two that we normally say 3 dB is a factor of 2 (or 
-3 dB is a factor of 1/2).  If we choose to write the gain as 3 dB, the error is about 
11%, which is usually not acceptable.  If we choose to write the gain as 4 dB, 
which is equivalent to 2.51, the error is over 12%.  So we know that we should at 
least carry the first digit to the right of the decimal to accurately represent a dB 
value. 
 
What about the second digit?  Let’s look at the gain value 3.55 dB (2.265), and 
compare the errors in writing 3.5 and 3.6 dB.  The error writing the gain as 3.5 dB 
(2.239) is a little over 1%, and the error writing the gain as 3.6 dB (2.291) is 
about 1.2%.  So, carrying the second digit to the right of the decimal can give 
accuracies on the order of 1%.   Normally, dB values are not written with more 
than 2 values to the right of the decimal in practice. 
 
So, we need at least one digit to the right of the decimal to accurately represent 
dB values, and 2 digits can give more precision.  However, when measuring 
values in dBs, we often find the accuracy of the measurement equipment is on 
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the order of many tenths of a dB, often 0.5 or 1 dB.  So, using the second digit 
may be a bit extreme if we wish to compare our values to measurement.  
However, certain applications using precision equipment carry the precision of 
dB estimates to two digits past the decimal, since in that case performance can 
vary greatly with a power difference of 0.1 dB.  Most classroom applications are 
fine using one digit to the right of the decimal. The exception would be in signal 
propagation calculation involving a number of gains and losses, where 
cumulative errors are important.  
 

Decibel Value Error Reporting  
When measuring values in the laboratory, it is always important to compare your 
results to predictions from theory or simulations.  Typically, a percent error 
calculation is used to compare results.  But percent error is not appropriate for dB 
measurements, since the dB conversion is nonlinear.  Instead, the appropriate 
comparison is dB difference. The usual convention is  
 

dB difference = (expected value in dB) – (actual value in dB) . 
 
So how close is good enough, in dBs?  Well, 3 dB is a factor of 2 in power, and 6 
dB is a factor of 2 in voltage.  10 dB is a factor of 10 in power.  A factor of 2 is 
100% error if it is multiplied, or 50% error if it is divided. In either case, 3 dB 
would not be acceptable in most instances. A measurement off by 10 dB is even 
worse! 
 
We often say that 5, 10, or 20% error is acceptable.  Why not examine the dB 
values associated with those errors? In the following table, assume the following 
errors refer to measurements of power gains. 
 

Percent 
Error 

dB 
Difference 

+ 5% + 0.21 
- 5% - 0.22 
+10% + 0.41 
- 10% - 0.45 
+ 20% + 0.79 
- 20% - 0.96 
+ 50% + 1.76 
- 50% - 3.01 

 
From this table, it is seen that acceptable results are those within ±0.5 or ±1 dB 
of the predicted (dB) value.  This is normally the reading accuracy of equipment 
such as generic spectrum analyzers and power meters. 
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