

CSSE 377 – Software Architecture & Design II

Software
Architecture in
Banking
A Comparative Paper on the Effectiveness of Different Software Architectures
Within an Financial Banking System

JD Hill
Andrew Robby Kruth
Joe Salisbury
Sam Varga

11/9/2010

Introduction

 Software architecture design is an important aspect of our daily lives whether we know
it or not. There are so many different systems that we interact with on a daily basis that we do
not recognize are closely tied to software architecture decisions. These systems handle things
from stoplights, electricity, televisions, communications, and many other things. Another
example of a software system involved with our life is a system that powers banks and financial
networks across the globe. When implementing such a system, there are several things that
need to be considered.

The design of any software system needs to be thought out and have certain aspects
considered from the beginning. By choosing specific quality attributes to be designed into the
architecture, there is a greater chance that the system will be successful. Specifically for a bank
system, there will be several important attributes to focus on. First, the performance of the
system needs to be high quality. Bank workers, people at ATMs, and bank administrators will all
be interacting with other systems and so the new system will need to perform fast enough to
allow everyone to complete the necessary tasks. Also, the reliability and security of the system
are two of the most important thing to focus on. The system needs to be reliable such that it
does not crash and has a very high uptime. The security is important because banks hold a large
amount of private information. If this private information became available to people who
should not have access, the company which made the system could face a lot of legal issues
due to the breach of privacy. A bank system needs to make sure that people who are
authorized to get in the system have the ability to do what they need to, and more importantly
keep unauthorized users out of the system and unable to attack it. This system needs to be able
to withstand many different types of attacks. Financial systems are often attacked for various
reasons. Hackers envision getting access to bank systems and becoming billionaires in a second.
Others could access personal information to aid in identity theft. It is evident that security is a
major concern when developing bank systems.

This particular bank system will have to incorporate aspects into the architecture design
to support many different features. Bank workers and customers of the bank will need to be
able to complete different types of transactions using the system. Also, the system needs to be
able to be accessed from different environments and different devices. For example, the
computers at the actual bank and other organizations need to interact with the system and the
data that is being stored. Also, customers will likely be accessing information about their bank
statements from their own personal computers. An additional feature that may be needed is
the ability to have a mobile application for the bank system. In the current day, mobile apps are
very popular and many customers want to have access to their information wherever and
whenever they can. The system should be designed with several spots that will make
modifications and adding features to the system as easy as possible in the future.

Software Architecture Comparison Model

 In this paper, we will look at several different software architecture strategies and
compare and contrast different elements of them. Each different strategy has its own benefits,

but which one to go with really depends on what the specific system is going to be used for. To
go about analyzing the different methods we will use the Software Architecture Comparison
Analysis Model. This is a model that is sometimes used to look over and determine which
software architecture style to go with. The first step is preparation. During this step you need to
analyze what business goals you are trying to achieve. Second is criteria collation. Here you take
the business goals you decided upon and translate those into quality attributes of the system.

Third you need to determine the extraction
directives. This means determining what
architectural views, tactics, styles and patterns
you are looking for based on the previous step.
Fourth, view and indicate extraction. This step
extracts the architectural views for each
candidate according to the specific pieces chosen
in the previous step. Fifth, you want to score the
ability of each candidate to meet the criteria you
have chosen. Finally, you want to summarize the
results and provide a recommendation on which
process to choose from.

Key Business Goals & Quality Attributes

 We have already decided that the key
business goals of the system will be to handle a
wide variety of customer needs. They cover
things from all spectrums. One is the ability for
the customers to have ease of mind that their
data is safe when they use the system. Another
aspect that is important is the ability for the
system to be accessed on a variety of devices.
These devices can range from desktop systems
at a bank, personal computers, and
smartphones. All the different systems will
provide different business values because they
all fit a specific niche of customer or stakeholder.
Due to these different interactions and use cases
for the system, it needs to be easy to develop on
and make several different user interfaces.
These ideas were then transferred into the
different quality attributes described earlier.

Figure 1: Diagram of the Software Architecture
Comparison Analysis Method

 These different quality attributes
will bring out different parts of
architecture documentation to meet the
system’s needs. With security being a big
issue, we will want to make sure that the
architecture document shows the
necessary aspects that make the system
secure. This could be encryption
algorithms or specially designed
components that make security breaches
less likely. For the modifiability of the
system, we will want to have a
component catalog that goes through
each aspect of the system and outlines
what its functionality is. Within this
document, we will also want to see the
types of feature that could possibly be
added to the system and where they
would recommend additional
components be built on.

Database-Driven Architecture

 One of the most prominent software architecture design strategies is a repository-
based system. There are two different parts of repository based that we will look at: Blackboard
architecture and Database-driven. Both of these styles have some common aspects, but also
differ somewhat. The main component of each system is based on a central data structure. This
data structure can interact with other aspects of the system. Also, the composition of these
systems allows there to be independent computational elements. This can allow several
different processes to run at a time and use data from the central repository. The ability to
have data accessed to a wide variety of processes at a given time is one of the most important
aspects of the repository strategy.

