
4.0 System Properties 
 
In this chapter we will start looking at various properties that can be used to characterize 
a system. We will initially illustrate these concepts as much as possible with examples 
from circuits and mechanical systems. However, since these are general concepts we will 
begin to explore abstract systems described only by algebraic, integral, or differential 
equations. Our goal is to be able to be able to determine whether or not a mathematical 
model of a system possesses these properties, and to develop the necessary vocabulary. 
 
4.1 Linear (L) Systems 

(

 
Let’s assume we have a system with an input x(t) producing and output y(t). We can 
write this graphically as . A system possesses the scaling or homogeneity 
property if 

)( )x t y t→
( )( )x t y tα α→ for any constant α  and any input ( )x t . In particular, if a 

system possesses the homogeneity property, if the input is zero the output will be zero  
( 0α = ), if the input is doubled the output is doubled ( 2α = ), and if we change the sign 
of the input we also change the sign of the output ( 1α = − ). These are very simple and 
common tests that can quickly be used to determine if a system does not possess the 
homogeneity property.  
 
Next let’s assume we name possible two inputs as 1( )x t and 2 ( )x t , and we name the 
corresponding outputs 1( )y t  and 2( )y t . Hence we know 1( ) 1( )x t → y t and 2 2( ) ( )x t y→ t . 
A system possesses the additivity property if  

1 1 2 2 1 1 2 2( ) ( ) ( ) ( )x t x t y t y tα α α α+ → +  
for all constants 1α  and 2α , and all inputs 1( )x t and 2 ( )x t . 
 
Definition: A linear system is any system that possesses both the homogeneity and the 
additivity properties.  
 
Example 4.1.1. Consider the simple resistive circuit shown in Figure 4.1, with the system 
input defined as the  input voltage and the system output defined as the current 
flowing in the circuit, . For this simple system we have the mathematical model 

( )inv t
( )outi t

( )( )
in

out ti v
R

t =   

Clearly this model satisfies the homogeneity requirement, since if we scale the input by a 
constantα  we also scale the output by α ,  

( )( )
in

out v ti t
R

αα =  

Let’s next assume we have two inputs and , as shown in Figure 4.2. If we use 
superposition, we replace each voltage source with a short circuit and determine the 
resulting output current for each input voltage source acting alone. This gives us 

1 ( )inv t 2 ( )inv t
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1
1

( )( )
in

outi v tt
R

= and  2
2

( )( )
in

outi v tt
R

=  

Adding these we clearly have 

1 2
1 2

( ) ( ) ( )( ) ( ) ( )
in in in

out out out v t v t v tt i t t
R R

i i +
= + = =

 
If should be clear for this example that if we scale both of the inputs, we would also scale 
both of the outputs, so 

 1 1 2 2
1 1 2 2

( ) ( )( ) ( )
in in

out out v t v tt
R

i ti α αα α +
+ =  

 
Since the system has both the property of homogeneity and additivity, the system is 
linear.  
 

 
 

Figure 4.1. Circuit used in Example 4.1.1. 
 

 
 

Figure 4.2. Second circuit used in Example 4.1.1. 
 
Example 4.1.2. Consider the simple resistive circuit shown in Figure 4.3, with system 
input equal to the input voltage  and the system output equal to the voltage  
measured across the resistor 

( )inv t ( )outv t

bR . We assume the voltage 0 0v ≠ . The current flowing 
through the circuit is  
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0)( ()
in

a b

v tt vi
R R

−
=

+
 

and the output voltage is 

0( ))( ()
in

out
b b

a b

v tv i t v R
R R

Rt −
=

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠+

 

Now let’s check to see if the homogeneity condition is satisfied. If the system input (the  
input voltage) is zero, , then we expect the system output (the output voltage) to 
be zero. However, it is clear that under these circumstances the system output will be  

( ) 0inv t =

0 0( )out
b

a b
v vt R

R R
−

= ≠
+

 

Hence the homogeneity condition is not satisfied, and thus the system is not linear. It is 
important to note in this example that we need to look carefully at the system input and 
the system output.  
 

 
 

Figure 4.3. Circuit used in Example. 4.1.2. 
 
