ECE-205 Quiz 4

Fill in the following table with a Y (yes) or N (no) for each of the system models given. Assume $-\infty < t < \infty$ for all of the systems and all initial conditions are zero.

System	System Model	Linear?	Time- Invariant?	Causal?	Memoryless?
1	$y(t) = e^{t-1}x(t+1)$				
2	$y(t) = x \left(t - \frac{1}{2} \right)$				
3	y(t) = x(1-t)				
4	$\dot{y}(t) + y(t) = e^{-t}x(t)$				
5	$y(t) = \int_{-\infty}^{t} e^{-(t-\lambda)} x(\lambda+1) d\lambda$				
6	$y(t-1) = \cos(t)x(t)$				
7	$y(t) = x\left(\frac{t}{2}\right)$				
8	$y(t) = \frac{1}{2} \left[x(t-1) + x(t+1) \right]$				

- 9) For a system with input x(t) and output y(t), is it necessary for $y(t_0) = 0$ in order for the system to be **linear**?
- a) Yes b) No
- **10**) For a system with input x(t) and output y(t), is it necessary for $y(t_0) = 0$ in order for the system to be **time-invariant**?
- a) Yes b) No

11) If we have the integral $y(t) = \int_{1}^{t} e^{-\lambda} x(\lambda - T) d\lambda$ and we make the substitution $\sigma = \lambda - T$, the resulting integral is

a)
$$y(t) = \int_{1}^{t} e^{-\sigma - T} x(\sigma) d\sigma$$
 b) $y(t) = \int_{1}^{t-T} e^{-\sigma - T} x(\sigma) d\sigma$ c) $y(t) = \int_{1-T}^{t-T} e^{-\sigma - T} x(\sigma) d\sigma$ d) none of these

12) If we have the integral $y(t) = \int_{1}^{t} e^{-\lambda} x(-2\lambda) d\lambda$ and we make the substitution $\sigma = -2\lambda$, the resulting integral is

a)
$$y(t) = -2\int_{1}^{t} e^{-\sigma/2}x(\sigma)d\sigma$$
 b) $y(t) = -\frac{1}{2}\int_{1}^{-2t} e^{-\sigma/2}x(\sigma)d\sigma$ c) $y(t) = -\frac{1}{2}\int_{-2}^{-2t} e^{-\sigma/2}x(\sigma)d\sigma$ d) none of these

13) If we have the integral $y(t) = \int_{-\infty}^{t} e^{-(t-\lambda)}x(2-3\lambda)d\lambda$ and we make the substitution $\sigma = 2-3\lambda$, what do we get? (write out the answer, don't worry about simplifying it)