Database-driven architecture relies on a central database to build architecture on and
support the rest of the system. Another important aspect of this strategy is that the input into
the database selects which process to run from there. Within database-driven design, there are
several different paths that one can go down.

Relational Database Management Design

First is what most people think of right away when they hear database-driven
architecture. This type of architecture uses a relational database management system.
Throughout the years there have been a lot of development put into Database Management
Software and many developers and organizations are becoming dependent on these tools. This

Figure 2: A Flow Chart of how criteria turns into architectural
decisions and documentation

style of architecture also allows for rapid product development due to some of the existing
tools that are already out there. There is a wide user base already available and some are highly
skilled at developing new features for custom systems. From a security aspect, the Database
Management Software can provide a lot of options and levels of security. There are several
large companies that use this sort of architecture and have been able to implement the
necessary parts into making the system very secure. The software can provide different levels
of authorizations and checks on the table to hold up against several different attacks. In
addition to that, encryption is one thing that allows these systems to be so secure. If a hacker
were able to break through and get access to some tables, they would be encrypted using some
algorithm. This would add another level of security to the system, which would be very
important to a bank. The architecture documents for this strategy would be closely tied with
the database management software. It would involve user manuals and other aspects that
describe how the systems fit in together and works.

Stored Procedure-
Driven Design

Another way a
system could be used is
to have a database on
some servers that has
stored procedures
which run certain
processes. There is
some debate as to
whether business logic
that is stored in these
procedures should be
run on the back end
versus another level of
the architecture.
However, some situations make use of this technique very effectively. Some security issues
could arise with this method as well. For example, if a hacker were able to get into the back end
system they could modify some of the stored procedures. Since these procedures are run
behind the scenes, intrusions could take some time to make themselves evident to the users.
This could potentially cause big problems for a bank system. By the times changes to stored
procedures are noticed, a hacker could have had access to large sums of money or to
confidential data. Also, for this setup the technical department at the bank would need to have
some experience with databases and stored procedures to really make full use of the systems
capabilities. Writing and using stored procedures can become fairly complex. There would also
need to be heavy documentation on how to use the actual system and what the backend
procedures are capable of.

Figure 3: An example of database-centric architecture. Everything is based on access to the
Database

Dynamic Table Logic Design

Using the database as a dynamic, table driven logic is another variant of database-
centered design. The extent of this really depends on what types of logic the bank would want
to put within the database. It could be very complex or fairly simple. This allows for a large
amount of flexibility for the uses of the system. This concept also opens up for features of
dynamic programming languages and control tables. These tables are normally embedded
within programs as data structures but can now be moved to the central database. The
architecture documentation for this would vary depending on how complex the system
becomes. Most likely the technical staff at the bank will not be familiar with this architecture so
that could pose some problems for them.

Use of Communications Between Processes

A final database centric approach is to use the central database as the main method of
communication between different processes in applications. This capability allows for the
benefit of distributed applications that simplify some of the database management software.
These systems can work better with transaction processing and indexing of activities. This
allows for high reliability, performance, and the ability to handle a large volume of traffic. These
benefits would be very important to a bank system. The reliability and security of the system
have been detailed earlier in this paper. It is one of the most important parts of the system and
therefore this could be a major reason to choose this architecture style.

Blackboard (Repository) Architecture

Blackboard architecture is another variation of a repository-based system. The main
difference between blackboard and other database designs is that the central data structure
selects what processes to run based on the inputs. The decisions that the central database
makes are based on the data that is shared with the blackboard. Therefore the blackboard style

is similar to a data warehouse in
that is houses and shares all the
data among different things. It
uses this knowledge to go about
deciding what actions to take
due to various inputs. This is
similar to implicit invocation. The
users of the system do not call
specific actions from the system
but they are giving some sort of
input and expect the system to
determine the correct output.
The control is driven solely by
the blackboard. Due to this, the
context of the inputs is very

Figure 4: A sample of the architecture design of a Blackboard system

important to the reasoning and processes the blackboard chooses. In most cases that use
blackboard architecture, there is complex interpretation of data.

A common example of a blackboard system is a speech recognition system. The users
could speak something into the system. The system could then interpret the input and output
different things to the user based on the different systems it is interacting with. This could be
things such as grammar corrections, language, dialect, or even the name of the individual
speaking, Blackboard systems can be very complex but they can achieve some pretty amazing
results as well.

This type of architecture is also common with implementations of artificial intelligence.
In cases of AI, the blackboard is updated by groups of specialists that start with problem
specifications and end with solutions. Following various iterations of this accumulation of
knowledge, the system has a wide range of data and problem solving tactics to pull from.
Therefore when it is presented with some sort of new situation, it can go through complex
algorithms to intertwine problem solving tactics from the various situations and come up with
its own solution to the problem.

