ECE-205 Practice Quiz 10

(no Tables, Calculators, or Computers)

- 1) Assume $x(t) = 2\cos(3t)$ is the input to an LTI system with transfer function $H(i\omega) = 2e^{-i\omega}$. In steady state the output of this system will be
- a) $y(t) = 4\cos(3t)e^{-3t}$ b) $y(t) = 4\cos(3t-3)$ c) $y(t) = 4\cos(3t-1)$ d) none of these

- 2) Assume $x(t) = 3\cos(2t 5)$ is the input to a system with transfer function

$$H(j\omega) = \begin{cases} 3e^{-j2\omega} & |\omega| < 3\\ 2 & else \end{cases}$$

the output y(t) in steady state will be

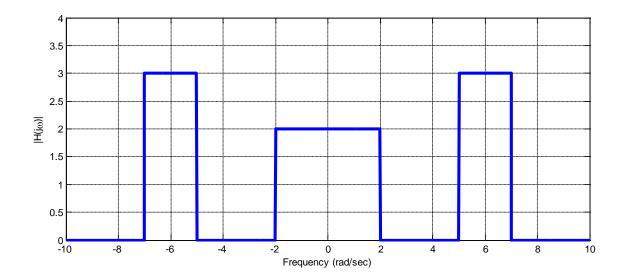
- a) $y(t) = 6\cos(2t-5)$ b) $y(t) = 9\cos(2t-5)$
- c) $y(t) = 9\cos(2t-5)e^{-j4}$ d) $y(t) = 9\cos(2t-9)$
- 3) Assume $x(t) = 2\cos(3t)$ is the input to system with transfer function $H(i\omega) = 2e^{-i\omega}$. In steady state the output of the system will be
- a) $y(t) = 4\cos(3t)e^{-j\omega}$ b) $y(t) = 4\cos(3t)e^{-j3}$ c) $y(t) = 4\cos(3t-3)$
- d) $v(t) = 4\cos(3t+3)$ e) none of these
- 4) Assume $x(t) = 2\cos(3t) + 4\cos(5t)$ is the input to a system with transfer function given by

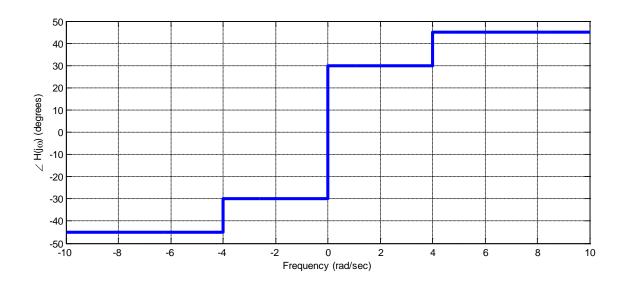
$$H(j\omega) = \begin{cases} 2 & 4 < |\omega| < 6 \\ 0 & else \end{cases}$$

The output of the system in steady state will be

- a) $y(t) = 4\cos(3t) + 8\cos(5t)$ b) $y(t) = 8\cos(5t)$
- c) $y(t) = 4\cos(3t)$
- d) none of these

5) Assume $x(t) = 2 + 3\cos(t) + 3\cos(4t) + 2\cos(6t)$ is the input to an LTI system with the transfer function shown graphically (magnitude and phase) below:





The steady state output of the system will be

a) 0 b)
$$y(t) = 2 + 3\cos(t) + 3\cos(4t) + 2\cos(6t)$$
 c) $y(t) = 4 + 6\cos(t) + 6\cos(6t)$

d)
$$y(t) = 4 + 6\cos(t + 30^{\circ}) + 6\cos(6t + 45^{\circ})$$
 e) $y(t) = 2 + 6\cos(t + 30^{\circ}) + 6\cos(6t + 45^{\circ})$

f)
$$y(t) = 4 + 3\cos(t + 30^{\circ}) + 2\cos(6t + 45^{\circ}) + 3\cos(t - 30^{\circ}) + 2\cos(6t - 45^{\circ})$$

g)
$$y(t) = 4 + 6\cos(t + 30^{\circ}) + 6\cos(6t + 45^{\circ}) + 6\cos(t - 30^{\circ}) + 6\cos(6t - 45^{\circ})$$

