
1.0 Electrical Systems 
 
The types of dynamical systems we will be studying can be modeled in terms of algebraic 
equations, differential equations, or integral equations. We will begin by looking at 
familiar mathematical models of ideal resistors, ideal capacitors, and ideal inductors. 
Then we will begin putting these models together to develop models for RL and RC 
circuits. Finally, we will review solution techniques for the first order differential 
equation we derive to model the systems. 
 
1.1 Ideal Resistors 
 
The governing equation for a resistor with resistance R  is given by Ohm’s law,  
 

( ) ( )v t Ri t=  
 

where  is the voltage across the resistor and  is the current through the resistor. 
Here

( )v t ( )i t
R is measured in Ohms, is measured in volts, and  is measured in amps. The 

entire expression must be in volts, so we get the unit expression 
( )v t ( )i t

 
[volts] = [Ohms][amps] 

 
1.2 Ideal Capacitors 
 
The governing equation for a capacitor with capacitance C is given by 
 

( )( ) dv ti t C
dt

=  

 
HereC is measured in farads, and again  is measured in volts and is measured in 
amps. This expression also helps us with the units. The entire expression must be in terms 
of current , so looking at the differential relationship we can determine the unit 
expression  

( )v t ( )i t

 
[amps] =  [farads][volts]/[seconds] 

 
We can integrate this equation from an initial time  up to the current time t  as follows: 0t
 

( )( ) dv ti t C
dt

=  

1 ( ) ( )i t dt dv t
C

=  

Next, since we want to integrate up to a final time , we need to use a dummy variable in 
the integral that is not . This is an important habit to get into—do not use  as the 
dummy variable of integration if we expect a function of time as the output! Here we 

t
t t
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have chosen to use the dummy variableλ . Also we incorporate the fact that at time  the 
voltage is , while at time t  the voltage is  

0t

0( )v t ( )v t

0

)

)

(

( o

v t

t v

1 ( )
t

t

v
C

( )i d dλ λ λ=∫ ∫  

 
Carrying out the integration we get 

0

0
1 )( ) ( )v t= − (

t

t

i d v t
C

λ λ∫  

which we can rearrange as 

0

1 (
t

t

i
C0 )( ) )v t d(v t λ λ+= ∫  

 
This expression tells us there are two components to the voltage across a capacitor, the 
initial voltage and the part due to any current flowing through the capacitor after 

that time, 

0( )v t

0

1 ( )i d
t

tC
λ λ∫  

Finally, these expressions help us determine some important characteristics of our ideal 
capacitor: 
 

• If the voltage across the capacitor is constant, then the current through the 
capacitor must be zero since the current is proportional to the rate of change of the 
voltage. Hence, a capacitor is an open circuit to dc.   

 
• It is not possible to change the voltage across a capacitor in zero time .The 

voltage across a capacitor must be a continuous function of time, otherwise an 
infinite amount of current would be required. 

 
1.3 Ideal Inductors 
 
The governing equation for an inductor with inductance L is given by 
 

( )di t
dt

( )v t L=  

 
Here L  is measured in henrys, and again  is measured in volts and  is measured in 
amps. This expression also helps us with the units. The entire expression must be in terms 
of voltage , so looking at the differential relationship we can determine the unit 
expression  

( )v t ( )i t

[volts] =  [henrys][amps]/[seconds] 
 
We can integrate this equation from an initial time  up to the current time t  as follows: 0t
 

Copyright © 2009 Robert D. Throne 2



( )( ) di tv t L
dt

=  

1 ( ) ( )v t dt di t
L

=  

Next, since we want to integrate up to a final time , so  we again have chosen to use the 
dummy variable

t
λ . Also we incorporate the fact that at time  the current is,  while 

at time  the current is . 
0t 0( )i t

t ( )i t

0

)

)

(

(

1 ( ) ( )
o

i tt

t i t

v d di
L

λ λ λ=∫ ∫  

Carrying out the integration we get 

0

0
1 )( ) ( ) (

t

t

v d i t i t
L

λ λ = −∫  

which we can rearrange as 

0

0
1)( ) ( ( )

t

t

i t i t v
L

dλ λ+= ∫  

This expression tells us there are two components to the current through an inductor, the 
initial current  and the part due to any voltage across the inductor after that t0( )i t ime,

0

1 ( )v
L

t

t

dλ λ . ∫
Finally, these expressions help us determine some important characteristics of our ideal 
inductor: 
 

• If the current thought an inductor is constant, then the voltage across the inductor  
must be zero since the voltage is proportional to the rate of change of the current. 
Hence, an inductor is a short circuit to dc.   