Using an architecture pattern
such as this for a common bank
system may be a bit over the top.
While there are definitely some
interesting directions the bank could
go in by using this system, it would
most likely not be the most effective
way to go about meeting their
business goals. In addition to this, it is
an uncommon design pattern for this
industry and the technology managers
at the bank would likely not have prior
experience with a system of this type.
This would complicate maintenance
and modifications to the system. In
addition to that, the architecture
documentation would be very complex for this system. It would be difficult to make effective
documentation that would suit the target audience that would need the documentation.

Client-Server Architecture

A banking software system depends on several individual components to completely
work. All of these components must be linked together. Each connection must be independent
of the other connections in the system. All of the individual connections however must share
the same information in a real-time environment. With today’s electronic banking standards,
data must be processed nearly instantaneously and simultaneously across the world. Anytime a

Figure 5: Depicts the ability of a Blackboard system to accumulate knowledge
from various sources into one output.

system is designed that involves such a distributed network, there will always be
communication between the nodes of that network. While most designs can be adapted to fit
this model, only one architectural model can boast the true standards of these aforementioned
design specifications. That architecture is Client-Server.

Client-Server architecture presents a number of benefits for any software development

team. These benefits can be seen from the beginning of design all the way through
maintenance of a system. Client-Server offers a number of potential contributing factors that
propels software applications to the enterprise level of distributed networks.

Client-Server Basics

 This portion of paper will present the details of the Client-Server architecture in general
terms. The particulars associated with the Client-Server model will be discussed to get a grasp
of the advantages and disadvantages associated with this type of architecture. These principles
will then be applied specifically the design of a banking system.

The Client-Server architectural model takes advantage of its distributed application
structure. This structure divides the
actions of the software into two key
groups: providers, known as servers,
and requesters, known as clients. This
separation of application tasks allows
for a more powerful application. In
most cases the server machine(s) are
usually more powerful and can perform
much more advanced tasks that the
individual clients may not be able to do.
As shown in figure 6, the Client-Server
model in its most basic form is built
around a single server that provides
information to clients that are all the
same. The centralized server runs the
portion of the application that can do
any combination of data hosting,
performing calculations, tracking data,
or various other application processing
tasks.

The client(s) and server(s) communicate across some sort of network. The Client-Server

architecture’s basic principles that define the separation of processing tasks into the client and
server nodes allow for a communication layer in-between that can vary drastically based on the
type of software system desired. For instance, the Client-Server model can be seen in today’s
video game consoles. The wireless controllers can sync with the console using either

Figure 6: An example of the Client-Server architecture
model in its most basic form.

proprietary radio wave communication or even the standard Bluetooth protocol. This allows
the controllers to send inputs to the console over the air and sometimes even responses sent
back for vibrations to the controller from the console. In addition, Client-Server models use
standard TCP/IP connections for the network communications. No better example can be seen
than the World Wide Web. Millions of webpages are hosted on dedicated webservers and even
more client machines can access webpages from all over the world simultaneously. With the
huge scope of the World Wide Web in mind, the Client-Server model’s extensibility comes into
play.

 As the Client-Server model is extended, utilizing different devices with varying hardware
and capabilities comes into play. Client devices can vary in the implementation of software or
the utilization of hardware. This allows for different types of tasks to be performed on each
individual device. Again, a great example of this extended architecture can be seen from the
World Wide Web. The web provides a strict set of protocols for displaying information in the
form of webpages. These protocols, such as HTML, can be interpreted by following a set of
rules. With this in mind, the webpages that are hosted on a server can be retrieved by any
client that can successfully request this information. This allows all of the clients to run
independently from the server. Thus, virtually any hardware solution with internet access can
communicate with the web servers. This hardware independence allows for web browsers to
be implemented on almost anything. In today’s world we see cell phones, televisions, DVD
players, video game consoles, computers, and many more items with access to the web. The
core principles of the Client-Server model are behind all of this. Without the principle of steady
providers, all of the individual nodes could not access the available information. With these
factors in mind, is where the model can be fully extended into a multiple server system.
Multiple servers can be available that perform different tasks or the mirrored tasks to further
increase usability.

 The basic principles of the Client-Server model provide a few key advantages as well as
some noticeable disadvantages that must be mitigated. Advantages can be seen a number of
locations. Most of these advantages can be tied to quality attributes that affect systems that
follow this model. An obvious advantage can be seen in performance. Hosting data or
performing processing on a more powerful server machine can speed up an applications
response time and distribute the workload much more effectively. Also, improvements can be
seen in reliability and maintainability. When the client systems are not dependent on one
another the clients can be taken offline for updates or anything else without affecting the
server or other clients. This allows for greater uptime and a much more effective application.
Another advantage of the Client-Server model can be seen in the area of security. Centralized
servers are often easier to secure. If the data needs to be protected from unauthorized access,
having it stored in a specific location allows for more effective protection measures to be
implemented. Security patches and updates only need to be pushed out to the servers instead
of all the clients.