Example 4.1.3. Consider the circuit shown in Figure 4.4. The system input is the input 
voltage  and the system output is the voltage across the capacitor, . The 
current flowing in the circuit is given by 

( )inv t )(outv t

 
(( ))

out

t
i dC v tt

d
=  

We then have 
 

( )( ) ( )
out

in outdv tv t C R v t
dt

⎛ ⎞
− =⎜ ⎟⎜ ⎟
⎝ ⎠

 

or 
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( ) 1 1( ) ( )
out

out indv t v t v t
dt RC RC

+ =  

 
We can solve this using integrating factors, as before, 
 

( )/ /( ) ( )out t RC in t RCd v e t e
t

vt
d

=  

Next we integrate from some initial time up to the current time, , 0t t

( )
0

/ /( ) ( )
o

t
out RC in R

t

t
C

t

d v d ve e
d

dλ λλ λ λ λ
λ

=∫ ∫  

0

0

// /
0( ) ( ) ( )t RCout t RC out i

t

t

n RCt e v t e ev dv λλ λ− = ∫  

Finally, we have the input-output relationship  

0

0

( )/ ( )
0( ) ( ) ( )t t RCout out in t

t

t

v vt v t e e dλλ λ− − − −= + ∫
 

 
Figure 4.4. Circuit used in Example 4.1.3. 

 
First let’s check for homogeneity. If the input is zero, then we expect the output to be 
zero. However, in this case, if the input is zero, the output will be 

0( )/
0( ) ( ) t t RCout outt v tv e− −=  

Hence, in order for the system to possess the homogeneity property, the initial conditions 
must be zero. This is a general requirement for all systems. Let’s then assume the initial 
conditions are zero, then we have 

0

( )( ) ( )out in t
t

t

t ev v λ dλ λ− −= ∫  

If we scale the input, we scale the output, 
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0

( )( ) ( )
t

ou

t

t in tt ev v λ dα α λ − −⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦∫ λ  

Finally, if  

0

( )
1 1( ) ( )out i

t
n t

t

e dv vt λλ λ− −= ∫  

and 
 

0

( )
2 2( ) ( )out i

t
n t

t

e dv vt λλ λ− −= ∫  

then 

0

( )
1 1 2 1 1 22 2( ) ( ) ( ) ( )out out out

t

t

in tt t v t ev v v λ dα α α α λ − −⎡ ⎤ ⎡ ⎤+ = +⎣ ⎦ ⎣ ⎦∫ λ  

Hence the system also meets the additivity condition and is thus a linear system. 
 
Example 4.1.4. The following models of systems, with system input ( )x t , and system 
output ,  do not satisfy the homogeneity condition, and hence are not linear models: ( )y t
 

( )

( ) ( ) 2
( )

( ) sin

| ( ) |

(
( ( ))

1(

)

)
( )

x t

y t x

y t x t
y

y t

t x t

y t e

x t

=

=

=

t

= +

=
 

 
 
 
4.2 Testing for Linear Systems 
 
We will present two different, though equivalent, methods for testing for linearity of a 
mathematical model of a system. A mathematical model of a system must pass one of 
these (or an equivalent) test for the model to be linear. It is much easier to show a 
mathematical model of a system is not linear than it is linear. The first method we will 
demonstrate assumes we have an algebraic or integral relationship between the system 
input and the system output. This test is straightforward, but we do not want to have to 
solve a differential equation to use it. Thus, we will present a second method to use with 
differential equations.  
 
In order to simplify notation, we will assume we have a system operator, which we will 
denote as H . The output of a system is the result of the system operator operating on the 
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input. Hence if the system input is ( )x t  and the system output is , then we would 
have 

( )y t

  
{ })( () tx=Hy t  

Consider the two signal flow diagrams shown in Figure 4.5. In the top figure, we examine 
the output of the system, , when the input to the system is the input1( )z t 1 1 2 2( ) ( )x t x tα α+ , 

{ }1 1 1( ) ( ) 2 2 ( )z t x tα α= +H

1( )

x t . In the bottom figure, we examine the output of the system to 

input x t {, }1( )y t =H 1( )x t , and input 2 ( )x t , { }2( ) ( )y t x=H 2 t , then form the linear 

combination of these, { } { }2 1 1( ) 2 ( )2 1 1( ) 2 2 ( )( )z t y xH

z t
tα α= +

1( ) = z
y

2 ( )t
t x tα= H

( )

tα+ . If the output is 
the same for both paths, i.e., if , then the system is linear. If this is not true, 
then the system is not linear. Let’s illustrate the method with a few examples. In the 
following examples, we assume the system input is x t and the system output is . ( )y t
 

 
Figure 4.5. Signal flow graph of linearity test. 