 
• It is not possible to change the current through an inductor in zero time .The 

current through an inductor must be a continuous function of time, otherwise an 
infinite amount of voltage would be required. 
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2.0 First Order Circuits 
 
A first order circuit is a circuit with one effective energy storage element, either an 
inductor or a capacitor. (In some circuits it may be possible to combine multiple 
capacitors or inductors into one equivalent capacitor or inductor. ) We begin this section 
with the derivation of the governing differential equation for various first order circuits. 
We will then put the first order equation into a standard form that allows us to easily 
determine physical characteristics of the circuit. Next we show an alternative method for 
checking some parts of  the governing differential equations. We then solve the 
differential equations for the case of piecewise constant inputs, and finish the section with 
an alternative method of solving the differential equations using integrating factors. 
 
2.1 Governing Differential Equations for First Order Circuits 
 
In this section we derive the governing differential equations that model various RL and 
RC circuits. We then put the governing first order differential equations into a standard 
form, which allows us to read off descriptive information about the system very easily. 
The standard form we will use is 

( ) ( ) ( )dy t y t Kx t
dt

τ + =  

Here we assume the system input is ( )x t  and the system output is . ( )y t τ  is the system 
time constant, which indicates how long it will take the system to reach steady state for a 
step (constant) input. K  is the static gain of the system. For a constant input of amplitude

A  ( ( ) ( )x t u= ( )t  is the unit step function), in steady state we have A t , where u ( ) 0dy t
dt

=  

(Kx t e static gain lets us easily compute the steady state value 
of the output. For circuits with capacitors the differential equation will in general be i
terms of a voltage (the output ( )y t will be a voltage), while for circuits with inductors the 
differential equation will in general be in terms of current (the output ( )y t wil
current  

and ( ) )y t

) .

K= = A . Hence th
n 

l be a 

 
Example 2.1.1. Consider the RC circuit shown in Figure 2.1. The voltage source is . 
We start to derive the governing differential equation by determining the single current in 
the loop 

( )sv t

 
( ) ( ) ( )( ) ( )s c c

R C
v di i v

R
t v t tt t C−

dt
= = =  

or 
( ) ( ) ( )c s ctdv vC

dt
v

R
t t−

=  

where  is the voltage across the capacitor and the current in the loop is equal to the 
current through the resistor  and the current through the capacitor .  We can put 
this into a more standard form by rearranging the terms 

( )cv t
( )Ri t ( )Ci t
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( ) ( ) ( )c

c s
dvRC vt t v t

dt
+ =  

 
 

If we define the time constant RCτ = , then we have 
 

( ) ( ) ( )c
c s

dv vt t v t
dt

τ =+  

Here the static gain 1K = . 
 
 

R  
 

( )sv t  ( )cv t  

-

+ 
+ 
 - 

 
 
 
 
 

C  
 
 
 
 
 
 

Figure 2.1.  Circuit for Example 2.1.1. 
 

 
Example 2.1.2. Consider the RC circuit shown in Figure 2.2. Again the voltage source is 

. We again start to derive the governing differential equation by determining the 
current through resistor

( )sv t

aR ,  
( )( ) ( )s c

a

vi vt
R

t t−
=  

This current must be equal to the sum of the currents through the capacitor and bR ,  
 

(( )) ) (c

b

cv dvi C
d

t
R t

tt = +  

Equating these we get the governing differential equation: 
 

( ) ( ) ( ) (( )) s c cc

a b

v vi t C
R

t v
d

t dv
R t

t t
= = +

−  

Rearranging terms we get 
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1 1( ) 1( ) ( )c s
a b

c

a

dvC v
dt R R R

t t t
⎛ ⎞

+ +⎜ ⎟
⎝

=
⎠

v
⎠

  

  
1( ) ( ) ( )a b

s
a b

c
c

a

t R tdv RC v
dt R R R

t+ v+
=  

or 
( ) ( ) ( )a b b

s
a b

c

a b
c

R dv v v
R d

R C t
t

Rt t
R R

+ =
+ + R

 

With time constant a b

a b

R C
R

R
R

τ =
+

  and static gain b

a b

RK
R R+

= we get  

 
( ) ( ) ( )c

c s
tdv v v

dt
t K tτ =+  

 Ra  
 

Rb ( )sv t  ( )cv t  

-

+ 
+ 
 - 

 
 
 
 C  
 
 
 
 

Figure 2.2. Circuit used in Example 2.1.2. 
 
 
Example 2.1.3. Consider the operational-amplifier circuit shown in Figure 2.3. The input 
voltage is again v t  and the output voltage (the voltage across the load resistor( )s LR ) is the 
same as the voltage across the capacitor (since the + terminal of the op amp is assumed to 
be grounded). We will assume an ideal op amp, which implies the conditions 
 

( ) ( ) 0
( ) ( )

i t i t
v t v t

+ −

+ −

= =
=

 

Let’s look at the currents flowing into the negative (feedback) terminal of the op-amp 
using the ideal op-amp model. Since for our example the non-inverting terminal is tied to 
ground we have . With these assumptions our governing differential equation 
becomes 

( ) 0v t+ =

 
( ) ( ) ( )0 c cs

a b

v t v t dv tC
R R d

= + +
t
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Rearranging this gives 
( ) ( ) ( )s

b a

c cdv t v t v tC
dt R R

+ = −  

or 
( ) ( ) ( )b

b s
c

c
a

dv t RR C v t v
dt R

+ = − t  

Setting the time constant bR Cτ =   and static gain b

a

RK
R

= −  we finally have 

 
( ) ( ) ( )c

c s
dv t v t Kv t

dt
τ + =  

 
 RRb 
 
 
 
 
 

C 

 - ( )cv t  

+ 

RRa  
 
 
 
 
 
 
 
 
 

Figure 2.3. Circuit for Example 2.1.3. 
 