 With the Client-Server architecture, there are indeed some disadvantages associated
with the design. Anytime a Client-Server system becomes so large and numerous clients are

trying to access the same server for the same tasks or set of information, there can be a
bottleneck created. Servers must be built with adequate processing power and the network
that connects the server to the clients must have sufficient bandwidth to support the
communications. Steps must be taken to reduce this problem. The most common way is to
have multiple servers implemented to break up the processing or the data storage for different
components of the system. Finally, the most obvious disadvantage of the architecture is the key
dependence from the clients on the server(s). Since all of the client nodes depend on the server
to perform tasks or store information, if the server is down the entire system cannot function
completely or maybe at all. With this in mind, caution must be taken to insure catastrophic
failures to not take place.

Client-Server Architecture in the Banking Industry

 The Client-Server architectural model presents designers with several key benefits and a
few disadvantages that can be managed and reduced. When the Client-Server model is looked
at from the banking industry’s perspective, several contributing factors can be seen that allow
for the model to have a great positive impact in the domain. The banking industry as a whole
has moved towards almost an entirely digital locale. As this digital revolution has taken place,
banks have been scrambling to keep up with ever changing customer demands. Consumers are
constantly looking for more access to their information, access at faster speeds, and access
from virtually any device they own. Client-Server architecture has been at the heart of this ever
changing software landscape and allows for some key components of these systems to work
effectively.

 In the early stages of digital transformation, Banks were able to keep centralized records
of account information that was accessible at either a banking center by a teller or a remote
automated teller machine. At any of these two locations, account holders could check balances,
withdraw funds, and often deposit funds. The Client-Server architecture was clearly utilized in
the earlier stages of digital banking to implement this style of system. Teller systems
(automated or personal) were the client nodes in the model and the centralized data stores
were the servers. This basic foundation was in place in almost all commercial banks. This laid
the groundwork for larger more extendable banking software to come. Without the banking
industry’s roots of this distributed system, the advanced Client-Server layouts we see today
could not have been accomplished.

 As technology has improved and access to the internet has grown rapidly, the banking
industry has begun to expand the software and systems that supports the everyday
management of all sorts of transactions. Customers now have more access than ever to their
money and all of the fringe benefits that banks offer to their account holders. “Online banking”
has become a part of everyday life. Customers can now login and see account information and
perform all sorts of tasks. Funds transfers can now be made over the internet and not in
person. People can move money from once account to another account within the same bank
or even transfer funds across accounts from different banks. Customers can also view their past

account history for better budgeting and export their records to third party financial software
to merge personal and business expenditures.

 Customers can do all of these things from a number of different portals. People can
perform online banking from personal computers, smart phones, televisions, and even music
players. At the heart of these technological breakthroughs, the Client-Server model can be
seen. The hardware independent structure of the architecture provides software designers with
ultimate flexibility in the implementation of new interfaces. The vast array of hardware devices
that contain software applications that provide financial interfacing to the banking industry
have been all designed around the ability to access the data and issue tasks to and from a
centralized server. Through the utilization of an application programming interface (API),
developers can implement all kinds of clients to access the same network.

 As the architecture is
expanded, more and more servers are
added to the center of the Client-
Server model to provide additional
functionality to the banking customers.
The concept of a centralized cloud
allows for the clients to access these
servers without actually knowing how
many or which servers they are
communicating with. This allows for
the processing to be broken up into
even further task specific nodes. The
layout of this concept is seen in figure
7. The banking industry takes full
advantage of the model to distribute
its application task and processing to
insure performance, reliability, and
security. To keep up with the ever
changing technology software
developers must remain ahead of the
curve.

Relaying on strong server
standards, help the core functionality of the Client-Server design to remain static for as long as
possible. This allows the model to be extended into future devices that have never been used
before to access the mobile banking applications. As the industry continues to mature and
expand, developers will be able to keep up with the demands of the customers for more
functionality, higher performance, better security, and increased flexibility from the banking
software. Even as technology changes and new architecture patterns are introduced into
components of the system, at the core, the Client-Server model will still be involved due to the

Figure 7: Client-Server Architectural Model in today’s Banking
Industry

nature of hardware variability of accessing financial information. In short, Client-Server
architecture has allowed the banking industry to make a giant leap into the digital age of
computing.

Three-Tiered Architecture

As all of the components of the client-server architecture need to be connected over a
network from server to server, performance problems arrive with bottlenecks on the server
side of things. This problem could cause a system to be a failure or not be able to adapt well
over time. A natural solution to this problem would be to try and remove those bottlenecks by
splitting the server side of things into several servers, which all do different things with the
data. This approach is called the multi-tiered architecture. The three-tiered architecture is the
most common of these, and will be evaluated for its applicability to a banking software system.

The Tiers

The three “tiers” of the three-tiered
system are the presentation layer, the domain
layer, and the technical services layer. In a good
three-tiered architecture, the layers will be
coupled to each other as little as possible by
using the Controller and Adapter software
patterns. Because of this, the layers are very
modular in form, which means that they should
be able to easily swap out multiple user
interfaces and technical services components (i.e.
data storage structures or authentication
services).