 
Example 4.2.1. Consider the mathematical model . Does this represent 
a linear system? For this system, the linear operator is 

2s) in(y t = )x t) ((t

{ } 2sin( ) ( ) ( )x t = t x tH . Along the 
top path we have 

{ } { }2
1 1 2 2 1 2 2( ) ( ) ( ) sin ( ) ( ) ( )z t x t x t t x t tα=H 1α α= + 1 xα+  

Along the bottom  path we have 
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{ } { } { }2 2 2
2 1 1 2 2 1 1 2 2 1 1 2 2( ) ( ) ( ) sin ( ) ( ) sin ( ) ( ) sin ( ) ) ( )(z t x t x t t x t t x t t x t x tα α α α α α= + = + = +H H

1 2( ) ( )z t z t=Since , the mathematical model is linear. 
 
Example 4.2.2. Consider the mathematical model ( ) ( )y t x t b= + . Does this represent a 
linear system? Without even really trying, we know this equation does not satisfy the 
homogeneity condition, so it does not represent a linear system. However, let’s see what 
happens with our new test. For this system, the linear operator is { }( ) ( )x t x t= +H b . 
Along the top path we have 
 { } { }1 1 1 2 2 1 1 2 2( ) ( ) ( ) ( ) ( )z t x t x t x t x tα α α α= + = +H b+  
Along the bottom path we have  

{ } { } { } { } { } { }2 1 1 2 2 1 1 2 2 1 1 2 2 1( ) ( ) ( ) ( ) ( ) ( ) ( )z t x t x t x t b x t b x t x t b 2α α α α α α α= + = + + ++ = + +H H

1 2( ) ( )z t z t
α

Now if we compare these, we do not have =  for all possible 1α  and 2α , hence 
the model is not linear. 
 

Example 4.2.3.  Consider the mathematical model 2( ) (( )) t
t

ey t xλ dλ λ− −

−∞

= ∫ . Does this 

represent a linear system? Along the top path we have 
 

{ } {1 1 1 2 2 1 1 2 2( ) ( ) ( ) ( ) ( )
t

z t x t x t x x d}α α α λ α λ
−∞

= + = +∫H λ  

Along the bottom path we have 
 

{ } { }

{ }

2 1 1 2 2

2( ) 2( ) 2( )
2 1 1 2 1 1 2 22

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
t

t
t

t t
t

z t x t x t

z t x d x d e x x de eλ λ λ

α α

α λ λ α λ λ α λ α λ λ− − − − − −

∞ ∞− − −∞

= +

= + = +∫∫ ∫

H H

 

Since , the mathematical model is linear. 1 2( ) ( )z t z t=
 
The signal flow graph method we have presented works well for determining if a 
mathematical model of a system is linear, provided we have the output of the system 
written as an algebraic or integral function of the input. However, it is very common to 
model systems in terms of differential equations, and we would like to be able to 
determine if a system modeled by a differential equation is linear without having to solve 
the differential equation, as fun as that might be.  
 
The second method we will present for determining if a mathematical description of a 
system is linear is easier to demonstrate then explain, but the general idea is as follows: 
 

1. Write two differential equations, one with system input 1( )x t and system output 

1( )y t , the second with system input 2 ( )x t  and system output 2 ( )y t . 
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2. Multiply the 1 1( ) ( )x t y→ t  equation by 1α  and the equation by 2 2( ) ( )x t y t→ 2α  
 

3. Add the equations together and regroup, we want to write the resulting differential 
equation in terms of 1 1 2 2( ) ( )x t x tα α+  and 1 1 2 2( ) ( )t ty yα α+ . 

 
4. Make the substitutions 1 1 2 2)( ) ( )(x t tX t xα α+=  and 1 1 2 2)) )( (tY t y y t(α α= +  in the 

differential equation.  
 