h) none of these

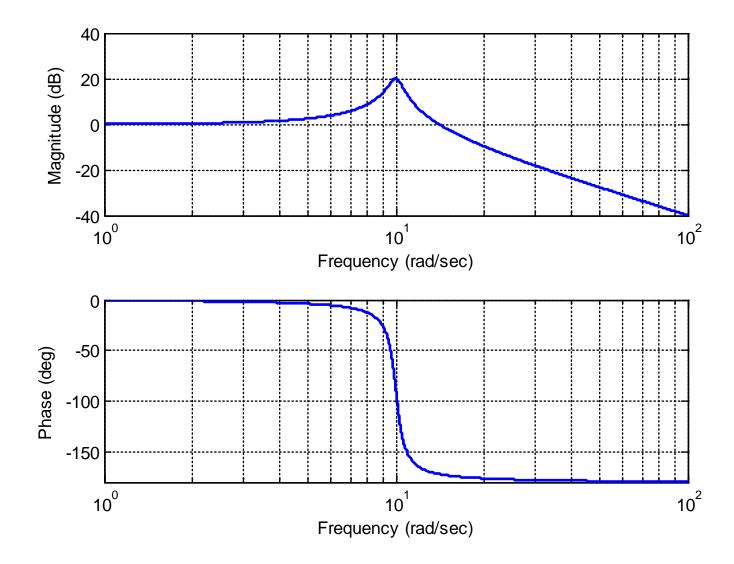
Problems 6 and 7 refer to a system whose frequency response is represented by the Bode plot below.

6) If the input to this system is $x(t) = 5\cos(10t + 45^{\circ})$, then the steady state output is best estimated as

- a) $y_{ss}(t) = 100\cos(10t 55^{\circ})$
- b) $y_{ss}(t) = 50\cos(10t 55^{\circ})$
- c) $y_{ss}(t) = 50\cos(10t 100^{\circ})$ d) $y_{ss}(t) = 100\cos(10t 100^{\circ})$

7) If the input to this system is $x(t) = 2\sin(30t + 90^{\circ})$, then the steady state output is best estimated as

- a) $x(t) = -40\sin(30t 90^\circ)$
- b) $x(t) = 40\sin(30t + 90^{\circ})$
- $x(t) = 0.2\sin(30t 90^{\circ})$
- d) $x(t) = 0.2 \sin(30t 180^{\circ})$



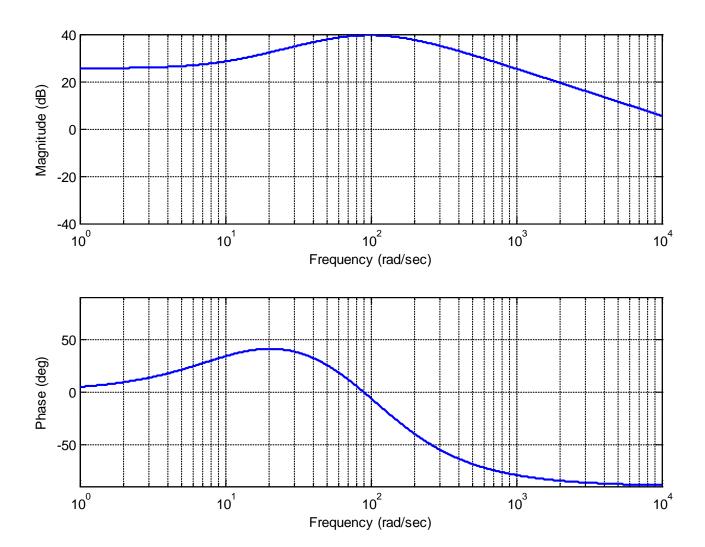
Problems 8 and 9 refer to a system whose frequency response is represented by the Bode plot below.