The presentation layer represents how
the system interacts with the users. This is
basically the user interface(s) that the system will
contain. A system can have a variety of
presentation layers, ranging from a command line
to a touchscreen to the holographic interfaces
seen in a lot of sci-fi movies. The main quality
attribute inherently associated with user
interfaces is usability. The different types of
presentations available to a user allow flexibility,
but all of the interface implementations must be
usable for a successful presentation layer.

The domain layer houses all of the
application business logic, which means that this is

Figure 8: The three-tiered architecture as it would
be applied to a banking system. The data flow
between the layers are labeled with the patterns
used as connectors

where all of the processing of data takes place. The domain layer is the heart of the system; the
other layers are periphery to the domain layer. This is the layer in which a product line can be
developed. This is what the banks are really paying for when they ask for an accurate system;
other components of the system are usually outside functional requirements and main business
drivers for the project, and are easily contracted out. The domain layer also contains Controllers
and Adapters which connect to the other layers in the proper way, which is what makes a
three-tiered system so thin (i.e. makes it very modular and easily modifiable). It is also a
channel through which data from the technical services layer reaches the presentation layer.

The technical services layer contains all of the parts of the system that the domain layer
relies on for interactions that are very low-level from a systems standpoint. This would include
network protocols and data-persisting mechanisms within the system. Although these
components of the system are very important and can be difficult to implement, there are
many existing solutions that the development team could probably just write Adapters for
within the domain layer in order to save time (and quite possibly money). The technical services
layer in a good three-tiered architecture should be completely invisible to the user; he or she
should just know that the system is getting its data correctly and it is communicating
appropriately to the external connections.

Currently, three-tiered architectures are very popular in the software architecture
world. It is very similar to the client-server architecture, except that extra application layer
really gives better fit for adaptability to different technologies on the technical services level of
things. One downside to the three-tiered architecture as compared to the client-server is that
since the business logic is separated from the technical services layer, the communications are
a little harder to master between the layers. This trend increase substantially with each layer
added to a system, and must be weighed in comparison with the adaptability and performance
benefits which can be gained by adding that extra layer.

Three-Tiered Architecture in the Banking Industry

As noted above, the divisions of layers for the three-tiered architecture make it a great
option from a flexibility standpoint. For instance, if a bank used a legacy system to store their
data and wanted to migrate all of their data to a more up-to-date system, developers would
just have to add a class that implements an Adapter to communicate with the data storage
system.

In a similar vein, the presentation layer sits on top of the application layer and receives
information through controllers. This means that the application layer should be able to take
user input from any medium and process it without any problem. With smartphones as the one
of the primary means of communication and data transfer, portability is a very important
aspect of software systems that a bank would have to take into account. The three-tiered
architecture allows mobile apps to be developed very easily provided that the developers have
a well-documented architecture of the domain layer and know by which channels to input the
data.

This fact also makes the system very scalable, which is a rather important quality
attribute for a bank. Since the technical services (especially the data storage facility) reside on
their own server, none of the rest of the system would have to be touched for the data store to
be increased to support more customers (except for a couple of Adapters within the domain
layer possibly). This is also positive from a reliability standpoint—Adapters can be written for
new technologies or a better network provider, and then the switchover within the technical
services layer would create as small a downtime as possible for the entire system.

The three-tiered architecture also makes a great business decision. Since the domain
layer is very thin, it can easily be developed as a product line. Multiple components from both
the presentation layer and technical services layer and simply be plugged in to the application
layer. Suddenly several banks are using the same product, but all of the different system have
different feels due to the custom implementations of the user interfaces. The application layer
being so thin would also mean that the development team could focus more on the business
requirements rather than periphery aspects of the system. For instance, the storage of the data
could be kept in whatever form the banks currently has as long as the domain layer has the
drivers and security authorization to access it. This would mean that the architects could deliver
a product faster and for less money to the client.

This is also good news from a security standpoint, because whoever makes the design
decisions could outsource the security for the system and just implement an Adapter that could
negotiate authentication with the security system. Of course, if the security were outsourced to
a big security company many people are familiar with, the potential to open the system up to
hackers increases. It can also be argued that this security will be tighter than, say, security
measures put in place by the company developing the entire system, since it is less likely that
they can account for all of the possible attacks the large security-specific firm has surely dealt
with over time.

One of the biggest problems with a three-tiered architecture is the performance. A
three-tiered architecture will be object-oriented, which means the data flow through the
system will likely face many layers of indirection within even one of the larger architectural
layers. Considering that the data flow already needs to come from some external data store,
then through the various channels within the domain layer, which may take some time-
intensive business calculations and algorithms, and finally be presented to user may leave
them wondering why the system is taking so long to respond. Not only would this happen for
data travelling through the system, but the security aspects of the technical services layer
would also take longer to authenticate users. Although performance wasn’t one of the main
quality criteria to consider the architecture appropriate for the bank system, it is nonetheless
important to customers and can make a big difference to the satisfaction to users of the bank
system.

