## Quiz 3

1) For the second order equation  $\ddot{y}(t) + 7\dot{y}(t) + 12y(t) = 6x(t)$  with an input x(t) = 2u(t), we should look for a solution of the form

a) 
$$y(t) = c_1 e^{-3t} + c_2 e^{-4t} + 6$$

a) 
$$y(t) = c_1 e^{-3t} + c_2 e^{-4t} + 6$$
 b)  $y(t) = c_1 e^{-3t} + c_2 e^{-4t} + 12$  c)  $y(t) = c_1 e^{-3t} + c_2 e^{-4t} + 1$ 

c) 
$$y(t) = c_1 e^{-3t} + c_2 e^{-4t} + 1$$

d) 
$$y(t) = c_1 e^{3t} + c_2 e^{4t} + 1$$
 e)  $y(t) = c_1 e^{3t} + c_2 e^{4t} + 6$  f) none of these

e) 
$$y(t) = c_1 e^{3t} + c_2 e^{4t} + c_3 e^{4t}$$

2) For the second order equation  $\ddot{y}(t) + 6\dot{y}(t) + 9y(t) = 3x(t)$  with an input x(t) = 3u(t), we should look for a solution of the form

a) 
$$y(t) = c_1 e^{-3t} + c_2 t e^{-3t} + 1$$

b) 
$$y(t) = c_1 e^{-3t} + c_2 e^{-3t} + c_3 e^{-3t}$$

a) 
$$y(t) = c_1 e^{-3t} + c_2 t e^{-3t} + 1$$
 b)  $y(t) = c_1 e^{-3t} + c_2 e^{-3t} + 9$  c)  $y(t) = c_1 e^{-3t} + c_2 t e^{-3t} + 3$ 

d) 
$$y(t) = c_1 e^{3t} + c_2 t e^{3t} + 1$$
 e)  $y(t) = c_1 e^{3t} + c_2 t e^{3t} + 3$  f) none of these

e) 
$$y(t) = c_1 e^{3t} + c_2 t e^{3t} + 3$$

3) For the second order equation  $\ddot{y}(t) + 4\dot{y}(t) + 13y(t) = 26x(t)$  with an input x(t) = u(t), we should look for a solution of the form

a) 
$$y(t) = ce^{-2t} \sin(3t + \theta) + 1$$

a) 
$$y(t) = ce^{-2t} \sin(3t + \theta) + 1$$
 b)  $y(t) = ce^{-2t} \sin(3t + \theta) + 13$  c)  $y(t) = ce^{-3t} \sin(2t + \theta) + 2$ 

c) 
$$y(t) = ce^{-3t} \sin(2t + \theta) + 2$$

d) 
$$y(t) = ce^{-2t} \sin(3t + \theta) + 0.5$$
 e)  $y(t) = ce^{2t} \sin(3t + \theta) + 13$  f) none of these

e) 
$$y(t) = ce^{2t} \sin(3t + \theta) + 13$$

4) Assume we have a solution of the form  $y(t) = c_1 + c_2 e^{-3t} + 4$  and the initial conditions  $y(0) = \dot{y}(0) = 0$ . The equations we need to solve are:

a) 
$$c_1 + c_2 = 4$$
,  $2c_2 = 0$ 

a) 
$$c_1 + c_2 = 4$$
,  $2c_2 = 0$  b)  $c_1 + c_2 = -4$ ,  $-3c_2 = 0$  c)  $c_1 + c_2 = -4$ ,  $c_1 - 2c_2 = 0$ 

c) 
$$c_1 + c_2 = -4$$
,  $c_1 - 2c_2 = 0$ 

d) 
$$c_1 + c_2 = -4$$
,  $c_1 + 3c_2 = -4$  e)  $c_1 + c_2 = 0$ ,  $c_1 + 3c_2 = -4$  f) none of these

e) 
$$c_1 + c_2 = 0$$
,  $c_1 + 3c_2 = -4$ 

5) Assume we have a solution of the form  $y(t) = c_1 e^{-2t} + c_2 t e^{-2t} + 2$  and the initial conditions  $y(0) = \dot{y}(0) = 0$ . The equations we need to solve are:

a) 
$$c_1 + 2 = 0$$
,  $-2c_1 + c_2 = 0$ 

a) 
$$c_1 + 2 = 0$$
,  $-2c_1 + c_2 = 0$  b)  $c_1 + 2 = 0$ ,  $2c_1 + 2$ ,  $c_2 = 0$  c)  $c_1 + c_2 = -2$ ,  $-2c_1 + -2$ ,  $c_2 = 0$ 