5. If the resulting differential equation is the same as the original differential 
equation, with ( )x t  replaced by ( )X t and replaced by , then we have 
shown that  

( )y t ( )Y t

1 1 2 2 1 1 2 2( ) ( ) ( ) ( )x t x t y t y tα α α α+ → +  
and we can conclude that the system is linear. If this is not true, then the system is 
not linear.  
 

Note that in order to satisfy the homogeneity conditions, we must assume the initial 
conditions for the system are all zero. 
 
Example 4.2.4. Consider the mathematical model . Does this 
represent a linear system? We have 

2( ) sin ( ) ( ) ( )ty t t y t e x t−+ =

2
1 1( ) sin ( ) ( ) ( )ty t t y t e x t−+ = 1 2  and  2

2 2( ) sin ( ) ( ) ( )ty t t y t e x t−+ =
Multiplying by 1α and 2α we have 

2
1 1 1 1 1 1( ) sin ( ) ( ) ( )ty t t y t e x tα α α −+ =  and  2 2

2
2 22( ) sin ( ) ( ) ( )ty t t y t e x tα α α −+ = 2

Adding and regrouping we have 
[ ] [ ] [ ]2

1 1 2 1 1 2 1 22 12 2( ) ( ) sin ( ) ( ) ( ) ( ) ( )ty t y t t y t y t e x t x tα α α α α α−+ + + = +  
 
Substituting we have 

2( ) sin ( ) ( ) ( )t X tY t t Y t e−+ =  
 
Thus, this system represents a linear system. 
 
Example 4.2.5. Consider the mathematical model ( ) ( ) ( ) ( )y t y t x t x t+ = . Does this 
represent a linear system? We have 

1 1 1 1( ) ( ) ( ) ( )y t y t x t x t+ =  and 2 2 22( ) ( ) ( ) ( )y t y t x t x t+ =  
Multiplying by 1α and 2α we have 

1 1 1 1 1 1 1( ) ( ) ( ) ( )y t y t x t x tα α α+ = and 2 2 2 2 2 2 2( ) ( ) ( ) ( )y t y t x t x tα α α+ =  
Adding and regrouping we have 

[ ] [ ]1 1 2 2 1 1 1 2 2 2 1 1 2 2( ) ) ( ) ( ) ( ) ( ) ( (( )y t y t y t x t y t x t x t x tα α α α α α+ + + = + )  
Substituting we have 

1 1 1 2 2 2( ) ( ) ( ) ( ) ( ) ( )Y t y t x t y t x t X tα α+ + =  
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At this points, it is clear that we cannot write this resulting differential equation just in 
terms of ( )X t and , so the system is not linear. ( )Y t
 
Example 4.2.6. Consider the mathematical model )( ) ( (y ty x tt 2)=+ + . Does this 
represent a linear system? This one is easy if we use the homogeneity condition. If the 
input is zero the output should also be zero. However, in this model, if the input is zero, 
we still have the output being nonzero. Hence this model is nonlinear. 
 
We should point out that this technique can be used for systems that are not differential 
equations, but it may sometimes be more difficult than the flow-graph techniques. 
 
 
4.2 Time-Invariant (TI) Systems 
 
A time-invariant (TI) system is one in which, if the input ( )x t  is delayed by an amount T  
then the output is delayed by the same amount, without changing shape. 
Symbolically, if for a system we have , then if the system is also time-
invariant we will have . Figure 4.6 presents a signal flow graph test for 
time-invariance, assuming we can write the output as an algebraic function or integral of 
the input. Along the top path we delay the input and then determine the output. Along the 
bottom path, we put the usual input into the system and then delay the usual output. If the 
results of these two paths are identical, then the system is time-invariant. There are a few 
subtleties involved in this test, so read through the following examples carefully. 

( )y t
)( )x t y t→

( )Ty t −
(

( )t Tx →−

 

 
Figure 4.6. Signal flow graph of time invariance test. 