8) If the input to the system is $x(t) = 5\cos(100t + 30^{\circ})$, then the steady state output is best estimated as

- a) $y_{ss}(t) = 200\cos(100t + 30^{\circ})$ b) $y_{ss}(t) = 500\cos(100t + 30^{\circ})$
- c) $y_{ss}(t) = 40\cos(100t + 0^{\circ})$ d) $y_{ss}(t) = 40\cos(100t + 30^{\circ})$

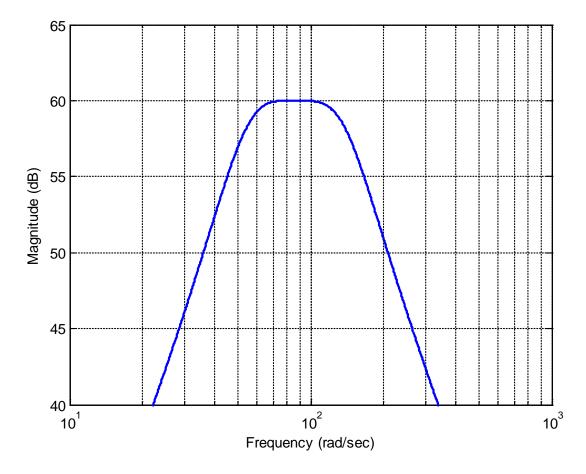
9) If the input to the system is $x(t) = 5\sin(2000t)$, then the steady state output is best estimated as

- a) $y_{ss}(t) = 50\sin(2000t 90^{\circ})$ b) $y_{ss}(t) = 100\sin(2000t 90^{\circ})$
- c) $y_{ss}(t) = 20\sin(2000t)$ d) $y_{ss}(t) = 20\sin(2000t 90^{\circ})$



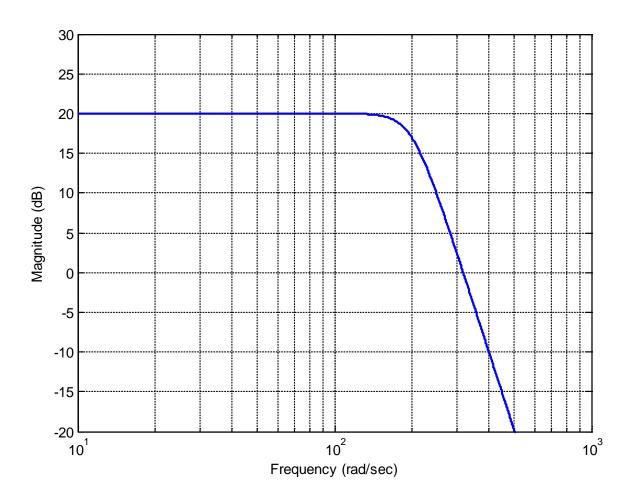
- **10)** The **bandwidth** of the system $H(s) = \frac{10}{s+3}$ is
- a) 10 Hz b) 10 rad/sec c) 3 rad/sec
- d) 3 Hz
- 11) The **bandwidth** of the system $H(s) = \frac{1}{(s+2)(s+10)}$ is a) 2 rad/sec b) 2 Hz c) 10 rad/sec d) 10 Hz
- 12) The **bandwidth** of the system $H(s) = \frac{100}{(s+5)(s+10)(s+20)}$ is best estimated as
- a) 5 rad/sec b) 10 rad/sec c) 20 rad/sec d) 20 Hz

Problems 13 sand 14 refer to a system whose magnitude of the frequency response is shown below.



- **13**) What type of filter does this represent?
- a) lowpass b) highpass c) bandpass d) notch (band reject)
- 14) The bandwidth of this filter is best estimated as
- a) 40 rad/sec b) 100 rad/sec c) 200 rad/sec d) 300 rad/sec

Problems 15 and 16 refer to a system whose magnitude of the frequency response is shown below.

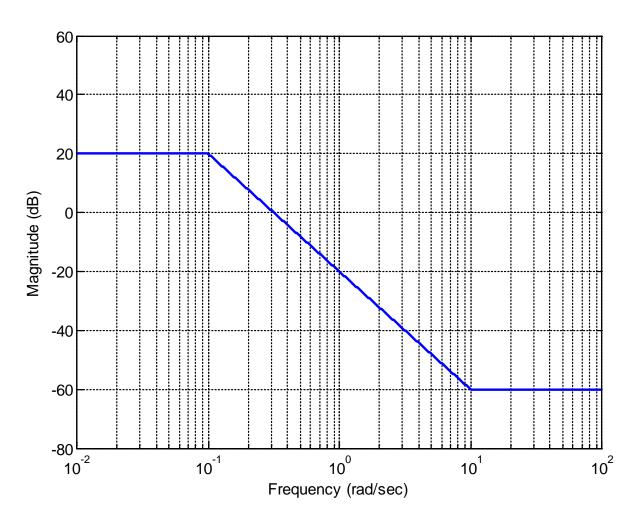


- **15**) What type of filter does this represent?
- a) lowpass b) highpass c) bandpass d) notch (band reject)
- **16)** The bandwidth of this filter is best estimated as
- a) 100 rad/sec b) 200 rad/sec c) 300 rad/sec d) 400 rad/sec