d) 
$$c_1 + c_2 = -2$$
,  $-2c_1 + 2c_2 = 0$  e)  $c_1 = 2$ ,  $2c_1 + 2c_2 = 0$  f) none of these

e) 
$$c_1 = 2$$
,  $2c_1 + 2$   $c_2 = 0$ 

**6)** Assume we have a solution of the form  $y(t) = ce^{-t} \sin(2t + \theta) - 4$  and the initial conditions  $y(0) = \dot{y}(0) = 0$ . The equations we need to solve are:

a) 
$$c\sin(\theta) = -4$$
,  $\tan(\theta) = \frac{3}{2}$ 

a) 
$$c\sin(\theta) = -4$$
,  $\tan(\theta) = \frac{3}{2}$  b)  $c\sin(\theta) = -4$ ,  $\tan(\theta) = \frac{1}{2}$  c)  $c\sin(\theta) = 4$ ,  $\tan(\theta) = \frac{1}{-2}$ 

d) 
$$c \sin(\theta) = 4$$
,  $\tan(\theta) = 2$ 

d) 
$$c \sin(\theta) = 4$$
,  $\tan(\theta) = 2$  e)  $c \sin(\theta) = 4$ ,  $\tan(\theta) = \frac{1}{2}$  f) none of these

Problems 7-10 assume we have a system described by a standard for of a second order system,  $\ddot{y}(t) + 2\zeta\omega_n\dot{y}(t) + \omega_n^2y(t) = K\omega_n^2x(t)$ , and the input to the system is a unit step. Assume the system is under damped.

7) The **percent overshoot** for the system is a function of

a) 
$$\zeta$$
 only b)  $\omega_n$  only c)  $K$  only d)  $\zeta$  and  $\omega_n$  e)  $\zeta$ ,  $\omega_n$ , and  $K$ 

d) 
$$\zeta$$
 and  $\omega_n$ 

e) 
$$\zeta$$
,  $\omega_n$ , and  $K$ 

8) The settling time for the system is a function of

a) 
$$\zeta$$
 only b)  $\omega_n$  only c)  $K$  only d)  $\zeta$  and  $\omega_n$  e)  $\zeta$ ,  $\omega_n$ , and  $K$ 

d) 
$$\zeta$$
 and  $\omega_n$ 

e) 
$$\zeta$$
,  $\omega_n$ , and  $K$ 

9) The static gain for the system is a function of

a) 
$$\zeta$$
 only b)  $\omega_n$  only c)  $K$  only d)  $\zeta$  and  $\omega_n$  e)  $\zeta$ ,  $\omega_n$ , and  $K$ 

d) 
$$\zeta$$
 and  $\omega_n$ 

e) 
$$\zeta$$
,  $\omega_n$ , and  $K$ 

10) The damped frequency for the system is a function of

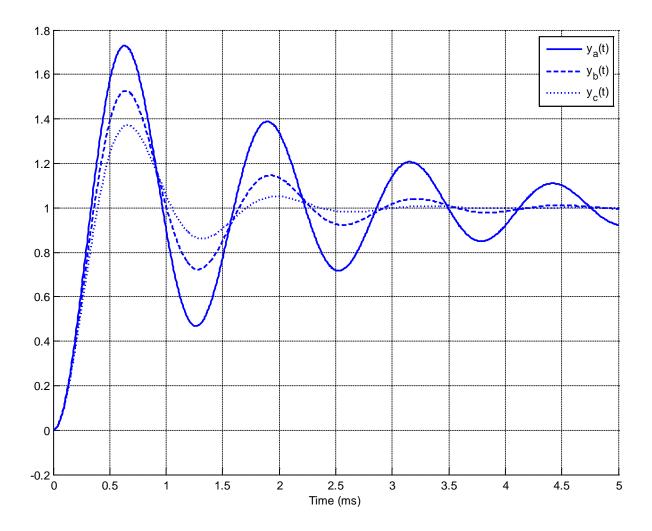
a) 
$$\zeta$$
 only b)  $\omega_n$  only c)  $K$  only d)  $\zeta$  and  $\omega_n$  e)  $\zeta$ ,  $\omega_n$ , and  $K$ 

d) 
$$\zeta$$
 and  $\omega_n$ 

e) 
$$\zeta$$
,  $\omega_n$ , and  $K$ 

11) The following figure shows the step response of three systems. The only difference between the systems is the damping ratio,  $\zeta$  .