 
 
Example 2.1.4. Consider the RL circuit shown in Figure 2.4. The single current in the 
loop is given by 

( ) ( )( ) s Lv t v ti t
R
−

=  

where 
(( ) )

L
dL i tv

t
t

d
=  

Combining and rearranging we get 

( )( ) ( ) s
di tL Ri t v
d

t
t
+ =  

RRL 
+ 
 - 

+ 

-

( )sv t  
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or 
( ) 1( ) ( )s

L di t i t v
R dt R

t+ =  

With time constant L
R

τ =  and static gain 1K
R

=  the governing differential equation is  

( ) ( )) (s
di t i t Kv
dt

tτ + =  

 
 
 R  

( )sv t  ( )Lv t  

+ 

-

+ 
 - 

 
 
 

L  
 
 
 
 
 
 

Figure 2.4. Circuit for Example 2.1.4. 
 
 
 
Example 2.1.5. Consider the RC circuit shown in Figure 2.5. The single current source 
must be divided between the current flowing through resistor bR  and the current flowing 
through the capacitorC , 

( ) ( )( ) c c
s

b

v dvi t C
R t

t t
d

= +  

 
Rearranging we get  

( ) ( ) ( )c
b c

dvR vtC t R
dt

t=+ b si  

 
With time constant bCRτ =  and static gain bK R=  the governing differential equation is 
 

( ) ( ) ( )c
c s

tdv v
dt

t Ki tτ =+  
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RRa 

  
 
 
 
 
 
 
 
 
 

Figure 2.5. Circuit used in Example 2.1.5. 
 
 

 
2.2 Thevenin Resistance, Time Constants, and Static Gain 
 
Although we are focusing our attention on deriving the governing equations for first 
order circuits, it is useful and very convenient to be able to check our equations as much 
as possible. 
 
 First of all, for first order RC circuits the time constants will be of the form th eqR Cτ =  
where thR  is the Thevenin resistance seen from the ports of the equivalent capacitor, . 

For first order RL circuits the time constants will be of the form  

eqC

eq

th

L
R

τ =  where thR  is the 

Thevenin resistance seen from the ports of the equivalent inductor, eqL . Recall that when 
determining the Thevenin resistance all independent voltage sources are treated as short 
circuits, and all independent current sources are treated as open circuits. 
 
Secondly, if we are looking at constant inputs, then we use the fact that a capacitor is an 
open circuit to dc and an inductor is a short circuit to dc. In addition, for constant inputs 
in steady state all of the time derivatives are zero (in steady state nothing changes in 
time). 
 
Example 2.2.1. Consider the circuit shown in Figure 2.1 (Example 2.1.1). The Thevenin 
resistance seen from the capacitor is equal to R , so the time constant is RCτ = . For a dc 
input, the capacitor looks like an open circuit, so in steady state the voltage across the 
capacitor is equal to sv , the input voltage, so the static gain is 1K = . These results match 
our previous results. 
 
Example 2.2.2. Consider the circuit shown in Figure 2.2 (Example 2.1.2). The Thevenin 

resistance seen from the capacitor is || a b
th a b

a b

RRR R
R

R
R

= =
+

, so the time constant is

a b
th

a b

RR
R

CR C
R

τ For a dc input, the capacitor looks like an open circuit, so in steady = =
+

. 

( )cv t  

+ 
R C ( )si t  

-

b 

Copyright © 2009 Robert D. Throne 9



state the voltage across the capacitor is given by the voltage divider relationship
b

c
Rv

R R
=

+
ic gain is s

a b

v , so the stat bRK
Ra bR+

= lts match our previous 

results. 

. These resu

 
Example 2.2.3. Consider the circuit shown in Figure 2.3 (Example 2.1.3). The Thevenin 
resistance seen by the capacitor is a little more difficult to determine, and to do it 
correctly is beyond the scope of this course. For a dc input, the capacitor looks like an 
open circuit, so summing the currents into the negative terminal of the op amp we have

0scv
R R

+ in steady state 
b a

v
= , or b

c s
a

R
R

 Henv v= − ce the static gain is b

a

RK . 
R

= −

 
Example 2.2.4. Consider the circuit shown in Figure 2.4 (Example 2.1.4). The Thevenin 
resistance seen by the inductor is thR R= . For a dc input, the inductor looks like a short 

circuit.  Hence the steady state current flowing in the circuit for a dc input is 1
si v

R
= , so 

the static gain is 1K
R

= . 