However, compared to the client-server architecture the three-tiered architecture can
improve performance. Although the data and technical services layers are physically close in a
client-server architecture (thusly increasing performance), for large server loads the

architecture tends to perform poorly because of bottlenecks due to database calls and business
logic all happening at once. The three-tiered architecture gets rid of this problem, allowing
higher throughput. It is more likely that a bank will serve a large amount of customers, so the
having data go through another layer instead of keeping all of the domain aspects on the
database side of things will end up being a performance saver in the longs run.

One advantage to the three-tier system from a project communications standpoint is
that the three-tiered architectural is relatively straightforward to nontechnical people. It would
only take a couple minutes to explain how the system works and why a three-tiered
architecture is an advantageous model to use. In fact, of the architectures analyzed in this
paper, the only more straightforward model would be the client-server architecture, which
many people are already familiar with in their exposure to technology on the internet.

On the flipside of this, if the client trusted the development team for the system, and
the three-tiered architecture were explained in a way that would make him or her think that
only the main business logic would be developed by the team, with many other components
outsourced, the client might be wary of the architecture. For instance, he might believe that the
other components won’t be as well-documented as the domain layer being developed by such
the stellar design team. Trust is a very important aspect of software management, and,
depending on a customer’s openness to working with even more companies in developing this
system, the three-tiered architecture might diminish some of this trust.

One more criterion to note with the three-tiered structure is the ability to handle
database transactions, since that is probably the largest aspect of a banking system. People all
over all the time will need to perform transactions and change data in tables within the
database. The three-tiered architecture certainly isn’t the worst type of architecture for this
requirement, although it obviously isn’t the best. As noted above, some of the database-driven
architectures are specially designed to handle this large load of concurrent database
connections. However, the three-tiered architecture will still outperform the client-server
architecture for the same reasons listed in the performance section.

Another advantage to the three-tiered structure is that the amount of space required on
the client (ATM, mobile phone, website, etc.) is minimal. This is because only the UI logic is
stored on these machines, whereas an entirely separate server is used for the application logic.
This is an advantage especially for mobile phones which do not have a lot of space for data. A
light application would mean that more people would be willing to use the app, allowing the
bank to attract more potential customers and flourish from a business standpoint. Newly-
produced ATMs could benefit from this small space needed for the UI layer because the bank
could spend less money on the hard drive for the ATM and more money for either performance
or the development of a highly usable interface design, which would again lead to reduced cost
or more happy customers.

Space Based Architecture

Space based architecture (SBA) is an architecture system built off of self-sufficient,
independent parts called processing units. SBA falls under the R.E.S.T. style of architecture
and is based off of the tuple-space paradigm and uses Object space to help with
transactions. This system is great for scalable systems because more independent
processing units can just be added to the system to increase functionality. In this same way
your system becomes more manageable when the code is already broken up into self-
sustaining pieces. It is also very fast, since partitions of the system do specific transaction
code, you don’t have to pass through the whole system to get things done. Availability is
made easy when module based systems like this are employed. In terms of our banking
software this is a fair choice of architecture, and supports a ground up approach at
development.

Representational State Transfer: R.E.S.T.

Representational

State Transfer, or R.E.S.T., is
based on clients and
servers. Clients can post
request to servers and
servers do work and return
appropriate responses to
the client. Requests can be
any coherent
representation of a
resource that can be used
to change the state. This is
where the PU’s come in;
they perform actions on the
state and then push them
out again. PU’s act as
resources for the server to
perform actions with.
Responses are the
representation of the state
or next state to be had. At
any point in time clients
can either be transitioning
their states, or be at “rest”.
While at rest the client can
interact with its user but has
no server memory or load
time. At any time the client

Figure 9: Diagram showing the basic flow of REST as applied to a Client-Server
environment.

can send a request to the server to change or transition to a new state based on user
response. The diagram on the right shows how a client becomes at rest and send requests
to the server with actions to perform. The server performs those actions and returns an
appropriate response. The cycle moves on from there.

Object Space

Object Space is a service oriented strategy providing a distributed object exchange

and coordination mechanism for objects. It is used to store the distributed system state and
implement distributed algorithms. In an Object Space, all communication partners, or
peers, communicate and coordinate by sharing a state. Object spaces use the Master-
Worker strategy. The Master system pushes objects or actions out to the “space”. Then the
associated workers read these objects and take them in. When the work that needs to be
done is processed it is pushed back out to the space with a new set of actions that need to
be performed or location to be transferred to. In this system the PU’s of the system are
treated as resources that the workers use to process and change the object in the space.
There are really only four actions performed in an object space:

 put – Put an object into the space

 Notify – Notifies the workers when there is something in the space that concerns them, or

that they can work on.

 Get – Get something out of the space, when this happens nothing else can get that

particular object until the worker is

done.