17) For the straight line approximation to the magnitude portion of a Bode plot shown below, the best estimate of the corresponding transfer function is

a)
$$H(s) = \frac{20\left(\frac{1}{10}s + 1\right)}{10s + 1}$$
 b) $H(s) = \frac{10\left(\frac{1}{10}s + 1\right)}{10s + 1}$

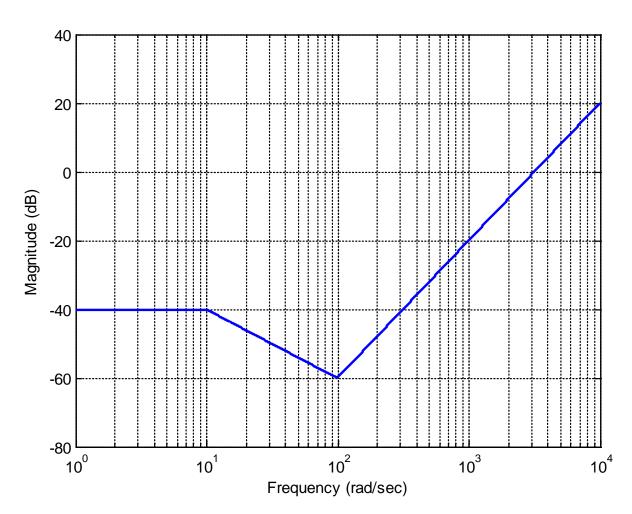
a)
$$H(s) = \frac{20\left(\frac{1}{10}s+1\right)}{10s+1}$$
 b) $H(s) = \frac{10\left(\frac{1}{10}s+1\right)}{10s+1}$
c) $H(s) = \frac{10\left(\frac{1}{10}s+1\right)}{(10s+1)^2}$ d) $H(s) = \frac{10\left(\frac{1}{10}s+1\right)^2}{(10s+1)^2}$



18) For the straight line approximation to the magnitude portion of a Bode plot shown below, the best estimate of the corresponding transfer function is

a)
$$H(s) = \frac{0.01 \left(\frac{1}{100}s + 1\right)^2}{\left(\frac{1}{10}s + 1\right)}$$
 b) $H(s) = \frac{-40 \left(\frac{1}{100}s + 1\right)^2}{\left(\frac{1}{10}s + 1\right)}$

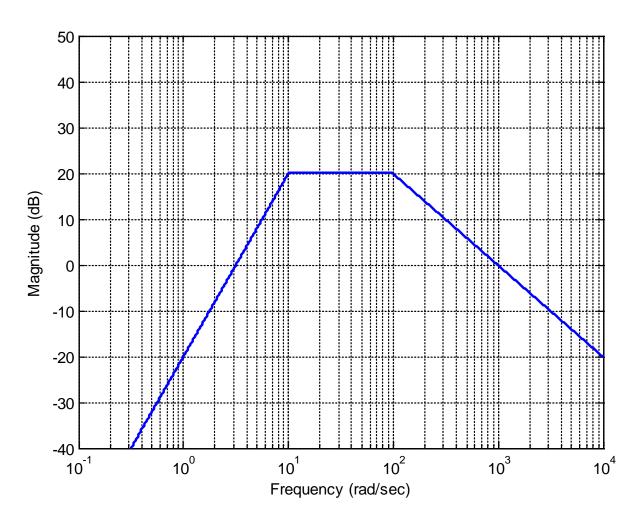
c)
$$H(s) = \frac{0.01 \left(\frac{1}{100}s + 1\right)^3}{\left(\frac{1}{10}s + 1\right)}$$
 d) $H(s) = \frac{0.01 \left(\frac{1}{100}s + 1\right)^3}{\left(\frac{1}{10}s + 1\right)^2}$



19) For the straight line approximation to the magnitude portion of a Bode plot shown below, the best estimate of the corresponding transfer function is

a)
$$H(s) = \frac{10s}{\left(\frac{1}{10}s + 1\right)\left(\frac{1}{100}s + 1\right)^2}$$
 b) $H(s) = \frac{10s^2}{\left(\frac{1}{10}s + 1\right)^2\left(\frac{1}{100}s + 1\right)}$