 
Example 2.2.5. Consider the circuit shown in Figure 2.5 (Example 2.1.5). The Thevenin 
resistance seen by the capacitor is th bR R=  so the time constant is bR Cτ = . For a dc 
input the capacitor looks like an open circuit, so in steady state c bv R i= , so the static gain 
is . bK R=
 
2.3 Solving First Order Differential Equations 
 
In this section we will go over two methods for solving first order differential equations. 
We will initially solve the equations by breaking the solution into the natural response 
(the response with no input) and then the forced response (the response when the input is 
turned on). We will apply this method to problems where the input is a constant value, or 
is switched between constant values. This method will also work with any input, and we 
will examine the results for a sinusoidal input later. In the last section we will go over a 
different method of solution using integrating factors, which will work for any type of 
input, and is an important method in helping us characterize how a system will respond to 
any type of input. 
 
2.3.1 Solution using Natural and Forced Responses 
 
Consider a system described by the first order differential equation 

( ) ( ) ( )dy t y t Kx t
dt

τ + =  

In this equation, τ  is the time constant and K  is the static gain. We will solve this 
equation in two parts. We will first determine the natural response, ( . The natural )ny t
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response is the response due only to initial conditions when no inputs are present. Then 
we will determine the forced response, . The forced response is the response due to 
the input only, assuming all initial conditions are zero. The total response is then the sum 
of the natural and forced responses, 

( )fy t

( )y t y ( ) ( )n ft y t= + . 
 
Natural Response: To determine the natural response we assume there is no input in the 
system, so we have the equation 

( )ndy t
dt

( ) 0ny tτ =  +

Let’s assume a solution of the form , where c  and are parameters to be 
determined. Substituting this assumption into the differential equation we get 

( )y t c=

rtce

rt
n e r

 
[ 1]rt rtrce ce rτ τ 0+ = + =  

If  then we are done, and the natural response will be0c = ( ) 0ny t = . This solution 
certainly satisfies the differential equation. However, if c 0≠ , and since  can never be 

zero, we must have

rte

1 0rτ + = , or 1r
τ

= − . In this case the natural response will be 
/( ) t

ny t ce τ−= . 
 

Forced Response: To determine the forced response we must know the system input, 
( )x t . We will initially assume an input that is zero before 0t =  and then has constant 

amplitude A  for , 0t ≥
0 0

( )
0

t
x t

A t
<
≥

⎧
= ⎨
⎩

 

 Then for  we have the equation 0t ≥
( )

( )f
f

dy t
y t K

dt
τ + = A  

Since this is a linear ordinary differential equation we only need to find one solution. One 

obvious solution to this equation is the solution in steady state, when 
( )

0fdy t
dt

= . In 

steady state we have 
( )fy t KA=  

Note that for a constant input, the steady state output is the product of the static gain and 
the amplitude of the input. 
 
Total Solution:  The total solution to the problem is the sum of these two solutions 
 

/( ) ( ) ( ) t
n fy t y t y t ce KAτ−= + = +  

Now assume the initial time is 0t =  and the system is initially at rest, i.e. there is no 
energy stored in the system so (0)y 0= . Substituting this into our equation we h

(0)y c = −  our total solution is  
ave

K , or 0 c= = + A KA , and
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/( ) (1 )ty t KA e τ−= −  

For simplicity, let’s write our steady state value explicitly, so ( )y KA∞ =  and we have the 
solution 

/( ) ( )(1 )ty t y e τ−= ∞ −  
 

Finally, let’s determine a more general form of the solution for 0(0)y ≠ . Then we have  
 

(0) ( )y c KA c y= + = + ∞  
or  

(0) ( )c y y= − ∞  
so the total solution is  
 

[ ] /( ) (0) ( ) ( )ty t y y e yτ−= − ∞ + ∞  
 
Significance of the Time Constant 
 
In much of what we do, we will be concerned with the time constants of a system in one 
way or another. Let’s look at the response of our first order system assuming the system 
is initially at rest ( ) and the final value is one ((0) 0y = ( ) 1y ∞ = ). Let’s look at the 
response of our system as the time t  takes on the values of integer number of time 
constants: 

 
Time ( t ) /t τ /( ) 1 ty t e τ−= −

0 0 0 
τ  1 0.632 
2τ  2 0.865 
3τ  3 0.950 
4τ  4 0.982 
5τ  5 0.993 

 
Figure 2.6 show this result graphically, The way this information is usually interpreted is 
that a system is within 5% of its final value in 3 time constants, within 2% of its final 
value in 4 time constants, and within 1% of its final value in 5 time constants. Hence the 
use of time constants gives us a quick way to describe one aspect of the behavior of a 
system. As we will see, as the systems become more complex, the use of time constants 
indicates which part of the solution is the most important and how the system responds to 
periodic inputs (sines and cosines). 
 