 
Example 4.2.1. Consider a system with the mathematical model ( ) ( ) ( )y t t x tα= . Does 
this model represent a linear system? Along the top path, delaying the input we have   
 

{ }1( ) ( ) ( ) ( )z t x t T t x t Tα= − = −H  
 
Along the second path (delaying the output) we have  
 

{ }2( ) ( ) ( ) ( )
t t T

z t x t t T x tα
= −

= = −⎡ ⎤⎣ ⎦H T−  

Clearly , so the model is not time-invariant. 1 2( ) ( )z t z t≠
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Example 4.2.2. Consider the RC circuit shown in Figure 4.7, with an initial charge on the 
capacitor. The system input is the applied voltage ( )x t  and the system output is the 
voltage across the capacitor . We need to write the output as a function of the input. 
The current in the loop is given by 

( )y t

 

 ( ) ( ) ( )x t y t dy tC
R dt
−

=  

or 

/ /

( ) 1 1( ) ( )

( ) ( )t RC t RC

dy t y t x t
dt RC RC

d y t e x t
dt

e⎡ ⎤ =⎣ ⎦

+ =
 

Integrating both sides and rearranging we get 
 

0

0 0

// / /
0( ) ( ) ( )( )

t
t RCRC t RC

t

t

RC

t

d y e y t e e xd y t e
d

λ λ dλ λ λ
λ
⎡ =⎤
⎣ ⎦ −=∫ ∫ λ

)

 

0

0

( )/ ( )/
0 )( (( ) t t RC R

t
t C

t

y t y t e e x dλ λ λ− − − −= + ∫  

Along the top path of the signal flow graph, delaying the input, we have 
  

{ } 0

0

( )/ ( )/
1 0( ) )( ) ( ( )t t RC

t

RC
t

tx t Tz t y t ee Tx dλ λ λ− − − −− = −= + ∫H  

Note that we only delay the input, we do not change any other functions. Along the 
second path of the signal flow graph we only delay the output, which means we take the 
output and replace all instances of t  with t T− . This leads to  

{ } 0

0

( )/ ( )/
02 ( ( )) () )(

t
t T t RC t T RC

T

t t T
t

x t ez t y t e xλ dλ λ− − − − − −
= −

−

=⎡ ⎤⎣ ⎦= + ∫H  

Now we want to see if .  Since we do not know what the input is, we will 
change variables in the integrals so both of them are simple functions of the dummy 
integral variable.  is already in the correct form, so we need to change variables in 

. Let’s let 

1 2( ) ( )z t z t=

)t
T

2 (z

1 )(z t σ λ= − , or Tλ σ= + . Then can rewrite  as 1 )(z t

0

0

( )/ ( )/
1 0 )( ) ( ( )t t R

t T

t T

C t T RCet y t e dz xσ σ σ− − − −

−

−
−

+= ∫  

Now let’s compare  and , and determine if they are equal or if we can make 
them equal. First of all, the terms associated with the initial conditions cannot be made 
equal, so if this system is going to be time invariant the initial conditions must be zero. 
Both of them have the same integrand, and both have the same upper limit on the 
integral. The only difference in the integral term is the lower limit. In order for the two 

1 )(z t 2 ( )z t
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integrals to be equal there are two choices. The most obvious choice is to assume that the 
input is zero for all times before the initial time . Then the lower limit on the integral i

1z s effectively still effectively 0t
0t n

i , )(t  

0

0

0 0

0

( )

/

0

1

/ ( )/

)

) )

)

( ) (

( (

(

t T RC

t T RC t T RC

range

t T

t T

t t T

t T t

t T

t

t T C

d

d d

d

z t e x

e x e x

e x

σ σ

σ

σ σ( )

( )

( )

i

/

thisx n

R

σ

σ

σ σ σ

σ σ

− −

− − − −

−

−

−

−

−

− − −

=

−

=

+

=

∫

∫ ∫

∫

−

−=

1 2 (( )t

σ  

The other option is for . With this choice of initial value, the first terms are equal 
and we have 

0t = −∞

( )/ )) (
T

C
t

Rt z e x dz σt T σ σ−

−∞

−

== ∫ − −

 
Note that in order for a system to be time-invariant, the initial conditions must be zero, 
just as they are for the linearity requirements. 

 

 
 

Figure 4.7. Circuit used in Example 4.2.2. 
 