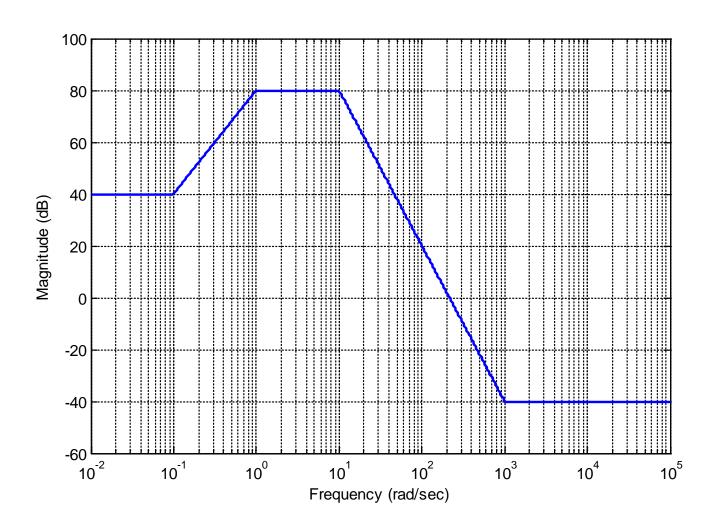
c)
$$H(s) = \frac{0.1s^2}{\left(\frac{1}{10}s + 1\right)^2 \left(\frac{1}{100}s + 1\right)}$$
 d) $H(s) = \frac{0.01s^2}{\left(\frac{1}{10}s + 1\right)^2 \left(\frac{1}{100}s + 1\right)}$



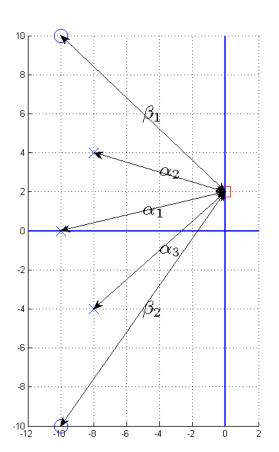
20) For the straight line approximation to the magnitude portion of a Bode plot shown below, the best estimate of the corresponding transfer function is

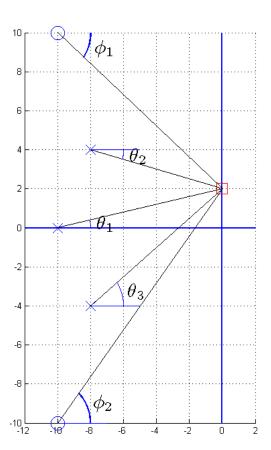
a)
$$H(s) = \frac{100(10s+1)\left(\frac{1}{1000}s+1\right)^3}{(s+1)\left(\frac{1}{10}s+1\right)^3}$$
 b) $H(s) = \frac{100(10s+1)\left(\frac{1}{1000}s+1\right)}{(s+1)\left(\frac{1}{10}s+1\right)}$

c)
$$H(s) = \frac{100(10s+1)^2 \left(\frac{1}{1000}s+1\right)^3}{\left(s+1\right)^2 \left(\frac{1}{10}s+1\right)^3}$$
 d) $H(s) = \frac{100(10s+1)^2 \left(\frac{1}{1000}s+1\right)^2}{\left(s+1\right)^2 \left(\frac{1}{10}s+1\right)^2}$



Problems 21 –25 refer to the following pole-zero diagram that is being used to compute the frequency response of a transfer function.





21) For this transfer function, the frequency response is computed as

a)
$$H(j\omega_0) = \frac{\alpha_1\alpha_2\alpha_3}{\beta_1\beta_2} \angle (\theta_1 + \theta_2 + \theta_3 - \phi_1 - \phi_2)$$
 b) $H(j\omega_0) = \frac{\beta_1\beta_2}{\alpha_1\alpha_2\alpha_3} \angle (\theta_1 + \theta_2 + \theta_3 - \phi_1 - \phi_2)$

b)
$$H(j\omega_0) = \frac{\beta_1\beta_2}{\alpha_1\alpha_2\alpha_2} \angle (\theta_1 + \theta_2 + \theta_3 - \phi_1 - \phi_2)$$