 
 
 
 

Copyright © 2009 Robert D. Throne 12



Example 2.3.1. Consider the circuit in Figure 2.2 (Example 2.1.2).  Let’s first assume 
and 2a bRR k= = Ω F1C μ= . Then 1thR k= Ω ,  1msτ = , and 0.5K = . Next we will 

assume the initial voltage on the capacitor is zero ( 0( )v t (0) 0vc c= = ) and the input is as 
follows: 
 

0 0
2 0
2 8

8

1 1

( )
16s

t

v
t

t

t
t

6

≤ ≤
=

≤

<⎧
⎪
⎪
⎨− <⎪
⎪ >⎩

 

 

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Time Constants

y(
t)

 
Figure 2.6. Graph of /( ) 1 ty t e τ−= −  for 0t τ=  up to 7t τ= .  is within 5% of its final 
value in 3 time constant, within 2% of its final value in 4 time constants, and within 1% 
of its final value in 5 time constants.  

( )y t

 
Here the input is in volts and the time is measured in milliseconds. We now want to 
determine the output. We will do this by looking at the initial and final values for each 
time interval, where the time intervals are determined by the times during which the input 
voltage is constant. The differential equation is  
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( ) ( ) ( )c

c s
dv t v t Kv t

dt
τ + =  

Clearly ( ) ( )cy t v t=  and ( ) ( )sx t v t= . The solution in each interval will be of the form 
 

[ ] /( ) (0) ( ) ( )ty t y y e yτ−= − ∞ + ∞  
 
At this point we just need to be able to determine what  and (0)y ( )y ∞  mean for each 
interval. 
 
First  interval (  ms) :  We have the initial value in this interval  
volts. To determine the final value, we use the static gain and the amplitude of the input 
for this interval. 

0 t≤ < 8 (0) (0) 0cy v= =

1( ) ( ) 2 2 1
2cv y K∞ = ∞ = = =i i  

Hence for this interval, we have the solution 
 

/ /0.001( ) ( ) 1 1t t
cv t y t e eτ −−= = − + = −  

 
Before we go on to the next interval we need to figure out the value of  at the end of 
this interval, this value will be the initial point during the next interval. At the end of the 
interval we will have 

( )y t

0.008/0.001 81(0.008) 1 0.99966 1.0ey e− −= = ≈−= −  
 
Second  interval (8  ms) : The initial value for this interval will be the end point 
of the previous interval, so 

16t< ≤
(0) 1y = . To determine the final value we again use the static 

gain 
1( () 2) ( 2)
2

Ky ∞ = − = 1− = −i i  

We now have almost everything we need, however, our solution assumed a time of zero 
was measured at the beginning of the interval. Hence to use our previous solution we 
need to subtract the time at the beginning of the interval from our actual time in our form 
of the solution, so our time will be measured from the beginning of the interval. Our 
solution for this interval is then 
 

( 0.008)/ ( 0.008)/0.001( ) [1 ( 1) ( 1)] 2t ty et e τ− − − −+ − =− − 1−=  
 
At the end of this interval we will have 
 

(0.016 0.008)/0.001 82 1 2 1 0.999(0 33 16) .. 001 e ey − − −= − = − = − ≈ −  
 

Third interval (  ms) : The initial value for this interval will be the end point of the 
previous interval, so .  To determine the final value we have 

16t >
(0) 1y = −
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1( ) 1
2

y K K∞ = = =i  

Again we must scale our solution so time is measured from the beginning of the interval, 
so we have 

( 0.016)/ ( 0.016)/0.0010.( ) [ 1 0.5] 01.5 .5 5t tey t e τ− − − −= − − ++ = −  
 
Total solution: To get the total solution, we list the solutions during each time interval: 

/0.001

( 0.008)/0.001

( 0.016)/0.001

1 8
( )

2 1

0 0
0

( )
8

1.5 10 6.5

t

c t

t

e t
t

e t

t

v
s

y

te

t

ms

− −

− −

−

⎧
⎪ − ≤⎪= ⎨ −

<

=

+
≤ <⎪

⎪− ≥⎩

16
ms
m

<
 

To get the current through the capacitor, we use the relationship ( )( ) c
c

dv ti t C
dt

=  for each 

time interval above. Doing this we get 

/0.001

( 0.008)/0.001

( 0.016)/0.001

0 0
0
8

0.001 8( )( )
0.002 16
0.015 16

t
c

c t

t

e tdv tt C
e t

t

sdt
i

te m

−

− −

− −

⎧
⎪ ≤ <⎪= ⎨ ≤ <⎪
⎪− ≥⎩

<

=
ms
m
s

 