Example 4.2.3. Consider the model of a system 
2

( )y t x t⎛ ⎞
⎜ ⎟
⎝ ⎠

= . Is this model time-

invariant? This example is somewhat tricky, since we have to interpret the tests correctly. 
Along the top path, we are supposed to subtract T  from the argument of ( )x t , so we have  

{ } 1( ) ( )T
2
tz t x t x T⎛ ⎞= − = −⎜ ⎟

⎝ ⎠
H  

This is not the result you expect, but it is the correct way to interpret the top path of our 
signal flow graph. Along the bottom path we delay the output by T , so we have 
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 { }2 ( ) ( )
2t t T

t Tt t xz x
= −

−⎛ ⎞= =⎡ ⎤ ⎜ ⎟⎣ ⎦ ⎝ ⎠
H  

 
Clearly , so the model is not time-invariant. 1 2( ) ( )z t z t≠
 
Example 4.2.4.  Consider the model of a system ( ) (1 )y t x t= − .  Is this model time-
invariant? We have  
 

{ }1( ) ( ) (1 )z t x t T x t T= − = − −H  
and 

{ }2( ) ( ) (1 )
t t T

z t x t x t
= −

T= = − +⎡ ⎤⎣ ⎦H  

Clearly , so the model is not time-invariant. 1 2( ) ( )z t z t≠
  
Testing differential equations for time-invariance in general is somewhat more difficult, 
so we will just state a result: If the differential equation is just a function of  the input ( )x t  
and the output , and these are both just simple functions of  (e.g. there are no terms 
like 

( )y t
/ 2), (

t
(2 ), ( 1 )x t y t−t x ), then the differential equation is time-invariant if there are no 

other functions of time other than the input and output functions.  
 
Example 4.2.5. The following models of systems are not time invariant (though they are 
linear!):  
 

( ) ( )
sin( ) ( ) cos( ) ( )

( ) ( ) ( )

ty t e x t
y t y t t x
y t y t tx t

=
+ =
+ =

t  

 
The following models of systems are time-invariant: 
 

2

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

y t x t y t x t
y t y t x t

y t y t x t

+ =
+ =

+ =

 

 
4.3 Causal Systems 
 
If a system is causal, then the system output 0( )y t  at some arbitrary time can only 
depend on the system input 

0t
( )x t  up until (and including) time . Another way of 

describing a causal system is that it is nonanticipative, the output does not anticipate the 
input. While most of the systems we think of are causal, this is because they work in real-
time. That is, we are collecting or storing data to be processed as the data comes in, not at 
a later time.  However, many discrete-time systems, such as an ipod or MP3 player, have 

0t
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data or music stored in advance. When the music is played it is possible for the system to 
look at future values of the input (the discrete-time signal representing the music) and 
make adjustments based on the “future”.  This is possible because these systems do not 
need to work in real-time. In what follows, we again assume the system input is ( )x t , the 
system output is , and . ( )y t )( ()x t y t→
 
Example 4.3.1. Consider the mathematical model of a system ( ) ( 1)y t x t= + . Does this 
model represent a causal system?  Often the easiest way to analyze problems like this is 
to put in various values of . Thus for t t 0=  we have (0)y (1)x= , and clearly the output at 
time zero depends on the input at time one, and the system is not causal. 
 
Example 4.3.2. Consider the mathematical model of a system ( 1)( ) t ty e )(xt +=

(y t
. Does this 

model represent a causal system? This is a causal system, since the output  at any 
time t depends only on the system input at the same time. Remember that we are only 
concerned with input-output relationships. The exponential term does not affect the 
causality of the system. 

)

 
Example 4.3.3. Consider the mathematical model of a system ( ) ( )y t x t= −

t = −
. Does this 

model represent a causal system? This system is not causal, since for  we have 
, and the output depends on a future value of the input. 

1
( 1) (1)y x− =

 

Example 4.3.4. Consider the mathematical model of a system ( 1
2

) ty t x ⎛= − ⎞
⎜ ⎟
⎝ ⎠

. Does this 

model represent a causal system? This system is a bit more difficult to analyze than the 

previous systems. If this system is causal, then we must have 1
2
tt ≥ − or 3 1

2
t ≥ . This will 

not be true for all time, so the system is not causal. 
 