c)
$$H(j\omega_0) = \frac{\beta_1\beta_2}{\alpha_1\alpha_2\alpha_3} \angle (\phi_1 + \phi_2 - \theta_1 - \theta_2 - \theta_3)$$
 d) $H(j\omega_0) = \frac{\alpha_1\alpha_2\alpha_3}{\beta_1\beta_2} \angle (\phi_1 + \phi_2 - \theta_1 - \theta_2 - \theta_3)$

d)
$$H(j\omega_0) = \frac{\alpha_1\alpha_2\alpha_3}{\beta_1\beta_2} \angle (\phi_1 + \phi_2 - \theta_1 - \theta_2 - \theta_3)$$

22)
$$\beta_2$$
 is equal to a) $\sqrt{10^2 + 12^2}$ b) $\sqrt{10^2 + 10^2}$ c) $\sqrt{10^2 + 8^2}$ d) none of these

a)
$$\sqrt{10^2 + 12^2}$$

b)
$$\sqrt{10^2 + 10^2}$$

c)
$$\sqrt{10^2 + 8^2}$$

23)
$$\alpha_2$$
 is equal to a) $\sqrt{8^2 + 6^2}$ b) $\sqrt{8^2 + 4^2}$ c) $\sqrt{8^2 + 2^2}$ d) none of these

a)
$$\sqrt{8^2 + 6^2}$$

b)
$$\sqrt{8^2+4^2}$$

c)
$$\sqrt{8^2 + 2^2}$$

24)
$$\theta_3$$
 is equal to a) $\tan^{-1}\left(\frac{6}{8}\right)$ b) $\tan^{-1}\left(\frac{6}{-8}\right)$ c) $\tan^{-1}\left(\frac{2}{-8}\right)$ d) none of these

a)
$$\tan^{-1}\left(\frac{6}{8}\right)$$

b)
$$\tan^{-1}\left(\frac{6}{-8}\right)$$

c)
$$\tan^{-1}\left(\frac{2}{-8}\right)$$

25)
$$\phi_1$$
 is equal to a) $\tan^{-1}\left(\frac{8}{10}\right)$ b) $\tan^{-1}\left(\frac{-8}{10}\right)$ c) $\tan^{-1}\left(\frac{-8}{-10}\right)$ d) none of thes

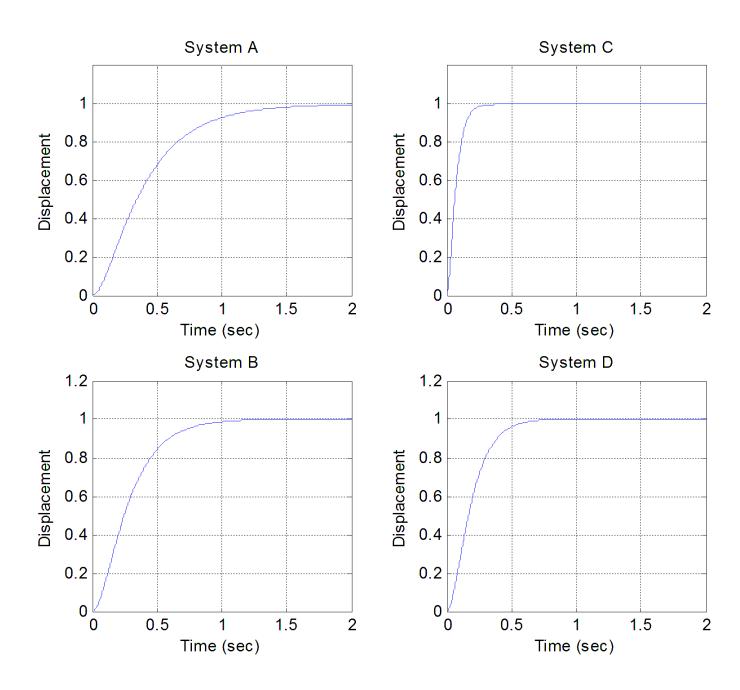
a)
$$\tan^{-1}\left(\frac{8}{10}\right)$$