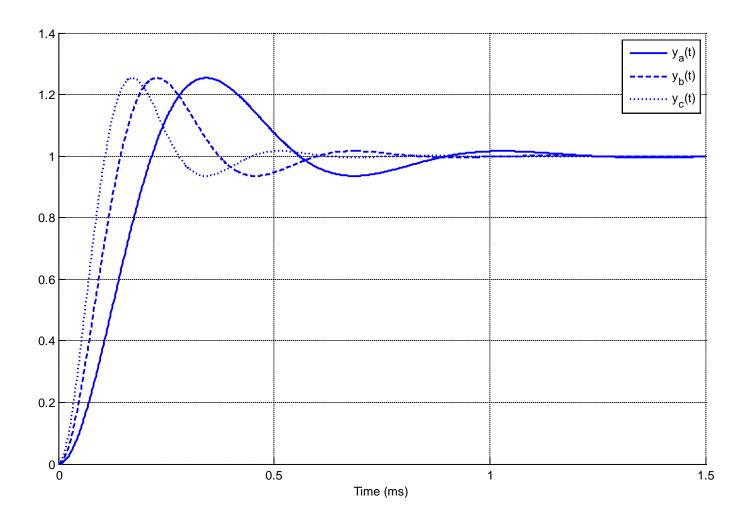
For which system is the damping ratio the smallest? a)  $y_a(t)$  b)  $y_b(t)$  c)  $y_c(t)$ 



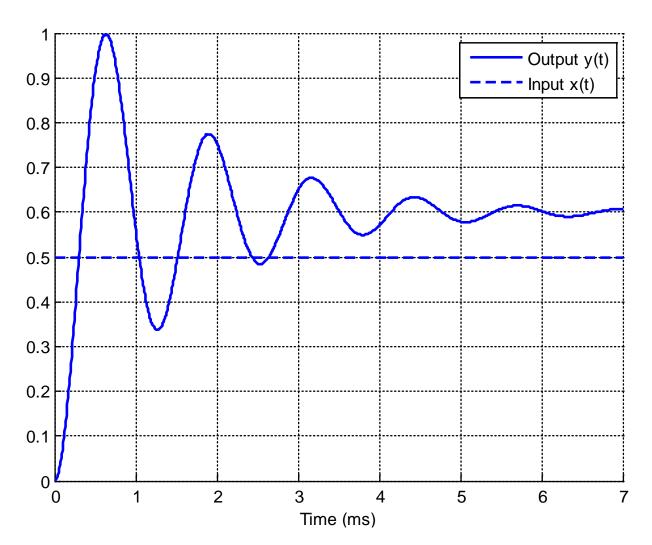
| Name | Mailbox |
|------|---------|
|      |         |

12) The following figure shows the step response of three systems. The only difference between the systems is the natural frequency,  $\omega_n$ .

For which system is the natural frequency the largest? a)  $y_a(t)$  b)  $y_b(t)$  c)  $y_c(t)$ 



Problems 13 and 14 refer the following graph showing the response of a second order system to a step input.



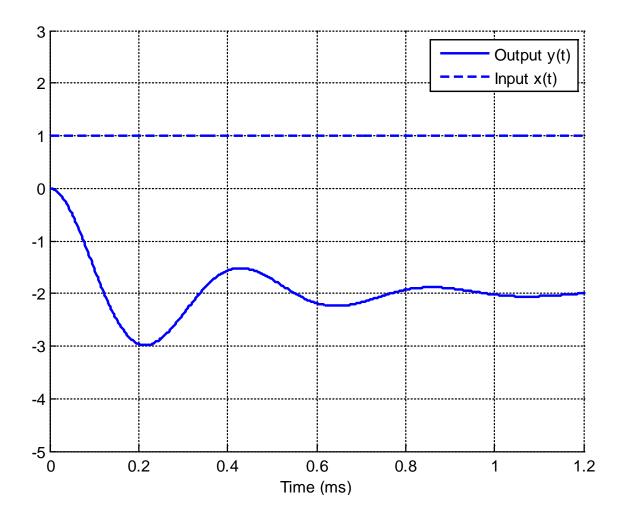
13) The percent overshoot for this system is best estimated as

- a) 200 % b) 150 %
- c) 100%
- d) 67 %
- e) 50 % f) 33%

14) The static gain for this system is best estimated as

- a) 0.1
- b) 0.5 c) 1.0
- d) 1.2
- e) 1.5 f) 2.0

Problems 15 and 16 refer the following graph showing the response of a second order system to a step input.



15) The percent overshoot for this system is best estimated as

- a) 200% b) -200 %
- c) 100%
- d) -100 %
- e) 50 %
- f) -50%

16) The static gain for this system is best estimated as

- a) 3
- b) -3
- c) 2
- d) -2