Example 4.3.5. Consider the mathematical model of a system ( ) 2 ( ) (y t ty t x 1)t+ = + . 
Does this model represent a causal system? In order to answer this, we will solve for the 
output as a function of the input (and review integration factors as an added bonus!). We 
have 

[ ]
2 2

( )t ty t e te= +
2 2 2

( ) [ ( ) 2 ( )] 1)2 (t t td y t e y t ty t e x t
dt
⎡ ⎤
⎢ ⎥ =
⎣ ⎦

( )y t e = + +  

or 
 

[ ]
2 2

( ) ( 1)t td y t e e x t
dt
⎡ ⎤ =⎥⎦

+⎢⎣
 

Integrating both sides from some initial time up to an arbitrary final time t  we have 0t
22 2 2
0

0 0

0[ ( ) ] ( ) ( ) ( 1)tt
t t

t t

d y ee d y t e y t e x d
d

λ λλ λ λ
λ

= − +=∫ ∫ λ  

Rearranging this we have  
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2 2 2 2
0

0

0( ) ( ) ( 1)t t t
t

t

ey t y t e dxλ λ λ− + − += ++ ∫  

Now we can determine that the output at any time t , , depends on the input from 
time  up until time . Thus the system is not causal. 

( )y t

0 1t + 1t +
 
 
4.4 Memoryless Systems 
 
A system is memoryless or instantaneous if the output at any time t  does not depend on 
past or future values of the input. If the output does directly depend on the input, then 

 must be an algebraic function of ( )y t ( )x t .  
 
Example 4.4.1. Consider the mathematical model of a system ( ) ( 1)y t x t= + . Does this 
model represent a memoryless system? No, the system model is not memoryless, since 
the output at any time depends on a future input. 
 
Example 4.4.2. . Consider the mathematical model of a system ( ) ( 1)y t x t= − . Does this 
model represent a memoryless system? No, the system model is not memoryless, since 
the output at any time depends on a past input. 
 
Example 4.4.3. . Consider the mathematical model of a system 2( ) ( ) 2y t x t= + . Does this 
model represent a memoryless system? Yes, the system model is  memoryless, since the 
output at any time depends on the input only at that time. 
 
Example 4.4..4 . Consider the mathematical model of a system ( ) 2 ( ) ( 1)y t ty t x t+ = + . 
Does this model represent a memoryless system? No, the system model is not  
memoryless, since the output at any time depends on past and future values of the input. 
 
 
4.5 Invertible Systems 
 
An invertible system a system in which each output is associated with a unique input. 
That is, there is a one-to-one relationship between the system input and the system 
output. 
 
Example 4.5.1. The mathematical models of systems ( ) cos( ( ))y t x t=  and  
are not invertible, since there is more than one input that produces the same output. 

2 (( ) )y t x t=

  
 
4.6 Bounded Input Bounded Output (BIBO) Stable Systems 
 
A mathematical model of a system that produces a bounded output for every bounded 
input is a bounded-input bounded-output stable system. Note that we do not need to know 
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what the output is for every input, only that it is bounded. In addition, since we are 
looking at the input output relationship we assume all of the initial conditions are zero. 
Mathematically, if | ( ) |x t M≤ for some finite constant M means | (  for some 
finite constant , then the system is BIBO stable. 

) |y t N<
N

 
Example 4.6.1. Is the mathematical model of a system ( )( ) x ty t e= BIBO stable? If we 
assume | ( ) |x t M≤ then we have ( ) My t e N≤ = and the model is BIBO stable.  
 

Example 4.6.2. Is the mathematical model of a system 1(
)

) cos
(x

y t
t

⎛ ⎞
⎜
⎝ ⎠

= ⎟   BIBO stable ? 

The answer is yes, since we know that the cosine is always bounded between -1 and 1, so 
the output is always bounded, even if we do not know what it is. 

Example 4.6.3. Is the mathematical model of a system (

0

) ( )( )
t

t x dy t e λ λ λ− −= ∫
|

BIBO 

stable? Since we assume the input is bounded,  | ( )x t M≤ , we can write 

( (

0 0

) )

0

( ) ( 1) (1 )( )
t t

t t t t t
t

y x d M d d Me e Mt e e M e t Me eλ λ λλ λ λ λ− − − − − − −≤ = − == ≤=∫ ∫ ∫ −  

  
Hence | ( ) |y t M≤ and the output is bounded, so this is a BIBO stable model. 
 