b)
$$\tan^{-1}\left(\frac{-8}{10}\right)$$

c)
$$\tan^{-1}\left(\frac{-8}{-10}\right)$$

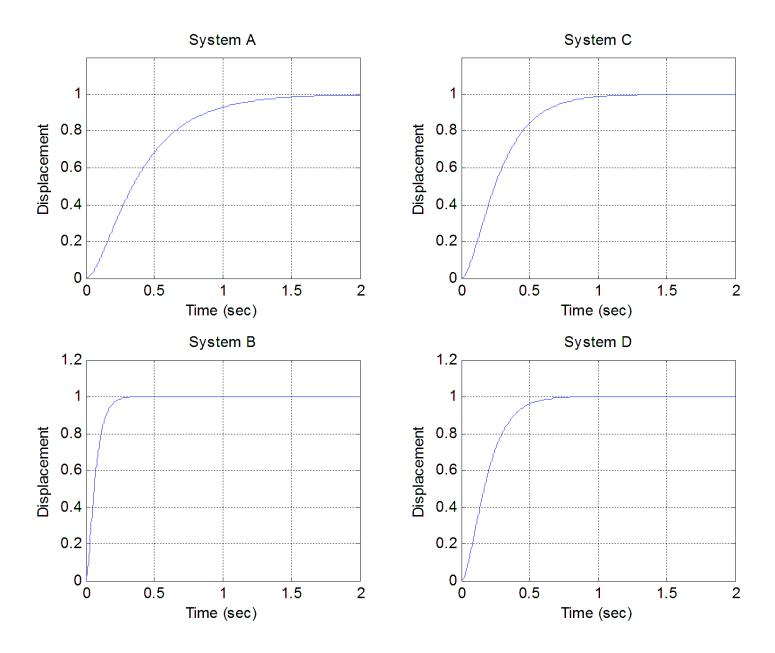
26) The unit step responses of four systems with real poles is shown below. Which system will have the **largest** bandwidth?

a) System A b) System B c) System C d) System D



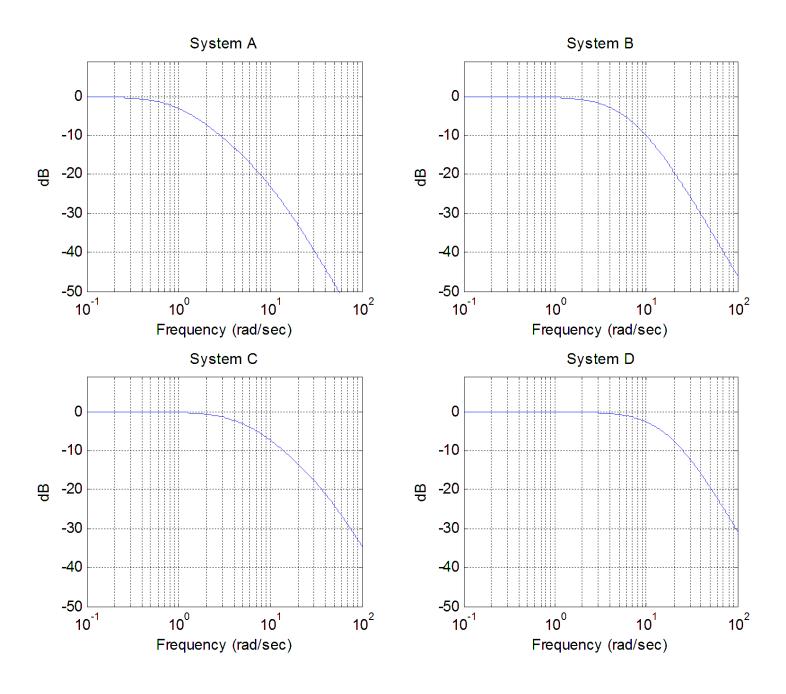
27) The <u>unit step responses</u> of four systems with real poles is shown below. Which system will have the <u>largest bandwidth</u>?

a) System A b) System B c) System C d) System D



28) The magnitude of the frequency response of four systems with real poles is shown below. Which system will have the smallest **settling time**?

a) System A b) System B c) System C d) System D



Answers: 1-b, 2-d, 3-c, 4-b, 5-d, 6-b, 7-c, 8-b, 9-a, 10-c, 11-a, 12-a, 13-c, 14-b, 15-a, 16-b, 17-d, 18-c, 19-c, 20-c, 21-c, 22-a, 23-c, 24-a, 25-b, 26-c, 27-b, 28-d