Here  is measured in amps. ( )ci t
 
Figure 2.7 shows the input voltage, the voltage across the capacitor, and the current 
through the capacitor as a function of time. Note that the voltage across the capacitor is 
continuous, as it must be. However for this input, which is discontinuous, the current 
through the capacitor is discontinuous. Let’s also look at the answer to see if we can 
check our results and if the answer makes sense. When the source voltage is initially 
turned on, the voltage across the capacitor is zero and all of the voltage generated by the 
source is equal to the voltage across resistor aR . If there were any voltage drop across bR  
at the initial time, there would also be a voltage drop across the capacitor since they are in 
parallel. In steady state, the capacitor looks like an open circuit, so there is no current 
flowing through the capacitor and the maximum possible voltage at this time is half the 
voltage of the source, which agrees with our results. In this example the input was held 
constant for an equivalent of eight time constants, so the voltage across the capacitor had 
essentially reached steady state.  
 
Finally is useful to point out that if  the voltage across the capacitor is described by the 
relationship  
 

/( ) [ (0) ( )] ( )t
c c c ct v v e vv τ−= − ∞ + ∞  

 
Then the current through the capacitor is given by 
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/( )( ) [ (0) ( )] tc
c c

tt C v v edv Ci
dt c

τ

τ
−− ∞= −=  

 
What this means is that if the voltage across a capacitor is growing exponentially, then 
the current through the capacitor is decreasing exponentially. Similarly, if the voltage 
across a capacitor is decreasing exponentially, the current through the capacitor will be 
growing exponentially. This is also behavior our results show. Similar results also hold 
for inductors. 
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Figure 2.7. Results for Example 2.3.1. 
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Example 2.3.2. Consider the circuit in Figure 2.4 (Example 2.1.4).  Let’s first assume   

and100thR R= = Ω 10L mH= . Then 0.01 0.0001 100
100

L s
R

τ μ= = ==  and . Next 

we will assume the initial current through the inductor is 

0.01K=

A(0) 10i m= and the input is as 
follows: 

0 0
2 0 0.1

( )
3 0.1 0.25

4 0.25

s

t
t

v t
t

t

<⎧
⎪ ≤ <⎪= ⎨− ≤ <⎪
⎪ ≥⎩

 

 
Here the input is in volts and the time is measured in milliseconds. We now want to 
determine the output. We will do this by looking at the initial and final values for each 
time interval, where the time intervals are determined by the times during which the input 
voltage is constant.  
 
The differential equation for this system is again 
 

( ) ( ) ( )s
di t i t Kv t
dt

τ + =  

 
Clearly  and ( ) ( )y t i t= ( ) ( )sx t v t= . The solution in each interval will be of the form 
 

[ ] /( ) (0) ( ) ( )ty t y y e yτ−= − ∞ + ∞  
 
At this point we just need to be able to determine what  and (0)y ( )y ∞  mean for each 
interval. 
 
First interval ( 0 0 ) :  We have the initial value .1t≤ < ms (0) (0) 0.01y i= = amps in this 
interval. To determine the final value, we use the static gain and the amplitude of the 
input for this interval 

1( ) ( ) 2 2 0.02
100

i y K∞ = ∞ = = =i i  

Hence for this interval, we have the solution 
 

[ ] / / /0.0001( ) (0) ( ) ( ) [0.01 0.02] 0.02 0.01 0.02t ty t y y e y e eτ τ− − −= − ∞ + ∞ = − + = − +t  
 

Before we go on to the next interval we need to figure out the value of  at the end of 
this interval, this value will be the initial point during the next interval. At the end of the 
interval we will have 

( )y t

 
0.0001/0.0001 1(0.0001) 0.01 0.02 0.01 0.02 0.01632y e e− −= − + = − + =  
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Third interval  ( ) : The initial value for this interval will be the end point 
of the previous interval, so . To determine the final value we again use the 
static gain 

00 ..1 25t≤ <
(0)y =

ms

.03

0.01632

) 3) 0.01( ( ( 3) 0Ky − =− = −∞ = i i  
 

We again need to subtract the time at the beginning of the interval from our actual time in 
our form of the solution, so our time will be measured from the beginning of the interval. 
Our solution for this interval is then 
 

( 0.0001)/ ( 0.0001)/0.0001( 0.03) 0.04632 0.03( ) [0.01632 ( 0.03)] t tey t e τ− − − −+ − = −= − −  
 
At the end of this interval we will have 
 

(0.00025 0.0001)/0.0001 1.50.04632 0.03 0.04632(0.00025 0.03 0.01966) e ey − − −− − == = −

ms

 
 

Fourth interval ( ) : The initial value for this interval will be the end point of 
the previous interval, so .  To determine the final value we have 

0.25t ≥
(0)y 0.01966= −

 
( ) 4 0.04y K∞ = =i  

 
Again we must scale our solution so time is measured from the beginning of the interval, 
so we have 
 

