## ECE250 Equation Sheet Test 1 April 1, 2010 (KEH)

**Diode Equation**:  $Id = Is \cdot (e^{Vd/(nV_T)} - 1)$  where Is = reverse saturation current. Is **DOUBLES** for every 10 degree C rise Vd is the anode-to-cathode voltage and Id is current flowing into anode

**Thermal Voltage**:  $V_T = kT/q = 25.7$  mV at room temperature T = 300K.

**DC load voltage:**  $Vdc = V_{m.s} - 0.7V - V_r / 2$  (half-wave rect)  $Vdc = V_{m.s} - 1.4V - V_r / 2$  (full-wave rect)

Half-wave rectifier ripple voltage:  $V_r = \frac{\left(V_{m,s} - 0.7V - V_r / 2\right) / R_L}{f_{source} \cdot C}$   $V_{m,s} = \text{peak source voltage}$ 

 $\textit{Full-wave diode bridge rectifier ripple voltage:} \qquad V_r = \frac{(V_{\textit{m,s}} - 1.4V - V_{\textit{r}} / 2) / R_{\textit{L}}}{2f_{\textit{source}} \cdot C} \quad V_{\textit{m,s}} = \text{peak source voltage}$ 

Full-wave diode bridge peak diode current:  $I_{d \max} = \frac{V_m}{R_L} \cdot (1+2\pi) \cdot \sqrt{\frac{V_m}{2 \cdot V_r}}$  , where  $V_m = V_{m,s} - 2(0.7V)$ 

**Small-Signal ac Model of Diode:**  $rd = \frac{n \cdot V_T}{Id_Q}$ , where  $Id_Q$  is the dc (quiescent) component of the diode current.

**Plotting Load Lines over nonlinear element's IV curve:** First find Thevenin equivalent "looking out" from the terminals of the nonlinear element. Then plot load line:  $I_{INTERCEPT} = Vth/Rth$ , and  $V_{INTERCEPT} = Vth$ 

**Multiple Diode Analysis using 0.7 V battery model of diode**: Define Id's flowing into each anode. Define Vd's anode-to-cathode. Guess which diodes are ON and replace them with 0.7 battery, replace OFF diodes with open circuit. Analyze circuit. Check to ensure diodes that are assumed ON have Id > 0, and diodes that are assumed OFF have Vd < 0.7 V.

Carrier Concentration in Intrinsic Si (1/cm<sup>3</sup>):  $n_i^2 = BT^3 e^{-Eg/kT}$ 

at T=300K: B=5.4x10<sup>31</sup>/(K<sup>3</sup>cm<sup>6</sup>), Eg=1.12 eV, k= Boltzmann's Constant =  $8.62x10^{-5}$  eV/K,  $n_i$ =1.5 x  $10^{10}$  1/cm<sup>3</sup>

**Diffusion Current Density (A/cm²):**  $J_p = -qD_p \frac{dp}{dx}$   $J_n = qD_n \frac{dn}{dx}$  q = 1.6 x 10<sup>-19</sup> Coulombs

 $D_p = 12 \text{ cm}^2/\text{s}, D_n = 34 \text{ cm}^2/\text{s}$ 

**Drift current Density (A/cm²):**  $J_{drift} = q(p\mu_p + n\mu_n)E$ 

Resistivity (Ω-cm) and Resistance (Ω):  $\rho = 1/[q(p\mu_p + n\mu_n)]]$  R =  $\rho$ L/A

Built-In Junction Voltage (V):  $Vo = V_T \ln(\frac{N_A N_D}{n_c^2})$ 

Depletion Region Capacitance (F):  $C_{j} = \frac{C_{j0}}{(1 + \frac{V_{R}}{V_{O}})^{m}} \quad \text{where } C_{j0} = \varepsilon_{Si} A / (W_{depletion\_region})_{V_{R}=0}$ 

and  $m = junction grading coefficient = 1/3 to <math>\frac{1}{2}$ , also note  $V_R$  is diode's CATHODE to ANODE voltage = -Vd