 Read – Reads in a copy of the

object in the space to perform

actions on but leaves the original
in the space for other workers to
use.

With just these four actions we can
control the object space and effectively
run the Master-Worker strategy.

Processing Units and Partitioning

In terms of scalability SBA is
great for allowing a linear software size
increase strategy to your system. SBA is
made up of many Processing Units
(PU’s). A PU is an individual unit in the
system that has a specific job and can do
that job on its own. Each PU is
completely independent, this helps in

Figure 10: Processing units provide a modularized structure that is easily
scalable

http://en.wikipedia.org/wiki/Distributed_algorithm

many ways. First off, with each PU being completely independent the coupling and
cohesion of your system becomes extremely manageable. Second since PU’s are
independent it is increasingly easy to add new PU’s to the system without having to alter
and manage existing code. This is the primary reason the scalability is very easy with this
architecture system. Lastly since the system is already so modular a few strategies can be
employed to ensure availability fo the system. As depicted below, you can simply make an
number of backups to each partitioned PU that can cover for any downed PU’s. Secondly, in
a more reactionary approach, with proper action out put you can pinpoint the PU that
cuased the problem very quickly. This allows for quick fixes and short downtime. Either
one of these solutions makes this architecture strategy extremely available and
maintainable.

Figure 11: Processing Units can have any number of backups to provide better availability

Performance Gains using the “Space”

The performance gains of this type of architecture are three fold. First off
transaction based systems benefit gratefully from this architecture because actions are
performed in one place and don’t have to pass into many places of the system to finish. This
saves time on specific transactions if you design each PU to house specific code for each
transaction type. By doing this, code completion on a transaction bases becomes very fast.
Secondly, since we can do these small transactions very quickly, we can process many
transactions relatively fast. Real time analytics such as that needed to do credit score
calculations and insurance information processing are now fast. Lastly, the modular nature
of this architecture system is a perfect environment for parallel processing for high end
applications.

Space Based Banking Software

In terms of banking software development we would start small. With just a few

basic features like accounts, withdraws, deposits, etc. each of these features would gain its
own partition and Processing Unit in the system. As the system builds new features would
be proposed and developed for the system. Mobile access, ATM functionality, online check
deposits, insurances claims, 401K’s and the like. All these banking features would secure a
Processing unit and then added in along with all the others. These processing units would
have a certain input case, like the withdraw partition would look for a withdraw instruction
in objects in the space. In the far back end of course we would need some sort of database
to hold all of the customers personal and account information. The space would be just a
place for transactions in process to stay while being processed. From the end users point of
view, you would come to a teller or an ATM and try to make a transaction on an account. All
this information, account number security password, dollar amounts and so on would be
packaged into a transaction request. This is the object that goes into the space. For
example, here is a scenario:

I walk up to an ATM and enter a password for my account, the fact that I want to make
a withdrawal and the amount.

Then the architecture system would handle it like this:

1. The three pieces of information would be packaged into a transaction object

2. This object would be put into the space.

3. The PU responsible for validating passwords would then either validate or

invalidate the password, then put the response along with the object back in

the space.

4. If the password was invalid, a PU would return an error message to the user.

5. But if it was valid a separate worker in charge of withdraws would take up

the request and process it with the dollar amount provided.

With the example you can see the processing power of space based architecture. Actions
are done easily, effectively and only when they are required to. The system is also very
flexible there aren’t a bunch of statements guiding the process through the system. Each
worker is responsible for grabbing the object that it can work on and then returns a
response. The system is also very performance minded because each transaction is handled
specifically and quickly because only the required Processing Units required to do the work
are actually accessed and used. This strategy cuts out the extra processing time that it
would have taken to skip through all the other processing units like you would have had to
do in some other Architecture systems.

Scoring of Architectures

Now that the systems have been described in detail and the benefits and drawbacks
have been analyzed in relation to a banking system, the next step in the Software Architecture
Comparison Analysis Model is to score the different architectures for their suitability in the
system at hand. To do this, a decision matrix was formed based on the key aspects determined
to deem the project a success. It is appropriate to weigh each of the criteria depending on the
value of that attribute to the rest of the system.

Support
Transactions

Usability Scalability Security Performance Modifiability
Dev.
Effort

Total
Score

Weighting 4 3 3.5 5 4 2 2.5

Relational
DB

3 4 3 4 3 2 3 78

Stored
Procedure

2 2 3 1 4 2 4 59.5

Dynamic
Table Logic

2 2 2 2 2 2 2 48

Comm.
Between
Processes

4 3 4 3 4 3 4 86

Blackboard 2 2 3 3 3 2 2 60.5

Client-
Server

4 3 3 4 3 4 4 85.5

Three-
Tiered

3 4 5 4 4 4 2 90.75

Space-
Based

4 4 5 3 4 4 3 92

Table 1: The final decision matrix. The weighting of the criteria in the matrix is based on the attributes of the system that are
likely to be perceived as the most important to customers. For each of the eight types of architecture detail in the body of the
paper, scores were given based on their tendency to succeed for each of the given criteria (with 5 points being the maximum).