( 0.0025)/ ( 0.00025)/0.00010.( ) [ 0.01966 0.04] 0.004 0.0 45966t ty t e eτ− − − −= − − ++ = −  
 
Total solution: To get the total solution, we list the solutions during each time interval: 
 

/0.0001

( 0.0001)/0.0001

( 0.00025)/0.0001

0.01 0.02 0.1
( )

0.04632 0.03 0.1

0 0
0

0.25
0.05966 0.25

( )

0.04

t

L t

t

t
e t

t
e

i y
t m

ms

t

te

−

− −

− −

⎧
⎪ − + ≤ <⎪= ⎨ − ≤ <⎪
⎪− ≥+⎩

<

=
ms

s
 

To get the voltage across the inductor we use the relationship ( )( ) L
L

div L
t
tt

d
=  and 

compute the voltage for each time interval. Doing this we get 
 

/0.0001

( 0.0001)/0.0001

( 0.00025)/0.0001

0.1( )( )
4.632 0.1

0

0.25
5.966

0
0

0.25

t
L

L t

t

t

v
e t

t

sdi tt L
e tdt

e m

−

− −

− −

⎧
⎪ ≤ <⎪= ⎨− ≤

≥

<

=
⎪
⎪⎩

m
ms

s
<

 

 
Figure 2.8 shows the input voltage, the current through the inductor, and the voltage 
across the inductor as a function of time. Note that the current through the inductor is 
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continuous, as it must be, while in this case the voltage across the inductor is not 
continuous. Again let’s look at our solution to see if it makes sense. First of all, the 
voltage/current relationships for the inductor are consistent with what we expect.  The 
initial current in the inductor is 10 mA, as we require, and the initial voltage from the 
source is 2 volts. Applying Kirchhoff’s laws around the loop, we expect the initial 
voltage drop across the inductor to be given by (0) (0) 2 (0.01)(100) 1s i Rv − = − =

4 (0.04)(100) 0R

 volts, 
which is what we have. In steady state the inductor looks like a short circuit, so there 
should be no voltage drop across the inductor once the system reaches steady state, which 
again matches our results. Note that the system only reaches steady state near 0.7 or 0.8 
ms.  In addition, in steady state the voltage drop across the resistor must match the 
voltage supplied by the source, or ( ) ( )sv i∞ − ∞ = − = volts, which again 
matches our results.  Let’s look at the results at one other convenient point in time, say 

. Using the equations we derived above (and the known input) we have 0.2t = ms

A

 
(0.0002) 3

(0.0002) 12.96
(0.0002) 1.70

s

l

L

v volts
i m
v volts

= −
= −
= −

 

Applying Kirchhoff’s laws around the loop we have 
 

(0.0002) (0.0002) (0.0002) 3 ( 0.01296)(100) ( 1.70) 0.0s s Lv i R v− − = − − − − − ≈  
We can obviously check as many points in time as we want in this way. This type of 
checking does not guarantee our answer is correct, but it does help find obvious errors. 
 
2.3.2 Solution Using Integrating Factors 
 
An alternative method of solution of first order differential equations is by the use of 
integrating factors. This method of solution is important to understand because as we 
start to analyze different types of systems, we need to be able to understand how we 
would solve for the output when we don’t actually know what the input is. This helps us 
characterize systems independent of the actual (specific) input. 
 
The use of integrating factors for solving first order differential equations is based on the 
fact that when we differentiate an exponential, we get the same exponential back 
multiplied by some other term. For example, if ( )( ) tx t eφ= , then 
 

( ) ( )( ) (( ) ) ( )t td d d dx t e x t
dt dt d

e
t d
t tφ φ

t
φ φ

== =  

 
In what follows, the method looks fairly lengthy, but with practice most of the steps can 
be done in your head. Let’s apply this idea to our equation 
 

( ) ( ) ( )dy t y t Kx t
dt

τ + =  
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Figure 2.8. Results for Example 2.3.2. 
 

This method will work better if we rearrange our equation a bit to the form 
 

( ) 1 ( ) ( )dy t Ky t x t
dt τ τ

+ =  

 
Next, we look at differentiating the product ( )( ) ty t eφ , where ( )tφ  will be determined by 
the differential equation we are trying to solve. This leads to the equation 
 

( ) ( ) ( ) ( )( )( ) ( )( ()) (( ) )t t t td dy t d dy t dy t e e e e y t
dt dt d

t t
t

t
t t d

y
d

φ φ φ φφ φ⎡ ⎤⎡ ⎤ = =⎦ +⎣ +⎢ ⎥⎣ ⎦
 

 
Next, we equate the term in brackets to the left hand side of our original differential 
equation, 
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( ) ( )( ) 1( ) ( )dy t d dy ty t y t

dt dt dt
tφ

τ
+ = +  

Clearly this means that  
) 1(d

d
t

t
φ

τ
=  

Solving this simple equation we get 

( ) ttφ
τ

=  

Now we put this back into our equation above to get 
 

/ / / /( )( ) 1 ( ) 1( ) ( )t t t td dy t dy ty t e e e e y ty
dt dt dt

tτ τ τ τ

τ τ
⎡ ⎤⎡ ⎤ = =⎣ ⎦ +⎢ ⎥⎣ ⎦

+  

 
The term on the far right is the same as the left hand side of our differential equation 
multiplied by /te τ , so this must equal the right hand side of our differential equation 
multiplied by the same thing,  
 