 
4.7 Linear Time-Invariant (LTI) Systems 
 
In this course we will focus our attention on systems that are both linear and time-
invariant, commonly referred to as LTI systems. If we have an LTI system and know the 
response of the system to specific input, then we can determine the response of the 
system to any linear and time shifted combination of those inputs. For example, assume 
we know the input/output relationships for various inputs  ( ) ( )i ix t y t→ ( )ix t and the 
corresponding outputs ( )iy t . Then, since the system is LTI, we know ( )i i tx ( )i iy tα α→ , 

( ) ( )i i i i
i i

tx t yα α→∑ ∑ , , and( ) (i i ix t t y t t− → − )i )( ) (i i i i i i
i i

t t y tx tα α− → −∑ ∑ . Let’s 

illustrate the implications of this with a few examples. 
 
Example 4.7.1. Assume that we know that if the input is ( ) ( )x t u t= , a unit step 
(Heaviside) function, then the output of an LTI system will be . Now 
assume we want to use this information to determine the response of the system to a pulse 
of width (duration) T and amplitude 

)( te u t− ()y t =

A . The first thing we need to do is to write out new 
input ( )newx t in terms of our known input. We can write the pulse input as  

( ) ( ) ( ) ( ) ( )newx t Au t Au t T Ax t Ax t T= − − = − −  
Since the system is LTI we know 
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( ) ( )
( ) ( )

Ax t Ay t
Ax t T Ay t T

→
− → −

 

and the new output will be  
( )( ) ( ) ( ) ( ) ( )t t T

newy t Ay t Ay t T Ae u t Ae u t T− − −= − − = − −  
 
 
 
4.8 Linearizing Nonlinear System Models 
While we will be focusing on linear systems, many systems we commonly use are 
actually nonlinear. However, if we operate them only over a limited range of inputs, the 
assumption of linearity is reasonably accurate. This is very common with electronic 
circuits, such as BJT and MOSFET transistors, where we use “small signal” models and 
assume these devices can be modeled as linear for small enough input signals. 
 
In general, if we have an input-output relationship of the form, ( ) ( ( ))y t f x t= , then we 
can use a Taylor series approximation of f that we can use for small ( )x t . It may seem 
odd that we are allowing x  to be a function of time, but the idea is the same. When the 
input is zero we have , and this provides our nominal operating point. We 
can then approximate the output for small inputs as 

(0)y (0)f=

 0 0
( ) ( )(0) | ( ) (0) | (( ) )x x

df x df xf x t y x t
dx x

y t
d= =≈ + ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥⎦
= +

⎣ ⎦ ⎣
 

If we look at the deviations from the operating point, we have 

0
( )( ) |( ) (0) ( ) ( )x

df xy t
d

y t y x t
x

t mx=
⎡ ⎤− = =⎢ ⎥⎣ ⎦

Δ ≈  

where we have defined m as the slope near 0x = , 0
( ) |x

df xm
dx == . With this 

approximation we have the linear relationship between ( )y tΔ  and ( )x t , . ( ) ( )y t mx tΔ =
 

Example 4.8.1. Consider the nonlinear system model 1( )
2 (

y t
)x t

=
+

. Determine a linear 

model for small signals. We can write this as  

(0) ( 1
2

0)y f= =  

1( ) ( ) (2 )y t f x x −= = +  
 

2
0 0

( ) 1| 1(2 |)
4x x

df x x
dx

−
= == − + = −  

so 
1 1 ( )
2

( )
4

ty t x≈ −  

 
Looking at the deviation about the operating point we get the small signal linear model 
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1 1( ) ( ) x(t)
2 4

y t y tΔ = − ≈ −  

 
 
 
 
Example 4.8.2. Consider the nonlinear system model ( )( ) 1 3 x ty t e= + .  Determine a 
linear model for small signals. We can write this as 

 
( ) (0) 4y t f= =  

( ) ( ) 1 3 xy t f x e= = +  
 0 0

( ) | 3 |x
x x

df x e
dx = = 3= =  

so 

( ) 4 3 ( )y t x t≈ +  

We then have the small signal linear model 
 

( ) ( ) 4 3 ( )y t y t x tΔ = − =  
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