As can be seen in the decision matrix, none of the database-centric architectures
performed that well. The architectural approach of using the database as a basis for central
form on which communications performed would be a reasonable approach for the banking
system, but outperforms the client-server architecture only by a little. According to the table
above, the architecture suitable for most big bank systems would likely be based on a space-
based or three-tiered architecture. These are also two of the most object-oriented
architectures investigated in this paper, which point to yet another reason that object-oriented
development is very important to system architecture today.

Of course, other considerations will have to be taken into account before agreeing upon
the architecture. Collaborating with the bank to determine their specific requirements for a
project is one of the biggest driving factors for this decision. For instance, smaller banks who
aren’t really expecting much growth could probably get away with a simpler architecture such
as client-server, depending of course on their other needs. It is also important to realize that
although these architectures were given numbered scores, some of the ideas from an some
architecture can be applied to other architectures, making a sort of hybrid with the good
qualities of the architectures involved and as few bad qualities as possible.

Summary & Conclusion

In general, any architecture chosen for a big financial-sector system like a banking
system will need to incorporate many quality attributes as mentioned throughout this paper,
such as security, reliability, availability, etc. Some may be more functionality-driven, but the
decision matrix above with a little tweaking will be a suitable model for choosing system
architecture according to the specific criteria in most cases. With this assumption, it can be said
that for newly developed financial systems of great magnitude, the architecture should
generally stack up against each other as shown in the decision matrix.

However, the answer to the question, “Which software architecture is best suitable for a
banking system?” is not always going to be the same answer for other types of systems. There
are many systems out there for which a blackboard approach would be much more appropriate
than any other architecture. Judgment of software architecture cannot be made by looking at
one specific domain. Differing architectural styles are present in the software industry because
there are benefits and disadvantages that each model introduces. With that said, each
architectural model must be evaluated for the specific circumstances at hand.

The most important takeaway from this term paper is not what would be the best
architecture for a banking system (although the research done may prove to be useful if, in the
future, one of us has to work on such a system), but that there are many different
architectures, and each has a proper use. In the course of the paper the team discovered a lot
about the various architectures researched. The space-based architecture and some of the
database-driven architectures were entirely new to the team, and allowed them to pick up
some emerging ideas within the software architecture world. While specifically choosing only a
few architectures to cover in the paper, the team encountered far more architectures in the
initial stage of looking for potential candidates of a sensible banking system, allowing them to
broaden their knowledge of different types of architectures in an even large scope than
illustrated in the paper.

Bibliography

"Base One - Database-centric Grid and Cluster Computing." Base One - .NET Database
Programming Tools. Web. 05 Nov. 2010. <http://www.boic.com/dbgrid.htm>.

Daniel D. Corkill. Collaborating Software: Blackboard and Multi-Agent Systems & the
Future. In Proceedings of the International Lisp Conference, New York, New York, October
2003.

Dué, Richard T. "Client/Server Feasibility." Information Systems Management 11.3
(1994): 79-82. Academic Search Premiere. Web. 05 Nov. 2010.

Gallaugher, John, and Suresh Ramanathan. "Choosing a Client/Server Architecture."
Information Systems Management 13.2 (1996): 7-13. Academic Search Premiere. Web. 05 Nov.
2010.

"Introduction to 3-Tier Architecture." DotNetSlackers: ASP.NET News and Articles For
Lazy Developers. Web. 05 Nov. 2010.
<http://dotnetslackers.com/articles/net/IntroductionTo3TierArchitecture.aspx>.

Michalarias, I., A. Omelchenko, and H. Lenz. "FCLOS: A Client–server Architecture for
Mobile OLAP." Data & Knowledge Engineering 68.2 (2009): 192-220. Academic Search
Premiere. Web. 05 Nov. 2010.

"Owen Taylor on 'Space Based Architecture' - TheServerSide.com." TheServerSide.com:
Your Java Community Discussing Server Side Development. Web. 05 Nov. 2010.
<http://www.theserverside.com/news/thread.tss?thread_id=42928>.

"Space-Based Architectural Thinking." CQRS, DDD, and NServiceBus Video. Web. 05 Nov.
2010. <http://www.udidahan.com/category/space-based-architecture/>.

"Space-Based Programming - O'Reilly Media." ONJava.com: The Independent Source for
Enterprise Java -- Java Development, Open and Emerging Enterp. Web. 05 Nov. 2010.
<http://onjava.com/pub/a/onjava/2003/03/19/java_spaces.html>.

Tyree, J., and A. Akerman. "Architecture Decisions: Demystifying Architecture." IEEE
Software 22.2 (2005): 19-27. Academic Search Premiere. Web. 05 Nov. 2010.

Wikipedia, the Free Encyclopedia. Web. 05 Nov. 2010.
<http://en.wikipedia.org/wiki/Main_Page>. (Used multiple articles as base line for some
information gathering and to seek out other sources)