/ // ( ) 1( ) ( ) ( )t t td dy ty t e e y t e x t
dt dt

τ τ τ

τ τ
K⎡ ⎤ ⎡⎡ ⎤ = + =⎣ ⎦

⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 
Next we eliminate the middle term to get the exact differential we want  
 

/ /( ) ( )t td Ky t e e x t
dt

τ τ

τ
⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎢ ⎥⎣ ⎦

 

 
Finally we integrate from and initial time  with initial value 0t 0( )y t  to final time t  with 
value , ( )y t

0 0

/ /( ) ( )
t

t

t

t

Ke d e d
d

xd y λ τ λ τλ λ λ
λ τ
⎡ ⎤ =⎣ ⎦∫ ∫ λ  

The left hand side can be integrated as 
 

0

0 0

// / /
0) ( ) ( ) ((

t
tt

t

t

t

Ke d y t e y t e x
d

dd y e τλ τ τ λ τ )λ λ λ
λ τ
⎡ ⎤ = − =⎣ ⎦ ∫∫ λ  

 
or 

0

0

( / ( )/
0

)( ) ( ) ( )
t

t t t

t

Ky t y t e e x dτ λ τ λ λ
τ

− − − −= + ∫  

This is the general solution, for any input ( )x t .  
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Example 2.3.1. Let’s now look at the same input as before, ( )x t A=   for  with 
initial condition t  and 

0t ≥

0 0= 0( ) (0)y t y= . The solution to the differential equation 
becomes 

/ ( )/

0

( ) (0)
t

t t Ky t y e e Adτ λ τ λ
τ

− − −= + ∫  

/ / /

0

( ) (0)
t

t t Ky t y e e Adeτ τ λ τ λ
τ

− −= + ∫  

 
/ / /

0
( ) (0)

tt ty t y e KA ee
λτ τ λ τ

λ

=− −

=
⎡ ⎤= + ⎣ ⎦  

 
/ / /( 1) (0) t t tey ey e Kt Aτ τ τ− − ⎡ ⎤= + −⎣ ⎦  

 
/ /) ) 1( (0 t tKA ey t y e τ τ− −⎡ ⎤= + −⎣ ⎦  

 
With the substitution )(y KA∞ = , we get 
 

/ /( ) ( ( 10) )t ty ey t y e τ τ− −= + −∞ ⎡ ⎤⎣ ⎦  
or 

[ ] /( ) (0) ( ) ( )ty t y y e yτ−= − ∞ + ∞  
the same solution as before. 
 
Example 2.3.2.  Let’s use integration factors to determine the solution to the differential 
equation  

( ) ( ) ( )dy t ay t bx t
dt

= +  

The first thing we need to do is put all of the y  terms on the left hand side, 
 

( ) ( ) ( )dy t ay t bx t
dt

− =  

Then we need  
( )d a

d
t

t
φ

= −  

or 
( )t atφ = −  

Then we have 

( ) ( )at atd y t e e x t
dt

b− −⎡ ⎤ =⎣ ⎦  

 
Integrating both sides we get 
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0

0 0

0( ) ( ) ( ) ( )
t t

ata at a

t t

d e y d e y t e y t e x db
d

λ λλ λ λ
λ

−− − −⎡ ⎤ = − =⎣ ⎦∫ ∫ λ  

or 

0

0

( )
0( ) ( ) ( )

t
a t t at a

t

y t e y t e e x dbλ λ λ− −= + ∫  

Example 2.3.3.  Let’s use integration factors to determine the solution to the differential 
equation 

( ) ( ) 2 ( )dy t ty t x t
dt

− =  

Then we need  
( )d t

d
t

t
φ

= −  

or 
2

( )
2
ttφ = −  

Then we have 
2 2

2 2( ) ( )2
t td y t e e x t

dt
− −⎡ ⎤

=⎢ ⎥
⎢ ⎥⎣ ⎦

 

Integrating both sides we get 
 

22 2 2
0

0 0

2 2 2 2
0( ) ( ) ( ) (2 )

t ttt

t t

d e y d e y t e y t e x d
d

λ λ

λ λ λ
λ

− − − −⎡ ⎤
= − =⎢ ⎥

⎢ ⎥⎣ ⎦
∫ ∫ λ  

 
or 

22 2 2
0

0

(
2

)
22 2

0( ) ( ) ( )2
ttt t

t

y t e y t e e x d
λ

λ λ
− −

= + ∫  
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